
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 13, March 2025, pp 977–992.
Published online in International Academic Press (www.IAPress.org)

Inverse Multi-Objective Optimization for Portfolio Allocation in
Commercial Banks

Nagwa M. Albehery*, Marwa A. Helal, Amal F. Ghania

Department of Mathematics, Applied Statistics and Insurance,
Faculty of Commerce and Business Administration, Helwan University, Egypt

Abstract Optimal portfolio allocation in commercial banks is a critical decision for financial institutions. This paper
proposes a multi-objective linear programming model to address this challenge. We employ a generalized inverse
optimization approach to ensure the model’s feasibility and efficiency, replacing regular optimality with Pareto optimality.
The proposed models were applied to 2020/2021 fiscal year data from two leading Egyptian banks, Banque Misr and the
national Bank of Egypt. A sensitivity analysis was subsequently conducted to evaluate the robustness of the optimal solutions
to variations in input parameters. The multi-objective model and the sensitivity analysis were solved using LINGO 19, while
the inverse multi-objective model was solved using R programming. Our analysis of the results provides valuable insights
into optimal portfolio distribution for commercial banks.

Keywords Linear programming, Multi-objective linear programming, Sensitivity analysis, Inverse optimization,
Efficiency, Pareto optimality, Inverse multi-objective linear programming.

DOI: 10.19139/soic-2310-5070-2188

1. Introduction

Multi-objective linear programming (MOLP) is a powerful mathematical optimization technique designed
to handle decision-making problems with multiple, often conflicting, objectives. Unlike traditional linear
programming, which aims to optimize a single objective, MOLP seeks optimal solutions that balance these
competing objectives. By considering a diverse range of criteria, such as maximizing returns, minimizing risk,
and adhering to regulatory constraints, MOLP provides a more comprehensive and realistic approach to decision-
making. MOLP has various applications in various fields, including finance, engineering, and medicine [8, 28, 51].

Inverse optimization flips the traditional optimization paradigm. Instead of determining optimal decisions given
a fixed set of constraints and objectives, IO seeks to identify the underlying parameters (constraints or objectives)
that would make a given set of decisions optimal [17]. This involves finding the parameters of the original
“forward” optimization problem by formulating an ”inverse” optimization problem. Early research in IO, often
referred to as “classical” IO, assumed perfect alignment between the model and real-world data. These models
are valuable for introducing new reformulation techniques and applications where precise parameter identification
is crucial. However, real-world scenarios often involve model misspecification and noisy data. To address these
challenges, “data-driven” IO has emerged. Data-driven IO builds upon classical techniques but incorporates
additional considerations, such as model uncertainty and data noise. It leverages loss functions to measure the
degree of suboptimality and guide the parameter estimation process. inverse optimization techniques have been
explored and utilized in various studies such as [1, 2, 3, 6, 16, 30, 31, 33, 34, 40, 54, 55]. Recently, inverse
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optimization has seen increased interest and has been applied in diverse fields, including vehicle routing (e.g., [21]),
transportation systems (e.g., [44]), portfolio optimization (e.g., [35, 53]), power systems (e.g., [12, 24, 46, 47]),
electric vehicle charging (e.g.,[25]), network design (e.g.,[23], healthcare (e.g., [9]), and controller design ([5]). A
comprehensive overview of IO applications can be found in [17].

Recently, a novel approach has been introduced in e.g.,[18, 19] where the optimal solution can be an interior
point of the feasible region. In this case, the objective function coefficients and the solution are modified to
achieve optimality. Inverse optimization has been investigated for a specific class of multi-objective problems,
demonstrating how to minimally modify the criteria matrix to transform a set of feasible points into Pareto optimal
points [45]. This method has been applied to radiotherapy cancer treatment, focusing on turning infeasible or
interior points into near-optimal solutions [20]. Naghavi et al [43] generalized inverse linear programming (ILP) to
inverse multi-objective linear programming (IMOLP), addressing the non-convexity of the problem and introducing
necessary tools for efficient convex optimization.

