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Abstract To build a classification scheme for sequences based on hidden Markov models (HMMs), an appropriate distance
design is critical in both theory and practice. Kullback-Leibler (KL) and Hidden Markov stationary distance (HSD) measures
have been used to build classification schemes for sequences based on HMMs. However, it has been widely recognized that
the KL measure is not a true metric, and that the HSD metric is specifically designed for univariate data. Inspired by the
recent emergence of probability distribution metrics in reproducible kernel Hilbert spaces (RKHS), this work introduces
two new metrics between two stationary HMMs. The difference between the metrics based on RKHS, the HSD, and our
proposal is that they can be calculated analytically and can be used for multivariate data. The performance of the two metrics
in time series classification is assessed by applying them to a K-Nearest Neighbor (KNN) classifier. This evaluation uses
the Massachusetts Eye and Ear Infirmary Disordered Voice Database, provided by Kay Elemetrics. The results indicate that
the proposed metrics offer competitive classification accuracy in comparison with the KL, HSD, and dynamic time warping
(DTW) measures.
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GMM Gaussian mixture model

HMMs Hidden Markov models

HSD Hidden Markov stationary distance

KEG Metric based on RKHS and the Gaussian kernel

KEL Metric based on RKHS and the Laplacian kernel

KL Kullback-Leibler

KNN K-Nearest Neighbor

MMD Maximum mean discrepancy

RKHS Reproducible kernel Hilbert spaces

UCR Time series classification repository

1. Introduction

An HMM is a stochastic model that describes a sequence of random observations generated by an underlying
Markov process with a finite number of hidden states, which are not directly observable [1]. HMMs can be adapted
to address a variety of complex real-world issues [2,3] and have been successfully used in fields such as automatic
speech recognition [4, 5], bioinformatics [6], and computer vision [7]. Thanks to the Markovian property, HMMs
are also attractive in terms of computational complexity, since they come equipped with efficient algorithms for
parameter inference and prediction [8].

In the literature, three types of approaches are mainly used to establish metric spaces for HMMs: 1) defining
distance measures between HMMs, 2) defining kernels over generative models (including HMMs as a particular
case), and 3) building dissimilarity spaces, where the distance measures between HMMs are also used.

In the first group, the early work of [9] can be included, which defined the KL divergence between two HMMs
together with a symmetric version of it. Another proposed measure is based on the Wasserstein metric [10]
and computes the distance between two HMMs with state-conditional Gaussian distributions. A drawback of
this metric, as with the original KL distance, is that it fails to satisfy the triangle inequality. In [11], a proper
distance measure was introduced to build a classification scheme for sequences based on HMMs while employing
stationary cumulative distribution functions. This approach is known as HSD, and, although it can be regarded as
a real distance, its computation requires a numerical approximation of the integral associated with computing the
difference between the cumulative distributions related to the stationary HMMs. Furthermore, the HSD measure
was proposed while assuming one-dimensional input spaces, and its extension for multidimensional problems has
not yet been explored.

The second group could include the works of [12] and [13], which introduced a similarity measure between
probability distributions known as a probability product kernel. In this measure, the output value of a pair of data
points in the input space is obtained through the inner product of their corresponding probability distributions.
Here, the probability product kernel is a similarity measure that can be computed in closed form for HMMs. An
alternative approach to measuring the similarity between two HMMs is the Fisher kernel [14], which combines
the benefits of generative and discriminative methods for pattern classification. The main idea of the Fisher kernel
is to map data points to a gradient vector derived from a generative probability model [15]

Finally, the third group relies on dissimilarity measures. A measure of dissimilarity between a pair of data
points is a numerical measure of the extent to which a couple of data points are different. When a dissimilarity
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measure is defined by a kernel and such measure separates the classes, the nearest neighbor method exhibits a
better performance. Several applications that employ HMMs for statistical data modeling require a dissimilarity
measure to build a classification scheme for their sequences. Some of these measures are based on ED [16], the
Bayes probability of error, kernel methods [17], or neural networks [18], among others.
This paper focuses on the first group to define metric spaces for HMMs and introduce true distance measures using
the method of probability distribution embeddings in an RKHS. The Hilbert space embeddings of probability
distributions are a recent development in the field of kernel methods, and they allow mapping a set of probability
distributions into an RKHS via an injective operator that relies on a characteristic kernel [19]. RKHS-based
techniques have become useful and flexible tools to deal with high-dimensional statistical models [20, 21]. They
have enabled the non-parametric estimation of HMMs [22], electroencephalogram (EEG) mental recognition [23],
and the development of distance measures between probability distributions [24, 25].

