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Abstract The biresponse semiparametric regression analysis combines parametric and nonparametric components to
understand the relationship between two correlated response variables and predictor variables. In this approach, the
nonparametric component are estimated using spline truncated, Fourier series, or kernel methods, each suitable for specific
data patterns. This study aims to estimate the parameters of a mixed semiparametric regression model on climate data using
the Weighted Least Square (WLS) method and to select optimal knot points, oscillation parameters, and bandwidth based on
the smallest Generalized Cross Validation (GCV) value. The results show that the best model combines a spline truncated
component with one-knot and a Fourier series component with one oscillation, yielding a minimum GCV of 7.401, an R²
of 84.66%, and an MSE of 92.33. The findings suggest that the biresponse semiparametric regression model combining
spline truncated, Fourier series, and kernel estimators are highly effective for modeling climate data with complex predictor
patterns.
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1. Introduction

Indonesia, an archipelagic nation with rich biodiversity, faces significant challenges due to climate change. The
steadily rising annual temperatures contribute to global warming, exacerbating the situation [1]. According to
the 2022 report by the Meteorology, Climatology, and Geophysics Agency, over the past 40 years, Indonesia’s
temperatures have consistently increased, with an average air temperature anomaly of 1.2°C across 89 observation
stations [2]. Paradoxically, Indonesia ranks 7th globally as the largest contributor to greenhouse gas emissions [3].
The impact of this crisis is increasingly evident in the heightened frequency and intensity of natural disasters [4].
Additionally, climate change threatens food security, degrades the environment, and escalates public health risks.

South Sulawesi and West Sulawesi are two Indonesian provinces significantly impacted by climate change. A
rainfall anomaly occurred in 2023, characterized by a wetter January and a much drier June-July than previous
years [5]. In January 2023, rainfall in South Sulawesi and West Sulawesi was notably higher than in January 2022.
This increase in rainfall intensity poses a risk of hydrometeorological disasters, such as floods and landslides. For
example, the flood in Makassar City in mid-January 2023 was recorded as the most severe in the last 20 years
[6]. Conversely, a substantial reduction in rainfall could lead to severe drought, which would inevitably hinder and
decrease productivity of crops requiring sufficient water supply [7].
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In addition to rainfall, sunshine duration is a critical factor in the climate dynamics of South Sulawesi and West
Sulawesi. Fluctuations in sunshine duration, whether through an increase or extreme decrease, can have significant
ecological and environmental consequences for the region. Excessive increases in sunshine duration can raise air
temperatures and dry out the soil, exacerbating existing drought conditions [8]. Conversely, extreme reductions in
sunshine duration can disrupt plant growth patterns and photosynthetic activity, potentially reducing agricultural
productivity and threatening food security in the region [9].

The complex and inconsistent dynamics of climate change present challenges in understanding trends and
predicting future events. The uncertainty caused by extreme and irregular weather fluctuations further complicates
the prediction process, hampering disaster mitigation efforts [1], [10]. Historical climate data indicate that some
patterns can be modeled, while others remain unknown [1], [11]. Therefore, an adaptive predictive model is
essential for accurately understanding inconsistent climate change patterns and forecasting future events.

Statistical modeling using semiparametric regression analysis offers an effective solution to address the
complexity and uncertainty in climate data analysis [12]. This analysis combines the flexibility of nonparametric
models with the linear structure of parametric models, allowing it to capture complex nonlinear patterns in climate
data [13]. Its adaptability to unstable data patterns enhances its accuracy in predicting future data [14]. The
nonparametric component of the data can be modeled using various estimators, such as spline truncated, Fourier
series, or kernels [12]. This approach aligns with the characteristics of climate data, which often exhibit unknown
patterns that are well-suited to semiparametric regression modeling.

Typically, research on semiparametric regression models employs a uniform estimation method for some or
all predictor variables. However, data with multiple predictors often exhibit varying patterns for each predictor.
Consequently, some researchers have developed mixed estimation methods to address this issue. Previous studies
on semiparametric regression utilizing mixed estimators include Hesikumalasari et al. [15], which incorporated a
combination of truncated spline and kernel estimators. Nisa explored a mix of truncated spline and Fourier series
estimators [16]. Further research on biresponse data was conducted by Fariz et al. [17] using a Fourier series
estimator and by Sauri et al. [18] employing a combined Fourier series and truncated spline estimator.