Portfolio optimization has been a cornerstone of financial decision-making for decades. Traditional approaches,
such as the mean-variance model proposed in e.g.,[38] provided a foundation for portfolio allocation. Moreover,
Modern Portfolio Theory (MPT) posits that the assessment of portfolio risk is based on the variability of anticipated
returns. This framework assumes that investors’ decisions are primarily driven by these two objectives: maximizing
expected return and minimizing risk and the trade-off between these objectives is often quantified by a risk tolerance
parameter.

In recent years, multi-objective optimization has emerged as a powerful tool for addressing the multi-faceted
nature of portfolio allocation. By considering multiple objectives simultaneously, such as risk, return, liquidity,
and regulatory constraints, multi-objective optimization techniques can provide more comprehensive and robust
solutions. Studies demonstrated the effectiveness of multi-objective optimization in generating efficient frontiers
that capture the trade-offs between different objectives [7, 10, 13, 27, 29, 37, 39, 41, 52]. Inverse optimization
offers a novel approach to portfolio optimization by determining the parameters of an optimization problem that
leads to a desired outcome. By leveraging inverse optimization, we can identify the optimal portfolio weights that
align with specific investment goals and risk tolerances. Recent studies, e.g.,[11, 53] have explored the application
of inverse optimization in various financial contexts, including portfolio management. While existing research
has made significant contributions to portfolio optimization, more advanced techniques are needed to address the
complexities of real-world portfolio allocation in commercial banks. This paper addresses this gap by proposing a
novel inverse multi-objective optimization framework that combines the strengths of multi-objective optimization
and inverse optimization.

In this research paper, a multi-objective linear programming model will be employed to optimize portfolio
distribution in commercial banks. A sensitivity analysis will assess the impact of parameter variations in
the objective functions on the model’s reliability and will inform decision-making under different scenarios.
Additionally, we will utilize inverse optimization for multi-objective linear programming to transform a feasible
point into a weakly efficient solution, aligning with the decision-maker’s preferences for portfolio allocation
problems in commercial banks. This paper is organized as follows: Section 2 presents a suggested multi-objective
linear programming model for optimizing portfolio distribution in commercial banks. Section 3 outlines and
demonstrates the inverse optimization approach for multi-objective linear programming, drawing on the study by
Naghavi et al [43]. Section 4 applies the proposed model, sensitivity analysis, and inverse optimization approach
for multi-objective linear programming to 2020/2021 fiscal year data from Banque Misr and the National Bank of
Egypt (NBE). Section 5 presents the conclusions.

2. A proposed Multi-Objective Linear Programming Model for Optimal Portfolio Distribution.

Several studies in the literature have proposed goal programming models to address portfolio optimization
problems. For example, Albehery et.al [7] introduced the model to achieve the best compromise distribution for
portfolios in commercial banks using the chance-constrained goal programming model. This model maximized the
following objectives: capital adequacy ratio, stock profit value, loan returns, total balance sheet, and minimized
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credit risk ratio according to their priorities. A probabilistic model is constructed when the capital adequacy ratio,
stock profit value, and credit risk ratio are random variables. The model has been applied to the real data of the
Egyptian Bank (Bank Misr) during the period (2009/2010)-(2018/2019). Mohammedi et.al [41] presented a model
to optimize bank liquidity management. This model integrated two techniques: the goal programming approach and
the Fuzzy Analytic Hierarchy Process (FAHP). FAHP is a multivariate decision-making method that prioritizes the
model’s objectives. It considers three elements: the overall goal (improved liquidity management), the decision-
making criteria (e.g., capital adequacy liquidity ratio), and the available alternatives. This model maximizes capital
adequacy, liquidity ratio, total asset growth, investment portfolio, and fixed assets and minimizes liquidity risk,
claims from other banks, and the ratio of consumption to resources. This model was applied to one of the Iranian
banks, Persian Bank to improve bank liquidity management. Halim et.al [27] presented a goal programming model
for managing the financial statements of a Malaysian commercial bank, Maybank. This model was solved by
combining the weighting and the preemptive methods.