Additionally, stochastic processes consider random variables that take on values within a space of possible paths.
However, reducing a stochastic process to a path-valued random variable overlooks its filtration, which represents
the flow of information carried by the process over time. By conditioning the filtration process, works such as [26]
and [27] introduce a family of higher-order probability distribution embedding into RKHS, generalizing the
classical method for embedding these distributions by incorporating additional filtration-related information.

Contributions. In [28] and [29], a metric between probability distributions is proposed using RKHS, called
the MMD metric. However, no metric between HMMs using RKHS is known. Following the ideas of [11] and
inspired by the framework proposed in [30], this study developed two new metrics to build a classification scheme
for sequences based on stationary HMMs via RKHS. Similar to the HSD metric, our approach is based on the
stationary distributions of the observation sequences for each HMM. The problem regarding the calculation of
metrics between HMMs in RKHS lies in computing integrals that are usually difficult to solve analytically. This
paper solves this issue by assuming Gaussian and Laplacian kernels for the embedding. It also assumes that the
emission probability is given by a Gaussian mixture model (GMM). The difference between the metrics based on
RKHS, HSD, and our proposal is that they can be calculated analytically. Furthermore, the metrics based on the
Gaussian and Laplacian kernels can be used for any type multivariate data, unlike the HSD, which is numerically
calculated and used for univariate data. This document presents a use case of one of the metrics for multivariate
data. The performance of the proposed metrics is evaluated using a KNN classifier on databases from the UCR
Time Series Classification Archive [31] and Kay Elemetrics’ voice database [32], i.e., the subset of 226 voice
records described by [32]. Although the discussion is limited to the use of Gaussian or Laplacian kernels, our
approach is general, and other types of kernels can be assumed, thereby obtaining a large range of applicable
metrics.

This paper is organized as follows. The materials and methods are described in section 2. This section briefly
describes the theory behind HMMs and Hilbert space embeddings for probability distributions, and it introduces the
new measures for several applications that employ HMMs for statistical data modeling and require a dissimilarity
measure to build a sequence classification scheme via the probability distribution embedding method in RKHS.
Section 3 describes the experiments employed in this study and discusses the results obtained using the RKHS-
based measures with real-world data. The conclusions and proposals for future works are outlined in section 4.

2. Materials and methods

Note that uppercase letters (e.g., X,Y ) are used to represent random variables, while lowercase letters (e.g., x, y)
denote the specific values of said variables. Probability distributions are denoted by the letters P,Q.
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2.1. Hidden Markov models

For the sake readability, univariate observation sequences will be assumed, but the framework can be generalized
for multivariate cases [8, 33].

Let X = (X1, X2, · · · , XT ) be an univariate observation sequence of length T that is driven by an unobservable
Markov sequence H = (H1, H2, · · · , HT ). The random variables Xt and Ht for t = 1, 2, · · · , T take values in the
sets R and {h1, h2, · · · , hN}, respectively, where N is the number of states. An HMM is completely defined by
the triplet ρ = (π,A,B). The first term π ∈ RN represents the initial state distribution, with πi = p(H1 = hi). The
transition matrix A ∈ RN×N has the entries aij = p(Ht = hj |Ht−1 = hi), ∀i, j = 1, 2, · · · , N,, which represents
the probability of transitioning from state hi to state hj . The vector of emission probabilities B ∈ RN has the
entries

bi(x) = p(Xt = x|Ht = hi), i = 1, 2, · · · , N,

and it represents the probability of observing xt from the state hj .
Assume the sequence of observations X = (X1, X2, · · · , XT ) to be described by an HMM. The probability of

a given sequence p (X1 = x1, · · · , XT = xT ) = p (x1, · · · , xT ) is defined as follows:

p (x1, · · · , xT ) =

N∑
i1=1

· · ·
N∑

iT=1

πi1bi1(x1) · · · aiT−1,iT biT (xT ).