Previous research has primarily focused on the combination of two estimators in semiparametric regression.
However, in other cases, it may be necessary to apply three or more estimators to different data patterns. This
decision is guided by scatter plot analysis, comparing the characteristics of the truncated spline, Fourier series,
and kernel estimators to determine the most appropriate modeling approach. Accordingly, this study advances the
semiparametric regression model by incorporating mixed truncated spline, Fourier series, and kernel estimators,
applied to data with two response variables (biresponse).

2. Literature Review

Semiparametric regression is a statistical modeling technique that combines both parametric and nonparametric
components. In this approach, part of the model is specified with a predetermined functional form (parametric
component), while the other part is left flexible to capture complex patterns in data without assuming a specific
form (nonparametric component) [14].

Given the pairs of observational data (x, t, z, v, y1, y2), where x is the parametric component, t, z, v are
the nonparametric components, and y1, y2 are response variables. The form of the biresponse semiparametric
regression model that includes these variables can be expressed as follows [13]:

yji = fj(xi) + gj(ti) + hj(zi) + qj(vi) + ϵji (1)

where i represents the number of data points, and j denotes the number of responses, with i = 1, 2, . . . , n and
j = 1, 2. Meanwhile, ϵji represents independent random errors that are normally distributed with a mean of zero
and a variance of σ2

ji.
Based on equation (1), it can be seen that the equation is a biresponse semiparametric function consisting of four

components. The first function f is the parametric component, which is approximated using linear regression as
follows:

fj(xi) = β0j + βjxi (2)
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Meanwhile, the second component, g is a nonparametric function that is approximated using a linear spline
truncated. This approach is used because the relationship between the response variable yj and the predictor
variables t is assumed to fluctuate within specific sub-intervals. The linear spline truncated regression curve with
knots K1,K2, . . . ,KM (K1 ≤ K2 ≤ · · · ≤ KM ) is defined by equation (3).

gj(ti) = ξjti +

M∑
k=1

Φjk(ti −Kjk)+ (3)

where

(ti −Kjk)+ =

{
(ti −Kjk), ti ≥ Kjk

0, ti < Kjk

The function h is a nonparametric component that is approximated using a Fourier series function. This is based
on the assumption that the relationship between the response variable yj and the predictor variable z exhibits a
repeating or seasonal pattern. The Fourier series regression curve with the oscillation parameter l can be defined
by the following equation (4).

hj(zi) = bjzi +
α0j

2
+

L∑
l=1

αjl cos(lzi) (4)

The function q is a nonparametric component that is approximated using a kernel function. The relationship
pattern between the response variable yj and the predictor variables v is assumed to be unknown. In this study, the
Nadaraya-Watson kernel function is used, which is defined by the following equation (5).

qj(vi) = n−1
n∑

i=1

Kϕj
(vj − vi)

n−1
∑n

i=1 Kϕj
(vj − vi)

yji (5)

or

qj(vi) = n−1
n∑

i=1

Rϕji(v)yji (6)

where

Kϕj
(vs − vsi) =

1

ϕj
K

(
v − vi
ϕj

)
and qj(vi) is the Nadaraya-Watson kernel regression curve estimator, and ϕ represents the bandwidth parameter.

3. Research Method

The data used in this study are secondary data obtained from the Global Satellite Mapping of Precipitation
(GSMAP) and The European Center for Medium-Range Weather Forecasts (ECMWF). The data pertains to the
climate in the provinces of South Sulawesi and West Sulawesi collected from 78 data collection points from 2008
to 2013. This study uses two response variables and four predictor variables as shown in Table 1

Table 1. Research Variables

Variables Description Unit
y1 Average of daily rainfall during January mm/m2

y2 Average of daily sunshine duration during January %
x1 Average of daily wind speed during January m⁄d
x2 Average of daily relative humidity during January %
x3 Average of monthly maximum temperature before January C
x4 Average of monthly minimum temperature before January C
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Figure 1. The response variables (a) Average of daily rainfall during January (y1) (b) Average of daily sunshine duration
during January (y2).