This section introduces a multi-objective linear programming model for optimizing portfolio distribution.
First. we introduce the following notation:
• Decision variables: The model includes 10 decision variables: x1: Cash with the central bank, x2: Due

from banks, x3: Loans to banks and customers, x4: Total financial investments, x5: Investments in subsidiaries
and associates, x6: Intangible and other assets, x7: Fixed assets, x8: Tier 1 capital, x9: Tier 2 capital, x10: Total
risk-weighted assets,

• Parameters: We have 19 parameters, as follows:
Objective function parameters: I: Interest rate on loans, CAR: Capital adequacy ratio
Left-hand side parameter: P: Ratio of retained earnings to total assets
Right-hand side parameters: b1: Ratio of cash to deposits, b2: Ratio of due from banks to deposits, b3: Ratio of

loans and advances to banks and customers to deposits, b4: Ratio of total financial investments to deposits, b5: Ratio
of investments in subsidiaries and associates to deposits, b6: Ratio of intangible and other assets to shareholder’s
equity, b7: Ratio of fixed assets to shareholder’s equity, b8: Ratio of tier 1 capital to shareholder’s equity, b9: Ratio
of tier 2 capital to shareholder’s equity, b10: Ratio of total risk-weighted assets to deposits,

Additional parameters: DB: Due to banks, CD: Total customers’ deposits, LP: Liabilities and provisions, PC:
Paid-in capital, R: Reserves, RE: Retained earnings, These parameters are defined and calculated from the balance
sheet (liabilities and shareholder’s equity).

• Objectives and Priorities: : The proposed model includes three objectives, arranged in order of priority:
1. Maximize total balance sheet: f1(x) =

∑7
j=1(xj)

2. Maximize loan returns: f2(x) = I × (x3)
3. Maximize capital adequacy ratio: f3(x) = (x8 + x9 − CAR× x10)
Second. based on the above, we propose the following multi-objective linear programming model: to determine

the optimal values of the decision variables (xj) where (j = 1, 2, . . . , 10) which maximizes (Z):

Lexic.Max.z = (

7∑
j=1

(xj), I × (x3), x8 + x9 − CAR× (x10)), (1)

s.t.

xj ≥ bi × CD, (i, j = 1, 2, ..., 5), (2)

xj ≥ bi × (PC +R+RE), (i, j = 6, 7, ..., 9), (3)

x10 ≤ b10 × CD, (4)

x8 − x9 ≥ 0, (5)

x10 ≥ x8 + x9, (6)
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P ×
7∑

j=1

xi ≤ RE, (7)

(xj ≥ 0, (j, i = 1, 2, ..., 10) (8)

The assumptions of the proposed model in (1)-(8) are as follows:
1. The assets side of the balance sheet consists of seven items: x1, x2, x3, x4, x5, x6 and x7,
2. The interest rate on loans (I) is constant for loans and advances to customers and banks,
3. The suggested model is deterministic; the selected parameter values are from the real Bank data,
4. Tier 2 capital (x9) does not exceed 100% of Tier 1 capital (x8),
5. The ratio of retained earnings to total assets (P) is a measure of the bank’s profitability used to assess the

bank’s performance in investing its assets.
6. Total risk-weighted assets (x10) are greater than or equal to total capital (Tier 1 capital + Tier 2 capital).
The proposed model could incorporate additional objectives and structural Constraints, including those related

to liquidity, risk management, and regulatory compliance. However, data availability is limited due to restrictions
imposed by the Central Bank of Egypt on publicly accessible information from the bank’s websites. Consequently,
the model’s current objectives and structural Constraints are based on the available financial data. The proposed
multi-objective model will be used to apply the generalized inverse optimization approach in the following section.

3. A Generalized Inverse Optimization Approach.

In this section, we will introduce the notation used throughout the paper in Subsection 3.1. Next, in Subsections
3.2 and 3.3, we will discuss inverse single-objective linear programming, as well as explore inverse multi-objective
linear programming based on the study by Naghavi et al [43] and provide our commentary.