This work focuses on the stationary distribution of the resulting HMM, which is expressed as follows:

p(x) =

N∑
i=1

πs,ibi(x), (1)

where πs,i is the stationary probability of state i. That is to say that πt,i = πt−1,i = πs,i, t ≥ ts, with ts being the
transient time. It is assumed that the emission probability bi(x) is given by a GMM with MP mixture components.

bi(x) =

MP∑
j=1

αi,jN (x|µi,j , Σi,j) , with
MP∑
j=1

αi,j = 1 and αi,j ≥ 0,

where αi,j is the previous probability for the component j of state i; µi,j is the mean parameter for the component
j of state i; and Σi,j is the variance parameter for the component j of state i.

2.2. Hilbert space embeddings for probability distributions

Let H be a Hilbert space of R-valued functions in a non-empty set X with the inner product ⟨·, ·⟩H. The function
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H, ∀x, x′ ∈ X is a reproducing kernel in H, which is a RKHS [34].

1. ∀x ∈ X , k(·, x) ∈ H.
2. ∀x ∈ X ,∀f ∈ H, ⟨f(·), k(·, x)⟩H = f(x).

Let P be the space of all probability distributions and X a random variable with a distribution function P ∈ P . The
function mean map µX from a probability distribution P ∈ P for the RKHS H is defined as µX(P) = EX [k(X, ·)] =∫
X k(·, x)dP(x), where the kernel k(x, x′) is characteristic†. Examples of characteristic kernels in the set Rd can

be seen in [30]. This paper uses Gaussian and Laplacian kernels because the resulting measures can be computed
in closed forms.

Figure 1 shows the shapes of the Gaussian and Laplacian kernels. Note that the tails of the Gaussian kernel are
heavier than those of the Laplacian kernel, making values far from the mean less probable.

†A characteristic kernel is a reproducing kernel for which µX(P) = µY (Q) ⇐⇒ P = Q, P,Q ∈ P , where P denotes the set of all Borel
probability measures in a topological space (X ,A).
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Figure 1. Shapes of the Gaussian (left) and Laplacian (right) kernels

2.3. Metric for the distance between probability distributions in RKHS

RKHS allow computing distances between probability distributions [35]. According to [30], the RKHS-based
distance γ2

k(P,Q) over the probability measures P and Q with the characteristic kernel k is given by

γ2
k(P,Q) =

∥∥∥∥∫
X
k(·, x)dP(x)−

∫
X
k(·, y)dQ(y)

∥∥∥∥2
H
. (2)

If the probability distributions P(x) and Q(y) admit the density functions p(x) and q(y), respectively, then
dP(x) = p(x)dx and dQ(y) = q(y)dy. Hence, Equation (2) can be written as

γ2
k(P,Q) =

∫
X

∫
X
k(x, y)p(x)p(y)dxdy +

∫
X

∫
X
k(x, y)q(x)q(y)dxdy

− 2

∫
X

∫
X
k(x, y)p(x)q(y)dxdy. (3)

From Equation 3, the distance between probability distributions can be obtained by appropriately selecting the
characteristic kernels and the probability functions p and q. In [28], the MMD metric is constructed while assuming
any characteristic kernel and empirical distributions for p and q. In the next section, Equation 3 is used to obtain
two metrics for HMMs. To this effect, it is assumed that the characteristic kernels are Gaussian and Laplacian, and
that the distributions of the observations of the stationary HMMs are Gaussian mixtures. Under these assumptions,
the integrals of Equation 3 are analytically solved, obtaining two metrics between HMMs. The novelty of this
approach is that there are no known metrics between HMMs which use RKHS.

2.4. RKHS-based distance measures between stationary HMMs using characteristic kernels

The probability distributions for RKHS-based distance (p and q) are given by the stationary distribution of
Equation (1), where GMMs provide the emission probabilities. Note that the solution to Equation (3) depends on
the type of characteristic kernel k(·, ·) selected for the RKHS. Since both the Gaussian and the Laplacian kernels
provide closed expressions when computing (3), they are used as characteristic kernels.
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Assume that p̂ and q̂ are the estimators of the HMM stationary distributions p and q, respectively. Then, according
to Equation (1), the following is obtained

p̂(x) =

NP∑
i=1

πP
s,ib̂

P
i (x), and q̂(y) =

NQ∑
i=1

πQ
s,ib̂

Q
i (y), (4)

where πP
s,i and πQ

s,j are the stationary probabilities of the probability distributions P and Q. Now, since the emission
probabilities are modeled using Gaussian mixture distributions, the following can be obtained:

b̂Pi (x) =

MP∑
j=1

αi,jN (x|µi,j ,Σi,j), and b̂Qi (y) =

MQ∑
j=1

βi,jN (y|νi,j .Λi,j).