To model the rainfall and sunshine duration data using semiparametric biresponse regression mixed spline
truncated, Fourier series, and kernel, the following steps are taken :

1. Conduct a dependency test between the first and second responses.
2. Perform data exploration on the response variables (Rainfall and Sunshine Duration) and predictor variables

(Wind Speed, Relative Humidity, Maximum Temperature, and Minimum Temperature) to determine the
descriptive statistics of each research variable.

3. Create scatter plots to observe the relationship patterns between the response and predictor variables.
For known relationship patterns, use parametric regression, and for unknown patterns, use nonparametric
regression.

4. Determine which predictor variables should use spline truncated regression curves, Fourier series regression
curves, and kernel regression curves based on the minimum Generalized Cross Validation (GCV) criterion.

5. Model the two responses, Rainfall and Sunshine Duration data, semiparametric biresponse regression mixed
spline truncated, fourier series, and kernel.

6. Select the optimal knot points, oscillation parameters, and bandwidth based on the smallest GCV criterion.
7. Calculate the coefficient of determination for the obtained model.
8. Draw conclusions from the analysis results.

4. Result and Discussion

4.1. Testing Dependency of Response Variables

One of the assumptions that must be met for cases with more than one response is the dependence between the
response variables. The Bartlett’s Sphericity test is used to examine the dependency between the two response
variables in this study, which are rainfall (y1) and sunshine duration (y2). The hypotheses used are:
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Hypotheses:

• H0: The response variables are independent.
• H1: The response variables are dependent.

Based on the Bartlett’s Sphericity test, χ2 = 40.238 > χ2
table = 3.841, so H0 was rejected, indicating that the

response variables are dependent. Additionally, the Pearson correlation between the two responses is -0.643. This
means that there is a fairly strong inverse correlation between rainfall and sunshine duration. As the amount of
rainfall at a location increases, sunshine duration at that location decreases, and vice versa.

4.2. Descriptive Analysis

The initial step before performing the mixed biresponse semiparametric regression modeling with truncated spline,
Fourier series, and kernel is to conduct a descriptive analysis. This analysis aims to provide an overview of the
variables used in the study, as shown in Table 2.

Table 2. Descriptive Analysis

Variables Minimum Maximum Mean Standard Deviation
y1 0.541 25.194 8.292 5.959
y2 8.266 27.296 22.869 5.020
x1 0.944 6.156 2.692 1.474
x2 0.651 0.961 0.798 0.072
x3 20.242 32.122 27.900 2.643
x4 14.193 28.012 23.298 4.190

Table 2 shows the distribution of variables from January 2008 to 2013 at 78 observation points in the Provinces
of South Sulawesi and West Sulawesi. The average rainfall ranged from the lowest of 0.541 mm/m² observed in
Luwu Regency, to the highest of 25.194 mm/m² observed around Takalar Regency. The maximum variability in
sunshine duration was about 27.296 hours in central and southern South Sulawesi; the lowest value, however, was
8.266 hours in Tana Toraja and North Toraja. Wind speed varied from a maximum of 6.156 m/day in southern
Selayar Regency to a minimum of 0.944 m/day in Luwu Regency. This description of rainfall and sunshine
duration corresponds with the pattern shown in figure 1 . The highest relative humidity was 96.1% found in Luwu,
Tana Toraja, and in the mountainous area of Gowa Regency, while the minimum was 65.1% in Mamuju Regency.
The highest average maximum temperature was 32.122°C in Bone Regency, while the lowest, 20.242°C, was in
Tana Toraja. The highest average minimum temperature was 28.012°C in Bulukumba and Selayar, and the lowest,
14.193°C, in Tana Toraja.