3.1. Notations

Let Rn and Rm×n denote the sets of real n vectors and m× n matrices, respectively. We denote the i-th row of
matrix A as ai. For x ∈Rn, ||.||p denotes the p− norm of the vector x.

Consider the following two problems:
min (cx|x ∈ S), (LP (c)),
min (Cx = (c1x, ..., ckx)|x ∈ S),(MOLP(C)),
whereA ∈ Rk×n,C ∈ Rk×n, c ∈ Rn,b ∈ Rm, and S = (x ∈ Rn)|Ax ≥ b) is the feasible region. A feasible

point x0 ∈ S is weakly efficient or (weak Pareto optimal) for MOLP(C) if there exists no x ∈ S such that Cx < Cx0

(component-wise). The set of all weakly efficient points of MOLP(C) is denoted by Swe(C) and the set of all
optimal solutions of LP(c) is denoted by S0(c).

3.2. Inverse single-objective linear programming (ILP)

This section investigates the inverse problem of single-objective linear programming problem under the p-norm,
focusing on modifications to the cost vector. Suppose there exists a feasible solution x0 ∈ S and the decision-maker
desires to make x0 the optimal solution while maintaining the current optimal objective function value. One way
to formulate an inverse optimization problem is by adjusting the coefficient parameters of the decision variables in
the objective function. The goal is to find new coefficients that make (x0, z) the optimal solution to the following
(ILP (c, x0)) problem:

Min||c− ĉ||p,

s.t. x0 ∈ S0(ĉ), ĉ ∈ Rn,
(ILP) problems under the p-norm have been extensively studied in [55, 55, 56]. Ahuja and Orlin [1] have also
investigated weighted norms for such problems. Naghavi et al. [43] reformulated ILP (c, x0) using the following
lemma into a more convenient form involving the conic hull(K̂) of the active constraints, where K̂ is defined as:
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K̂ = cone(ai|i ∈ I(x0)) = (x ∈ Rn|x) =
∑

i∈(I(x0) βiai, βi ≥ 0),I(x0) = (i|aix0 = bi) be the set of all active
constraints at x0.

Lemma I Let x0 ∈ S be a feasible point of the inverse linear programming ILP (c, x0), then x0 ∈ S0(ĉ) if and
only if ĉ ∈ K̂.

Using Lemma 1, ILP (c, x0) can be reformulated based on the conic hull concept. The constraint x0 ∈ S0(ĉ) in
ILP (c, x0) is replaced with ĉ ∈ K̂, resulting in the following equivalent problem:

Min||c− ĉ||p,

s.t. ĉ ∈ K̂, ĉ ∈ Rn,
This reformulation (using Lemma 1) provides an elegant and insightful approach to checking a point’s optimality.
By stating that a point x0 is optimal if and only if its corresponding cost vector lies within the conic hull of the
active constraints at x0, the authors have introduced a valuable criterion for assessing optimality. This reformulation
simplifies the process of verifying whether a solution is indeed the best possible.

3.3. Inverse multi-objective linear programming (IMOLP)

By replacing the cost vector with a criteria matrix (Ĉ) and the concept of Pareto optimality, IMOLP (C, x0)
extends the scope of inverse optimization to multi-objective problems, seeking to make a given feasible solution x0

weakly efficient, unlike (ILP (c, x0)) where the aim is to make x0 optimal for a single objective. IMOLP (C, x0)
as follows:

Min||C − Ĉ||p,

s.t.

x0 ∈ Swe(Ĉ),

Ĉ ∈ Rk×n,

Naghavi et al. in [43] utilized the weighted-sum theorem to establish a connection between inverse linear
programming (ILP) and inverse multi-objective linear programming (IMOLP), building upon the work of Ehrgott
in [22, 36, 50]. This theorem serves as a bridge between single-objective and multi-objective optimization, allowing
insights from ILP to be applied to the more complex world of IMOLP. Notably, IMOLP (C, x0) reduces to
ILP (C, x0) when only one objective function is considered.