Here, βi,j is the previous probability, νi,j is the mean parameter, and Λi,j is the variance parameter for the
component j of state i. Thus, the mean parameter for the component j of state i and Λi,j represent the variance
parameter for the component j of state i. The mean maps for the distributions are given by

µ̂X(P) =
∫
X
k(·, x)p̂(x)dx, and µ̂Y (Q) =

∫
X
k(·, y)p̂(y)dy. (5)

Now, by substituting the expressions from Equation (5) into (3) and assuming a characteristic kernel k(x, y; ℓ),
where ℓ is known as the bandwidth, the RKHS-based distance between the distributions P and Q is obtained, as
given by

γ̂2
k (P,Q) =

NP∑
i,j=1

MP∑
k,l=1

πP
s,iπ

P
s,jαi,kαj,lk̂ (µi,k, µj,l; Σi,k,Σj,l, ℓ)

+

NQ∑
i,j=1

MQ∑
k,l=1

πQ
s,iπ

Q
s,jβi,kβj,lk̂ (νi,k, νj,l; Λi,k,Λj,l, ℓ) (6)

− 2

NP,NQ∑
i,j=1

MP,MQ∑
k,l=1

πP
s,iπ

Q
s,jαi,kβj,lk̂ (µi,k, νj,l; Σi,k,Λj,l, ℓ) .

If the kernel k(x, y; ℓ) = exp
(
−ℓ∥x− y∥22

)
is Gaussian, then

k̂ (x, y; Σ,Λ, ℓ) = k̂G (x, y; Σ,Λ, ℓ) =

√
ℓ√

Σ+ Λ+ ℓ
exp

(
− (x− y)2

2(Σ + Λ + ℓ)

)
.

In this case, the distance measure of (6) is γ̂2
kG

(P,Q). On the other hand, if it is assumed that the kernel
k(x, y; ℓ) = exp (−ℓ∥x− y∥1) is Laplacian, then

k̂ (x, y; Σ,Λ, ℓ) =
Σ
√
π

Λ
f1 (x, y; Σ,Λ, ℓ)×

(
1− erf

(
d1 (x, y; Σ,Λ, ℓ)

2ΛΣ−1
√
Λ2 +Σ2

))
+

Λ
√
π

Σ
f2 (x, y; Σ,Λ, ℓ)×

(
1− erf

(
d2 (x, y; Σ,Λ, ℓ)

2ΣΛ−1
√
Λ2 +Σ2

))
,

where f1 (x, y; Σ,Λ, ℓ) is given by

Λ2√π exp

((
2ℓ2x+ Λ2

)2
8ℓ4Λ2

(
1− Λ2

Σ2

))
× exp

(
−
(
2ℓ2y + Λ2

)
2ℓ2

(
1

2ℓ2
− x

Σ2

))

×
(
−2−1

((
y

Λ

)2
+
(
x

Σ

)2)
+

Σ2d21 (x, y; Σ,Λ, ℓ)

4Λ2

)
,
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with d1 (x, y; Σ,Λ, ℓ) =
Λ√

2l2Σ2

(
2ℓ2(x− y) + Σ2 + Λ2

)
. Note that

f2 (x, y; Σ,Λ, ℓ) = f1 (y, x; Λ,Σ, ℓ) ,

and d2 (x, y; Σ,Λ, ℓ) = d1 (x, y; Λ,Σ, ℓ). erf (z) = 2√
π

∫ z

0
exp

(
−u2

)
du is the Gauss error function. Here, the

distance measure of (6) is γ̂2
kL

(P,Q).

The RKHS-based distance measures from Equation (6) have a closed form that depends on the
bandwidth ℓ, the hidden states NP and NQ, and the mixture components MP and MQ. The parameters
{πP

s,i, π
Q
s,i, αi,j , βi,j , µi,j , νi,j ,Σi,j ,Λi,j} are estimated using the EM algorithm [3].

2.5. Advantages and disadvantages of RKHS-based metrics

Listed below are some strengths and limitations of the RKHS-based metrics for HMMs introduced in this paper.