The scatter plots provided the preliminary relationships between the response and predictor variables, guiding
whether to use a parametric or non-parametric approach — i.e., truncated spline, Fourier series, and kernel
techniques — based on the theoretical data shape. Comparisons between scatter plots of rainfall and sunshine
duration against their predictors of interest are shown below.
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Figure 2. Scatter plots of Y1 vs X variables

Figure 2 illustrates the scatter plot between rainfall (Y1) and wind speed (X1), which shows no clear pattern,
suggesting a nonparametric kernel approach is suitable. The relationship between rainfall (Y1) and relative humidity
(X2) shows a recurring trend as humidity increases with rainfall, indicating a Fourier series approach. The
relationship between rainfall (Y1) and maximum temperature (X3) appears linear, making a linear parametric
approach appropriate. Meanwhile, the relationship between rainfall (Y1) and minimum temperature (X4) changes
behavior at certain intervals, suggesting a linear spline truncated approach.

Figure 3. Scatter plots of Y2 vs X variables

Figure 3 shows that the relationship between sunshine duration (Y2) and wind speed (X1) changes at certain
intervals, with a sharp increase before interval 2 and a slower rate afterward. This suggests modeling with a
nonparametric truncated spline. Similar patterns are observed for relative humidity (X2) and minimum temperature
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(X4). In contrast, the relationship between sunshine duration (Y2) and maximum temperature (X3) is linear, suitable
for a linear parametric approach.

Both rainfall and sunshine duration are linearly related to maximum temperature, indicating a linear parametric
model for this predictor. However, other predictors, like wind speed, show different patterns with each response,
suggesting different nonparametric approaches. For instance, rainfall and wind speed are modeled using a
nonparametric kernel, while sunshine duration and wind speed use a truncated spline. The choice of nonparametric
components — truncated spline, Fourier series, or kernel — is based on the smallest GCV value, considering only
the nonparametric predictors X1, X2, and X4, as X3 follows a parametric approach.

Table 3. Comparison of GCV Values for Different Variables

No Variables Spline Truncated Variables Fourier Series Variables Kernel CGV
1 X1 X2 X4 8.929
2 X1 X4 X2 9.019
3 X2 X1 X4 8.394
4 X2 X4 X1 7.829
5 X4 X1 X2 9.143
6 X4 X2 X1 7.401*

Based on Table 3, the smallest GCV value is 7.401, with X4 modeled using a truncated spline approach, X2

using a Fourier series approach, and X1 using a kernel approach. Variables modeled with parametric components
are symbolized by x, while nonparametric components modeled with truncated spline, Fourier series, and kernel
are symbolized by t, z, and v, respectively.

4.3. Semiparametric Biresponse Regression Modeling with Mixed Estimator of Truncated Spline, Fourier
Series, and Kernel

The semiparametric biresponse regression modeling using mixed estimators of truncated spline, Fourier series, and
kernel heavily relies on the selection of knot points, oscillation parameters, and optimal bandwidth. In accordance
with the research limitations stated in Chapter 1, which restrict the study to one-knot point and two oscillation
parameters (l = 1, 2, and 3), the selection of knot points, oscillation parameters, and bandwidth is based on the
smallest GCV value.

4.3.1. Model with One-knot Point for Spline truncated Component and One Oscillation for Fourier Series
Component The following is the semiparametric mixed regression model of Spline truncated, Fourier series, and
kernel using one-knot point and one oscillation.

ŷji = β̂0j + β̂jxi + ξ̂jti + Φ̂j1(ti −Kj1)+ + b̂jzi +
α̂0j

2
+ α̂j1 cos(zi) +

∑n
i=1

1
φj

K
(

v−vi

φj

)
∑n

i=1
1
φj

K
(

v−vi

φj

)yji
The GCV values produced using one-knot point and one oscillation are shown in Table 4.

Stat., Optim. Inf. Comput. Vol. 14, July 2025



HARTINA HUSAIN ET.AL 69

Table 4. Comparison of GCV Values of Models with one-knot Point and One Oscillation

No. Knot Point K11 Knot Point K21 Oscillation Bandwidth φ1 Bandwidth φ2 GCV
1 22.987 19.644 1 3.018 2.730 7.401*
2 22.847 19.411 1 3.018 2.730 7.402
3 23.126 19.876 1 3.018 2.730 7.403
4 22.987 19.643 1 3.292 2.978 7.404
5 22.847 19.411 1 3.292 2.978 7.404
6 22.987 19.644 1 2.743 2.482 7.405
7 22.847 19.411 1 2.743 2.482 7.407
8 23.126 19.876 1 3.292 2.978 7.407
9 23.126 19.876 1 2.743 2.482 7.407

10 23.266 20.109 1 3.018 2.730 7.409

Based on Table 4, the smallest GCV value is 7.401 with the location of the knot point in the first response and
the second response at 22.987 and 19.644, respectively. The bandwidth values in the first and second responses
are 3.018 and 2.730, respectively. By using the knot point, oscillation parameters, and bandwidth, the parameter
estimates for the parametric and nonparametric components are obtained as shown in Table 5.