Theorem I: x0 ∈ S to be a weakly efficient solution of MOLP if it is both necessary and sufficient that there
exists a weighted vector w ∈ W where W = (w ∈ Rk|

∑k
i=1 wi = 1, wi ≥ 0) such that x0 is an optimal solution

of the weighted-sum (LP): min (wĈx|x ∈ S).
Based on Lemma I and Theorem I, they realized that the following statements are equivalent:
1. x0 ∈ Swe(Ĉ).
2. There exists w ∈ W can be found such that wĈ ∈ K̂.
3. d (conv (Ĉ, K̂) = 0.
Where conv(C) denotes the convex hull of the rows of the matrix C, and d is the distance between two nonempty

sets A and B, defined as:
d(A,B) = inf(||x− y||p|x ∈ A, y ∈ B)

Based on the above, Naghavi et al [43] expressed IMOLP (C, x0) in the following equivalent form:

Min||C − Ĉ||, (11)

s.t.

wĈ ∈ K̂, (12)

w ∈ W, (13)
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Ĉ ∈ Rk×n, (14)

In the case of x0 is not a weakly efficient solution, IMOLP aims to minimally modify the criteria matrix C so that
a convex combination of its rows falls within K̂, the convex cone generated by the active constraints at x0. They
rewrote the constraint in problem (15)-(18) using the actual active constraints at the point x0 as follows:

Min.q =

k∑
i=1

||ci − ĉi||p, (15)

s.t.
k∑

i=1

wiĉi −
∑

r∈I(x0)

βrar = 0, (16)

k∑
i=1

wi = 1, (17)

wi ≥ 0, i = 1, 2, ..., k, (18)

βr ≥ 0, r ∈ I(x0), (19)

ĉj ∈ Rn (20)

This makes the problem easier to work with because we’re now dealing with explicit linear inequalities.
Unfortunately, the presence of product terms like wiĉi in the IMOLP in (19)-(24) makes it a non-convex problem.
This is a challenge because non-convex problems are generally harder to solve than convex ones, with multiple local
optima and potential difficulty in finding the global optimum (the absolute best solution). The authors addressed the
non-convexity issue by proving that under certain conditions (when the convex hull of the original criteria matrix
is sufficiently far from the conic hull of active constraints), an optimal solution for IMOLP can always be found
by modifying just one of the objective functions. This significant simplification allows us to focus on changing
objective functions one by one instead of all at once. Moreover, they provided a lower bound on the necessary
modification to the criteria matrix. This bound is valuable because it enables us to stop searching for an optimal
solution early if a solution already close to the lower bound is found. These findings are presented in the following
theorem.

Theorem II: For IMOLP (C, x0) as defined in (19)-(24), if the distance between conv(C) and K̂) is positive
d(conv(C), K̂) > 0, then,

1. There exists an optimal solution for IMOLP (C, x0) such that ĉ∗i = ci, i ∈ (1, 2, .., k), i ̸= j.
2. d(conv(C), K̂) is a lower bound on the optimal value of IMOLP (C, x0),
3. Thus q̂∗ ≥ d(conv(C), K̂).
Assuming only the jth objective function in IMOLP (C, x0) (19)-(24) is modified while others remain

unchanged, the authors reformulated the model as the following Pj problem:

Min.||cj − ĉj ||p, (21)

s.t.

wj ĉj +

k∑
i=1,i̸=j

wici −
∑

r∈I(x0))

βrar = 0, (22)

k∑
i=1

wi = 1, (23)

wi ≥ 0, i = 1, 2, ..., k, (24)
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βr ≥ 0, r ∈ I(x0), (25)

ĉj ∈ Rn, i = 1, 2, ..., k, (26)

The proof for part (1) of Theorem II is constructive, demonstrating a transformation process that modifies an
initial optimal solution of the IMOLP by altering only a single objective function to yield a new, at least equally
good solution. This process begins with an assumed optimal solution and identifies the objective function with the
highest weight within that solution. This function is then modified to create a new solution. The proof subsequently
verifies that this modified solution remains feasible, satisfying all constraints, and maintains or improves upon
the original optimality. This confirms that an optimal solution can be achieved through a single objective function
modification. In contrast, the proof for part (2) uses properties of distances, convex hulls, and conic hulls to establish
a lower bound. It shows that the distance between the convex hull of the original criteria matrix and the conic hull
of the active constraints defines the minimum modification required to achieve optimality. The approach involves
solving this problem (Pj) in (25)-(30) for each objective function and selecting the solution with the smallest
overall modification. However, there’s a caveat: the problem (Pj) in (25)-(30) is still non-convex. Naghavi et.al
[43] introduced the following theorem, which is considered a game-changer because it reveals that under certain
conditions, the non-convex problem (Pj) in (25)-(30) can be reformulated into an equivalent convex problem.