Advantages. The proposed RKHS-based metrics between HMMs can be calculated analytically, allowing
for greater precision in time series classification problems. Moreover, since the mean operator is a consistent
estimator [36], the metrics are also consistent, ensuring that the results are reliable and unaffected by minor data
variations. Another trait of the proposed metrics is their applicability to multivariate data, which makes them very
useful for data with multiple dimensions. This is not the case for the HSD metric. Finally, our metrics are designed
to capture nonlinear relationships within the data. By applying a characteristic kernel, the data are mapped to a
higher-dimensional RKHS, transforming relationships that are nonlinear in the original space into linear ones.
This transformation allows the identification of subtle similarities that might not be apparent in the original space,
thereby facilitating the analysis.

Disadvantages. RKHS-based metrics between HMMs come at a high computational cost, as evaluating
reproducing kernels on large datasets can be slow. Additionally, a shortcoming of these metrics is the difficulty
in estimating both the kernel and the HMM parameters, which can affect performance if the estimates do not
accurately capture the similarity between the HMMs. Furthermore, interpreting RKHS-based metrics can be
less intuitive than those defined in the input space, making it more challenging to understand and visualize the
differences between HMMs in an RKHS.

2.6. The HSD and KL measures

The proposed measures between HMMs were compared against the HSD and KL metrics, following the definition
in [11], i.e., if ρ1 and ρ2 are two HMMs and X = (X1, X2, · · · , XT ) is a sequence of length T generated by ρ1,
then

D (ρ1, ρ2) =
1

T

(
T∑

i=1

log p(xi)− log q(xi)

)
,

is the KL measure where p and q are the probability functions of ρ1 and ρ2, respectively, and they are estimated as
given by Equation (4). To obtain a more precise KL measure in the experiments, the KL value is calculated using
the symmetric version:

KL (ρ1, ρ2) =
1

2
(D (ρ1, ρ2) +D (ρ2, ρ1)) .

The HSD measure is defined as in [11], i.e., if ρ1 and ρ2 are two HMMs, then

HSD (ρ1, ρ2) =

∫
X
|F1(x)− F2(x)| dx,

where F1(x) =
∫
X p(x)dx and F2(x) =

∫
X q(x)dx, with p and q being stationary distributions of ρ1 and ρ2,

respectively. They are estimated as given by Equation (4). The HSD metric is calculated numerically.
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2.7. DTW-based classification

DTW is a generalization of ED for time series [37]. In this type of application, ED is perhaps the simplest and
most straightforward metric to implement. However, since it maps each data point from two sequences, it becomes
very fragile if two sequences are out of phase. DTW identifies the optimal path by creating nonlinear alignments
between two time series, which is why it has been widely used as a metric for time series classification and
clustering.

In the DTW-based classification methodology, a sequence X of length T1 and a sequence Y of length T2 are
considered. A T1-by-T2 path matrix is computed, where the i-th, j-th element contains the distance between the
two points xi and yj , such that d(xi, yj) = ∥(xi − yj)∥p, where ∥ · ∥p represents the Lp norm [38]. The warping
path is subject to constraints such as the endpoint, continuity, and monotonicity [39]. The best match between two
sequences is determined by the alignment that yields the shortest path. Consequently, the optimal warping path can
be found using the recursive expression provided by

DTWp(X,Y) =
p
√

ζ(i, j), (7)

where ζ(i, j) is the cumulative distance, as defined by

ζ(i, j) = |xi − yi|p +min{ζ(i− 1, j − 1), ζ(i− 1, j), ζ(i, j − 1)}. (8)

3. Experimental results

This section presents the experimental results obtained from the classification of data available in the UCR Time
Series Classification Archive [31] and the Massachusetts Eye and Ear Infirmary Disordered Voice Database from
Kay Elemetrics [32]. According to [40], there are several advantages to using the KNN classifier for K = 1 (1NN).
For example, it is known that the distance metric is fundamental to the performance of the 1NN classifier. Hence,
the accuracy of the 1NN classifier directly reflects the effectiveness of the similarity measure. The 1NN classifier
is straightforward to implement and is non-parametric, which makes it easy for anyone to reproduce our results.
Finally, it has been proven that the error of the 1NN classifier is lower than that of other classifiers.

3.1. UCR data

The performance of the RKHS-based measures was evaluated using different databases from the UCR Time Series
Classification Archive. These databases are described in in Table 1, which shows the size of the training and test
data, the number of classes, and the time series length for the 36 most representative datasets.

A concept that will be used in the analysis of the results obtained from the classification of the binary databases
is the multivariate coefficient of variation (CV) [41]. The multivariate CV is a measure of the variability of a set
of time series [42]. In addition, it can be used to compare the variability of two such sets. According to [42], the
definition of the multivariate CV is as follows: consider a set of n time series of length p, with a mean vector µ ̸= 0
and a covariance matrix Σ. The multivariate CV is given by

CV =
(
Trace(Σ)

(
µ⊤µ

)−1
)1/2

.