Table 5. Model Parameter Estimation with one-knot Point and One Oscillation

Variable Parameter Estimate
x β̂01 9.659× 10−9

β̂1 −1.088

β̂02 −8.038× 10−8

β̂2 0.793

t ξ̂1 0.631

Φ̂11 −0.690

ξ̂2 −0.670

Φ̂21 81.164

z b̂1 63.558
α̂01 −95.799
α̂11 8.972

b̂21 553.136
α̂02 −2058.806
α̂21 844.715

Based on Table 4 and the estimation results in Table 5, the following semiparametric biresponse regression model
of a mixture of Spline truncated, Fourier series, and kernel with one-knot point and one oscillation is obtained:

ŷ1i = −47.899− 1.088xi + 0.631ti − 0.690(ti − 22.987)+ + 63.558zi

+ 8.972 cos(zi) +

∑78
i=1

1
3.018K

(
v−vi
3.018

)∑78
i=1

1
3.018K

(
v−vi
3.018

)y1i
ŷ2i = −1029.403 + 0.793xi − 0.670ti + 81.164(ti − 19.644)+ + 553.136zi

+ 844.715 cos(zi) +

∑78
i=1

1
2.730K

(
v−vi
2.730

)∑78
i=1

1
2.730K

(
v−vi
2.730

)y2i
4.3.2. Model with One-Point Knot Spline truncated Components and Two-Oscillation Fourier Series Components.
The following is a semiparametric regression model of a mixture of Spline truncated, Fourier series, and kernel
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using one-knot point and two oscillations.

ŷji = β̂0j + β̂jxi + ξ̂jti + Φ̂j1(ti −Kj1)+ + b̂jzi +
α̂0j

2
+ α̂j1 cos(zi) + α̂j2 cos(2zi) +

∑n
i=1

1
φj

K
(

v−vi

φj

)
∑n

i=1
1
φj

K
(

v−vi

φj

)yji
The GCV values produced using one-knot point and two oscillations are shown in Table 6.

Table 6. Comparison of GCV Values of Models with one-knot Point and Two Oscillations

No. Knot Point K11 Knot Point K21 Oscillation Bandwidth φ1 Bandwidth φ2 GCV
1 23.824 21.038 2 2.743 2.482 7.629*
2 23.964 21.271 2 2.743 2.482 7.630
3 23.685 20.806 2 2.743 2.482 7.630
4 24.103 21.503 2 2.743 2.482 7.630
5 23.824 21.038 2 3.018 2.730 7.633
6 23.684 20.806 2 3.018 2.730 7.633
7 23.964 21.271 2 3.018 2.730 7.634
8 23.545 20.574 2 2.743 2.482 7.634
9 24.103 21.503 2 3.018 2.730 7.635

10 23.824 21.038 2 2.469 2.234 7.636

Based on Table 6, the smallest GCV value is 7.629 with the location of the knot point in the first response and
the second response at 23.824 and 21.038, respectively. The bandwidth values in the first and second responses
are 2.743 and 2.482, respectively. By using the knot point, oscillation parameters, and bandwidth, the parameter
estimates for the parametric and nonparametric components are obtained as shown in Table 7.