Theorem III: If d(conv(C), K̂) > 0, then Pj in (25)-(30) will be equivalent to the following convex optimization
model Qj :

q∗j = Min.||cj − ĉj ||p, (27)

s.t.

ĉj +

k∑
i=1,i̸=j

γici −
∑

r∈I(x0)

θrar = 0, (28)

γi ≥ 0, i = 1, 2, ..., k, i ̸= j, (29)

θr ≥ 0, r ∈ I(x0), (30)

ĉj ∈ Rn, j = 1, 2, ..., k, (31)

The theorem above determines the condition that the convex hull of the original criteria matrix (conv(C)) must
be sufficiently distant from the conic hull of the active constraints K̂. In other words, the original objectives and
constraints must be somewhat ”separated” for this technique to work. The theorem states that under the condition
d(conv(C), K̂) > 0, the optimization problem Pj in(25)-(30) is equivalent to the convex optimization problem Qj

in (31)-(35). The proof of the theorem demonstrates this equivalence by establishing a one-to-one correspondence
between the feasible regions of Pj and Qj . It does so by showing that for every feasible point in Pj , there exists a
corresponding feasible point in Qj with the same objective function value, and vice versa. For interested readers,
the proofs of theorems II and III can be found in Naghavi et al [43]. Based on Theorem III, Naghavi et al [43]
proposed an algorithm to address the IMOLP problem when the initial point (x0) might not be weakly efficient.
The goal is to find the minimal modification to the objective functions that make x0 weakly efficient. In the next
section, we will apply this algorithm to portfolio allocation in commercial banks.

4. Application

In this section, the proposed multi-objective linear programming model from section 2 and IMOLP-based algorithm
described in section 3 will be applied to real-world data from two leading Egyptian commercial financial
institutions: Banque Misr and the National Bank of Egypt (NBE). The data, covering the fiscal year 2020/2021, was
obtained from the publicly available financial statements on the bank’s official websites (www.banquemisr.com
and www.nbe.com.eg). We have specified the technical names of the financial statements used for each bank.
Subsections 4.1 and 4.2 present the model’s applications, the sensitivity analysis and the inverse optimization.
Subsection 4.3 addresses the algorithm’s computational efficiency.
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4.1. Banque Misr case study

The data for this study originates from the following sources within Banque Misr’s Separate Financial reporting
for the Period concluding June 30, 2021:

1. The separate Statements of Financial Position as of June 30, 2021.
2. The separate Income Statements for the Financial Period from July 1, 2020, to June 30, 2021.
3. The summarized notes to the Separate Financial Statements for the Financial Period Ended June 30, 2021

(Capital Management).
First: The proposed multi-objective linear programming model defined in equations (1)-(8) will be applied and

solved using LINGO package version 19 as follows:
1- The values of the constant parameters derived from the real - world data for Banque Misr during the 2020/2021

fiscal year were calculated and are shown in Table 1 below.