In all the experiments, it was assumed that MP = MQ = 1, and, to select the number of hidden states for each one
of databases, the BIC was implemented. The fundamental objective of the method was to maximize the probability
of the data while penalizing large models, i.e., to reduce the size of the model parameters. In the BIC method, the
optimal number of states N is the value that maximizes the function BIC(N) = log(X|ρNb )− (RN/2) log(T ),
where X is the set of observed data, T is the total number of observations in X, ρNb denotes the maximum
likelihood estimation of the HMM model with N , and RN is the total number of free parameters in ρNb [43].
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The values of ℓ for the Gaussian and Laplacian kernels are estimated using cross-validation with the training
data. 40% of the training data was randomly selected to train the KNN classifier and evaluate its performance,
using the remaining 60% to choose the best ℓ value, which provides the highest accuracy in the classification step.
The accuracy was determined by summing the number of successful cases and dividing the result by the total
number of test samples. This procedure was repeated ten times, and the mean and the standard deviation (µ± σ)
were computed [43].

Table 1. The 36 databases, including the size of their training and test sets, used to compare the performance of the RKHS-
based metrics using the Laplacian kernel (KEL) and the Gaussian kernel (KEG) against that of the KL measure using the
KNN algorithm for K = 1

Database Number of
classes

Train size Test size Time series
length

HSD KL KEG KEL

Adiac 37 390 391 176 0.6957 0.4808 0.6650 0.6957

BeetleFly 2 20 20 512 0.6560 0.8500 0.7000 0.6500

BirdChicken 2 20 20 512 0.8500 0.7500 0.8500 0.8500

Car 4 60 60 577 0.4667 0.6333 0.4667 0.4000

CBF 3 30 900 128 0.6467 0.6533 0.6600 0.6456

Coffee 2 28 28 286 0.7500 0.6429 0.5714 0.7500

Computers 2 250 250 720 0.6640 0.5240 0.6280 0.6760

DiatomSizeReduction 4 16 306 345 0.9444 0.9281 0.9575 0.9706

DistalPhalanxOutlineCorrect 2 276 600 80 0.6650 0.5960 0.6267 0.6367

DistalPhalanxTW 6 139 400 80 0.6850 0.4150 0.6875 0.6750

Earthquakes 2 139 322 512 0.6957 0.6957 0.7019 0.8199

GunPoint 2 50 150 150 0.8333 0.9133 0.7467 0.7933

Ham 2 109 105 431 0.5142 0.4857 0.4857 0.5238

Herring 2 64 64 512 0.4531 0.5156 0.4062 0.5938

ItalyPowerDemand 2 67 1029 24 0.7512 0.5063 0.7123 0.6929

LargeKitchenAppliances 3 375 375 720 0.6773 0.5840 0.6480 0.6960

Lightning-7 7 70 73 319 0.4521 0.5479 0.5890 0.6027

Meat 3 60 60 448 0.3667 0.5667 0.2667 0.3333

MedicalImages 10 381 760 99 0.5118 0.3789 0.4763 0.4934

MiddlePhalanxOutlineCorrect 2 291 600 80 0.6033 0.3750 0.5783 0.6133

According to Table 1, the 1-NN classifier based on the HSD metric exhibits a lower performance than that
based on the KEL and KEG metrics. All this, when the size of the training set is small compared to the size of
the test data, e.g., the CBF, DiatomSizeReduction, MoteStrain, and TwoLeadECG databases. This probably has
to do with the fact that the HSD metric has not shown consistency regarding execution times and is difficult to
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Database Number of
classes