Table 7. Model Parameter Estimation with one-knot Point and Two Oscillations

Variable Parameter Estimate
x β̂01 7.213

β̂1 −1.047

β̂02 −27.785

β̂2 0.698

t ξ̂1 0.663

Φ̂11 0.644

ξ̂2 −8.665

Φ̂21 0.794

z b̂1 548.091
α̂01 −916.420
α̂11 38.144
α̂12 232.547

b̂2 −904.788
α̂02 1092.777
α̂21 233.025
α̂22 −540.312
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Based on Table 6 and the estimation results in Table 7, the following semiparametric biresponse regression model
of a mixture of Spline truncated, Fourier series, and kernels with one-knot point and two oscillations is obtained:

ŷ1i = −450.997− 1.047xi + 0.663ti + 0.644(ti − 23.824)+ + 548.091zi

+ 38.144 cos(zi) + 232.547 cos(2zi) +

∑78
i=1

1
2.743K

(
v−vi
2.743

)∑78
i=1

1
2.743K

(
v−vi
2.743

)y1i
ŷ2i = 518.604 + 0.698xi − 8.665ti + 0.794(ti − 21.038)+ − 904.788zi

+ 233.025 cos(zi)− 540.312 cos(2zi) +

∑78
i=1

1
2.482K

(
v−vi
2.482

)∑78
i=1

1
2.482K

(
v−vi
2.482

)y2i
4.3.3. Model with One-Point Knot Spline truncated Components and Three-Oscillation Fourier Series Components
The following is a semiparametric regression model of a mixture of Spline truncated, Fourier series, and kernels
using one-knot point and three oscillations.

ŷji = β̂0j + β̂jxi + ξ̂jti + Φ̂j1(ti −Kj1)+ + b̂jzi

+
α̂0j

2
+ α̂j1 cos(zi) + α̂j2 cos(2zi) + α̂j3 cos(3zi)

+

∑n
i=1

1
φ̂j

K
(

v−vi
φ̂j

)
∑n

i=1
1
φ̂j

K
(

v−vi
φ̂j

) ŷji
The GCV values produced using one-knot point and three oscillations are shown in Table 8.

Table 8. Comparison of GCV Values of Models with one-knot Point and Three Oscillations

No. Knot Point K11 Knot Point K21 Oscillation Bandwidth φ1 Bandwidth φ2 GCV
1 27.453 27.082 3 0.823 0.745 7.806*
2 19.637 14.065 3 1.097 0.993 7.882
3 19.497 13.833 3 1.097 0.993 7.885
4 19.358 13.600 3 1.097 0.993 7.889
5 19.218 13.368 3 1.097 0.993 7.896
6 19.079 13.135 3 1.097 0.993 7.904
7 18.939 12.903 3 1.097 0.993 7.913
8 27.453 27.082 3 1.097 0.993 7.914
9 18.799 12.671 3 1.097 0.993 7.924

10 18.660 12.438 3 1.097 0.993 7.934

Based on Table 8, the smallest GCV value is 7.806 with the location of the knot point in the first response and
the second response respectively 27.453 and 27.082. The bandwidth value in the first and second responses is
also obtained as 0.823 and 0.745 respectively. By using the knot point, oscillation parameters, and bandwidth, the
parameter estimates for the parametric and nonparametric components are obtained as in Table 9.
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Table 9. Model Parameter Estimation with one-knot Point and Three Oscillations

Variable Parameter Estimate
x β̂01 0.665

β̂1 -1.046
β̂02 -27.977
β̂2 0.698

t ξ̂1 0.300
Φ̂11 0.634
ξ̂2 -115.01
Φ̂21 -0.057

z b̂1 1155.339
α̂01 -611.313
α̂11 -966.563
α̂12 1047.841
α̂13 -136.610
b̂2 -777.150
α̂02 389.865
α̂21 633.263
α̂22 -664.728
α̂23 44.376

Based on Table 8 and the estimation results in Table 9, a semiparametric biresponse regression model of a
mixture of Spline truncated, Fourier series, and kernel with one-knot point and three oscillations is obtained as
follows:

ŷ1i = −304.992− 1.046xi + 0.300ti + 0.634(ti − 27.453)+ + 1155.339zi

− 966.563 cos(zi) + 1047.841 cos(2zi)− 136.610 cos(3zi)

+

∑78
i=1

1
0.823K

(
v−vi
0.823

)∑78
i=1

1
0.823K

(
v−vi
0.823

)y1i
ŷ2i = 166.954 + 0.698xi − 115.01ti − 0.057(ti − 27.082)+

− 777.150zi + 633.263 cos(zi)− 664.728 cos(2zi) + 44.376 cos(3zi)

+

∑78
i=1

1
0.745K

(
v−vi
0.745

)∑78
i=1

1
0.745K

(
v−vi
0.745

)y2i
Next, a comparison of the GCV values for the Model with one-knot Spline Truncated Component and Fourier

Series Component for 1, 2, and 3 oscillations can be seen in Table 10.