Table 1. Constant parameters values: Banque Misr

Symbol parameter values
I 0.2118

CAR 0.153115
P 0.0074
b1 0.0558
b2 0.2201
b3 0.5105
b4 0.4470
b5 0.0226
b6 0.4566
b7 0.0724
b8 0.922
b9 0.2119
b10 0.6388
DB 122,206,054
CD 1,120,349,800
LP 119,103,527
PC 15,000,000
R 70,836,820

RE 10,800,574

2- The mathematical form of the multi-objective linear programming problem takes the following form:
Determine the optimal values of the decision variables (xj) where (j=1,2, . . . ,10) that yields the optimal solution
which maximizes (Z):

Lexic.Max.z = (

7∑
j=1

(xj), 0.2118(x3), (x8 + x9 − 0.153115x10)), (32)

s.t.

x1 ≥ 0.0558CD, (33)

x2 ≥ 0.2201CD, (34)

x3 ≥ 0.5105CD, (35)
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x4 ≥ 0.4470CD, (36)

x5 ≥ 0.0226CD, (37)

x6 ≥ 0.4566(PC +R+RE), (38)

x7 ≥ 0.0724(PC +R+RE), (39)

x8 ≥ 0.922(PC +R+RE), (40)

x9 ≥ 0.2119(PC +R+RE), (41)

x10 ≤ 0.6388CD, (42)

x8 − x9 ≥ 0, (43)

x10 ≥ x8 + x9, (44)

0.0074

7∑
j=1

(xj ≤ RE, (45)

(xj ≥ 0, (j = 1, 2, ..., 10) (46)

3- The model defined by equations (36)-(50) was solved using LINGO version 19. The resulting optimal values
of the decision variables are presented in Table 2 below.

Table 2. The optimal values for the decision variables (expressed in thousands of pounds): Banque Misr

Variable The derived values of the decision variables
x1 62,515,520
x2 246,589,000
x3 573,195,000
x4 500,796,400
x5 25,319,910
x6 44,124,630
x7 6,996,595
x8 357,839,700
x9 357,839,700
x10 715,679,500

In Table 2, we can observe that total risk-weighted assets (x10) constitute the largest portion of the balance
sheet, while fixed assets (x7) are the smallest. The optimal solution for the objective function Z in equation (36) is
606,098,200 Egyptian pounds.

Second, a sensitivity analysis was conducted to determine the range within which the loan interest rate (I) and
the capital adequacy ratio (CAR) could vary, the results are presented in Table 3 below.

Table 3. Sensitivity analysis of objective function coefficients: allowable changes in interest rate (I) and capital adequacy
ratio (CAR): Banque Misr

Variable Current Coefficient Allowable Increase Allowable Decrease
x3 0.2118 Infinity 0.2118
x10 - 0.153115 Infinity - 0.846885
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Table 3 shows that the interest rate on loans can be decreased by up to 0.2118, and the capital adequacy ratio can
be decreased by up to 0.844885. Both can be increased without limit without affecting the optimal solution of the
objective functions. Third, if the decision-maker wishes to set specific values for certain decision variables, such
as loans to banks and customers (x3), total financial investments (x4), investments in subsidiaries and associates
(x5), fixed assets (x7) and total risk-weighted assets (x10) while maintaining the optimal objective function value
of 606,098,200 Egyptian pounds as shown in Table 4 below.

Table 4. The different (feasible) values x0 of the decision variables (Values in thousands of pounds): Banque Misr

Variable The derived values of the decision variables
x0
3 573191595

x0
4 500,796,390

x0
5 25,319,900

x0
7 7,000,000

x0
10 715,679,400

Then, we apply the IMOLP-based algorithm described in Section 3 to the suggested multi-objective linear
programming model defined in equations (36)-(50). We will use R programming to make the feasible values x0

align with the decision-maker’s preference for a weakly efficient solution. We start by identifying the binding
constraints: The binding constraints are (47) and (48)

x8 − x9 ≥ 0,
x10 ≥ x8 + x9,
Accordingly, the set of active constraints I(x0) is I(x0) = (12, 13) and K̂ =