Train size Test size Time series
length

HSD KL KEG KEL

MiddlePhalanxTW 6 154 399 80 0.5288 0.4962 0.4461 0.5388

MoteStrain 2 20 1252 84 0.7492 0.7524 0.7276 0.7324

PhalangesOutlinesCorrect 2 1800 858 80 0.6468 0.4009 0.5874 0.6585

Plane 7 105 105 144 0.9810 0.9143 0.8090 0.9905

ProximalPhalanxOutlineAgeGro 3 400 205 80 0.7561 0.3659 0.7756 0.7756

ProximalPhalanxTW 6 205 400 80 0.6850 0.2925 0.6725 0.6950

SmallKitchenAppliances 3 375 375 720 0.5840 0.6187 0.5413 0.5493

SonyAIBORobotSurface 2 20 601 70 0.7486 0.8136 0.6639 0.4925

Strawberry 2 370 613 235 0.7684 0.4845 0.6933 0.7635

SyntheticControl 6 300 300 60 0.7300 0.1433 0.5863 0.6900

Trace 4 100 100 275 0.9800 0.1300 0.7200 0.9000

TwoLeadECG 2 23 1139 82 0.6927 0.5909 0.7032 0.6883

Wafer 2 1000 6164 152 0.9644 0.7583 0.9283 0.9517

Wine 2 57 54 152 0.6111 0.5185 0.6111 0.5926

Worms 5 77 181 900 0.4475 0.2707 0.4144 0.4199

Yoga 2 300 3000 426 0.7523 0.6780 0.6770 0.6653

Wins 13/36 7/36 6/36 16/36

solve when dealing with a large number of hidden states [44]. Therefore, in [44], an algorithm based on a numeric
calculation for Gaussian HMMs is proposed. Quite the opposite happened with the RKHS-based metrics, which
are consistent [28] and have a closed form.

The aforementioned table shows the databases where the KEL and KEG measures report a better
classification accuracy than the KL metric: Coffee, DistalPhalanxOutlineCorrect, ItalyPowerDemand,
MiddlePhalanxOutlineCorrect, TwoLeadECG, and Wine. In these databases, when the CV of the training
and test data are low (less than 1), then at least one of the KEL or KEG measures performs noticeably better than
the KL metric. The CV for these databases is presented in Table2. The fundamental reason for this competitive
performance is that the KEL and KEG measures are based on smooth kernel functions and are trained with a set
of smooth time series. Therefore, the performance regarding their classification is better when the test set also
contains smooth time series.

Table 1 shows the performance of the RKHS-based distance measures in the datasets available from the UCR
Time Series Classification Archive. Note that the KEL measure performs better than the HSD, KL, and KEG
metrics in 16 databases when using a KNN classifier for k = 1, and the HSD performs better than the KL measure
in 25. Nevertheless, the KEL and KEG metrics reported a better classification performance than the HSD in 16
databases, and the KEL metric surpasses the KL one in 26. In addition, the KEG measure outperforms the KL
measure in 23 databases, and the KEL metric surpasses the KEG one in 26. In Table 2, note that the KEL and KEG
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Table 2. Databases with a low training and test set CV

Database Training data CV Testing data CV

Coffee 0.0955 0.1052
DistalPhalanxOutlineCorrect 0.2820 0.2722

ItalyPowerDemand 0.5911 0.5303
MiddlePhalanxOutlineCorrect 0.1533 0.1620

TwoLeadECG 0.4240 0.4186
Wine 0.2000 0.0252

measures are outperformed by the KL measure when at least one of the CVs of the training and test sets is greater
than 1, i.e., when the time series of these databases have a high variability. For example, the CV of the training
and test sets of BeetleFly are 2.8510 and 2.1903, respectively, while MoteStrain shows 1.1358 and 1.0404. For
SonyAIBORobotSurface, these values are 13.5086 and 4.9382, and Yoga reports 1.7160 and 1.6958. This may be
due to the fact that the KEL and KEG measures are based on smooth kernel functions, and, when they are trained
with highly variable time series, their classification performance decreases. This may explain the KL measure’s
better performance in comparison with the KEL and KEG metrics for these databases. Finally, it was observed
that the KEL metric performs better than the KEG one, given that the slow decay of the eigenvalue sequence of
the Gram matrix associated with the Laplacian kernel enhances the detection of dependencies encoded in higher-
frequency components of the probability distribution [28].
One of the best-known metrics in the literature for classifying time series is the DTW measure. This measure,
together with the KNN classifier for k = 1, has a better classification performance than our proposal in most of the
36 databases presented in Table 1 – see [31] and Table 1. However, the purpose of our research is to develop metrics
between HMMs by embedding probability distributions in an RKHS. Among the advantages of the proposed
metrics in comparison with DTW and the HSD are their ease of use and their better performance in hypothesis
testing problems in high-dimensional Hilbert spaces, just like the MMD metric presented in [24]. This advantage
is due to the fact that KEL and KEG are true metrics induced by the norm of RKHS. This is not the case for the
HSD metric, since it is not induced by a norm from a Hilbert space; and even less so for DTW, which is not a
metric at all. Finally, the metric based on the Laplacian kernel can also be calculated for multivariate data, albeit
involving the estimation of many parameters. Figure ?? shows a graphical comparison of our proposal (KEG and
KEL) against the KL and HSD metrics according to the results presented in Table 1. Note that KEL and KEG
outperformed KL (see Figures ??a and Figure ??c). Figure ??b shows that the performance of HSD is similar to
that of KEL.