Table 10. Comparison of GCV Values of Models with one-knot Point and 1, 2, 3 Oscillations

No Oscillation Parameter GCV
1 1 oscillation 7.401*
2 2 oscillation 7.629
3 3 oscillation 7.806

Based on Table 10, the smallest GCV value is 7.401 in the model with one-knot spline truncated component and
one oscillation Fourier series component. From the model obtained, a plot is obtained between the y value and the
ŷ for each response, namely rainfall and sunshine duration in South Sulawesi and West Sulawesi Province. The
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plot of actual rainfall data (y1) and the plot of predicted data (ŷ1) are shown in Figure 4. and The plot of actual
solar radiation duration data (y2) and the plot of predicted data data (ŷ2) are shown in Figure 5.

Figure 4. Plot of data y1 and ŷ1.

Figure 5. Plot of data y2 and ŷ2.

Figures 4 and 5 provide a visual comparison between the predicted and actual values for both rainfall and sunshine
duration, revealing that the predictions closely approximate the actual data. This alignment is quantitatively
supported by a coefficient of determination (R²) of 84.66%, indicating that a significant proportion of the variance
in the response variables is explained by the model. Additionally, the model’s mean square error (MSE) of 92.33
further underscores its accuracy, as this relatively low error value suggests that the differences between predicted
and actual values are minimal. The combination of a high R² and a low MSE reflects the robustness of the
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semiparametric model employed, affirming its effectiveness in capturing the underlying patterns in the climate
data. Consequently, these findings illustrate that the model is well-suited for predicting both rainfall and sunshine
duration, making it a reliable tool for understanding and forecasting climate-related variables in the studied regions.

Semiparametric biresponse mixed Spline Truncated, Fourier series, and kernels can be compared with models
that only use single estimator. The model was also tested on the same dataset using single estimator: Spline
truncated, Fourier series, and kernels. Table 11 shows a comparison of GCV values between models with mixed
estimators and each single estimator.

Table 11. Comparison of GCV Values of Mixed Model and Single Estimator

No Model GCV
1 Mixed Estimator 7.401*
2 Spline Truncated 15.457
3 Fourier Series 36,159

From Table 11, it can be seen that the GCV value for the model using a combination of three estimators is lower
than the models that only use one estimator. This shows that the mixed model of three estimators is superior in
modeling the average data of Rainfall and Sunshine Duration in South Sulawesi and West Sulawesi Provinces.

5. Conclusion

The best model resulting from the selection of knot points, oscillation parameters, and optimum bandwidth with
the smallest GCV value is a model with one-knot truncated spline component and one oscillation Fourier series
component:

ŷ1i = −47.899− 1.088xi + 0.631ti − 0.690(ti − 22.987)+ + 63.558zi + 8.972 cos(zi)

+

∑78
i=1

1
3.018K

(
v−vi

3.018

)∑78
i=1

1
3.018K

(
v−vi

3.018

)y1i
ŷ2i = −1029.403 + 0.793xi − 0.670ti + 81.164(ti − 19.644)+ + 553.136zi + 844.715 cos(zi)

+

∑78
i=1

1
2.730K

(
v−vi

2.730

)∑78
i=1

1
2.730K

(
v−vi

2.730

)y2i
The regression model above has a GCV value of 7.401, a coefficient of determination (R2) of 84.66%, and a

mean squared error (MSE) of 92.33. Therefore, the semiparametric biresponse mixed spline truncated regression
model, Fourier series, and kernel are able to model and explain the relationship between rainfall and sunshine
duration in South Sulawesi and West Sulawesi Province with variables of wind speed, relative humidity, maximum
temperature, and minimum temperature of 84.66%..
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