3.2. Automatic assessment of voice quality using metrics between HMMs

Acoustic analysis has been improved to detect conditions affecting the quality of a person’s voice. This technique
is impartial, relies on the digital processing of voice signals, and does not require instruments that puncture the skin
or physically enter the body (it is non-invasive). [45, 46]. This subsection compares the performance of the KEG,
KL, and DTW metrics on a voice database. The database used in this work is described by [32].
Description of the voice database. The dataset features the analysis of 226 voice samples characterized by cepstral
coefficients in the Mel frequency scale. Each voice sample is segmented into 10 ms intervals, with each interval
described by 12 cepstral coefficients and an energy term. Consequently, each voice data segment is detailed with 39
distinct features. Each signal is categorized as either a pathological voice or a healthy voice. This study employed
a 1-NN classifier as well as the KEG, KL, and DTW distance metrics. The HMMs was configured as shown in
subsection 3.1. For the DTW-based classifier, the original speech signal were used.
To assess the statistical significance of the results, ten iterations of each classifier were executed using hold-out

partitions. As illustrated in Table 3, the KEG metric showed a superior classification accuracy in the voice database
when compared to the DTW measure. However, KEG delivered a comparable performance to KL. To assess the
statistical significance of the results for the different measures, a Lilliefors test for normality was applied to the ten
repetitions of each classifier. If the null hypothesis of normality was disproved, a Kruskal-Wallis test was performed
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Figure 2. The KEL and HSD distance measures provide competitive classification accuracy when compared to the KEG and
KL metrics using the KNN algorithm for k = 1 in the 36 databases of the UCR Time Series Classification Archive

Table 3. Accuracy results obtained using the KEG, KL and DTW metrics for K = 1. The mean µ and the standard deviation
σ are shown for 10 repetitions of each experiment (µ± σ).

KEG KL DTW

0.8745± 0.0100 0.8679± 0.0267 0.8481± 0.0196

to evaluate the average performance differences between the classifiers. If the null hypothesis of equal medians was
rejected, multiple comparison tests were conducted using the Tukey-Kramer method to determine which classifiers
differed from each other. All significance levels were set at 5% [47]. Our findings indicate that the accuracy results
for the KEG and DTW metrics are statistically different, whereas the results for the KEG and KL metrics are
equivalent. A possible reason for KEG’s superior performance in comparison with the DTW measure is that the
latter is not well-suited for multichannel signal speech recognition [48].
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4. Conclusion and future work

This paper proposed two new distance measures between HMMs (KEL and KEG) which are based on Hilbert
space embeddings of probability distributions and the HMM stationary probability distribution. These metrics can
be calculated analytically and can be used for multivariate data. Experiments with real data show that our measures
outperformed the KL metric, while KEL performed similarly to the HSD in classifying time series from the UCR
repository. Moreover, the KEG metric was tested in voice quality assessment, obtaining better results than the well-
known DTW algorithm. An interesting extension of this work would be the construction of a measure between two
HMMs while using RKHS and considering the transition matrix to define the distance. Future work should also
focus on constructing metrics to compare random processes using path signatures in RKHS.
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4. Tina Raissi, Wei Zhou, Simon Berger, Ralf Schlüter, and Hermann Ney. Hmm vs. ctc for automatic speech recognition: Comparison

based on full-sum training from scratch, 2022.
5. E. Trentin and M. Gori. A survey of hybrid ANN and HMM models for automatic speech recognition. Neurocomputing, 37(1-4):91–

126, 2001.
6. B. J. Yoon. Hidden Markov models and their applications in biological sequence analysis. Current Genomics, 10(6):402–415, 8

2009.
7. Y. Wang, S. Resnick, and C. Davatzikos. Spatio-temporal analysis of brain MRI images using Hidden Markov models, pages 160–168.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
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E- A. VALENCIA-ANGULO, A. RAMÍREZ-VANEGAS, O. D. MONTOYA, 1535
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