(x ∈ R10|x = β1a1 + β2a2, β1, β2 ≥ 0), wherea1 = (0, 0, 0, 0, 0, 0, 0, 1,−1, 0), a2 = (0, 0, 0, 0, 0, 0, 0,−1,−1, 1).
Then IMOLP (C, x0) is formulated as
Min. q =∥|c1 − ĉ1||p + ||c2 − ĉ2||p + ||c3 − ĉ3||p,
s.t.
w1ĉ1 + w2ĉ2 + w3ĉ3 − β1a1 − β2a2 = 0,
w1 + w2 + w3 = 1,
w1, w2, w3, β1, β2 ≥ 0,
ĉ1, ĉ2, ĉ3 ∈ R10,
The algorithm is employed for the case where p = 2, aiming for an exact solution by setting the threshold ϵ = 0.
Phase I: The solving of the following convex problem d(conv(C), K̂) = (min. ||x− y||p|x ∈ conv(C), y ∈ K̂)

yields distance d∗ = 0.20254. Since d∗ > 0, this indicates that x0 is not a weakly efficient solution. Therefore, we
set j=1 and proceed to step 1.

Phase II: Step 1: We solve Q1 as follows:
Min. q1 = ∥|c1 − ĉ1||2,
s.t.
ĉ1 + γ2c2 + γ3c3 − θ1a1 − θ2a2 = 0,
γ2, γ3, θ1, θ2 ≥ 0,
ĉ1 ∈ R10,
This problem finds the minimum distance between c1 and K1 = cone(a1, a2,−c2,−c3) = cone(a1,−c2). The

optimal objective value is q∗1 = 2.64588. Since q∗1 − d∗ > 0, we will proceed to solve Q2 as follows:
Min. q2 = ∥|c2 − ĉ2||2,
s.t.
ĉ2 + γ1c1 + γ3c3 − θ1a1 − θ2a2 = 0,
γ1, γ3, θ1, θ2 ≥ 0,
ĉ2 ∈ R10,
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The optimal solution corresponds to the shortest distance between c2 and K2 =
cone(a1, a2,−c1,−c3) = cone(a1,−c1). The optimal objective value is q∗2 = 0.69148. Since q∗2 − d∗ > 0,
we will proceed to solve Q3 as follows:

Min. q3 = ∥|c3 − ĉ3||2,
s.t.
ĉ3 + γ1c1 + γ2c2 − θ1a1 − θ2a2 = 0,
γ1, γ2, θ1, θ2 ≥ 0,
ĉ3 ∈ R10,
The optimal objective value is q∗3 = 0.21181. As Q3 yields the smallest objective value compared to all

the problems, j is determined to be 3, j∗ = 3. The optimal solution of Q3 is η∗3 = (ĉ∗3, γ
∗
1 , γ

∗
2 , θ

∗
1 , θ

∗
2) =

((0, 0, 0, 0, 0, 0, 0, 0.71771, 0.71771,−0.71771), 0, 0, 0, 0). Therefore, the optimal solution of IMOLP (C, x0) is
η∗ = (ĉ∗1, ĉ

∗
2, ĉ

∗
3, w

∗
1 , w

∗
2 , w

∗
3 , β

∗
1 , β

∗
2) = (c1, c2, ĉ

∗
3, 0, 0, 1, 0, 0.71771).

The new criteria matrix C∗, obtained by moving c3 to ĉ∗3, indicates that conv(C∗) intersects K̂. This implies that
x0 is weakly efficient for the new criteria matrix.

4.2. National Bank of Egypt (NBE) case study

The National Bank of Egypt’s data is derived from its Summarized Separate Financial Statements for the financial
period spanning July 1, 2020, to the end of 2021. The General Assembly approved on October 13, 2020, an
amendment to Article 25 of the Bank’s Articles of Association. This amendment transitions the fiscal year to
coincide with the calendar year beginning on January 1, 2022. The current period (July 1, 2020 - December 31,
2021) is considered a transitional 18-month transitional period. The data is based on:

1. The National Bank of Egypt’s Separate Statements of Financial Position as of December 31, 2021.
2. The National Bank of Egypt’s Separate Income Statements for the Financial Period from July 1, 2020, to

December 31, 2021.
3. Summarized notes to the Separate Financial Statements for the Financial Period Ended December 31, 2021

(Capital Management).
First The proposed multi-objective linear programming model defined in equations (1)-(8) will be applied and

solved using LINGO package version 19 as follows:
1- Real-world data from NBE’s 2020/2021 fiscal year was used to derive constant parameter values presented in

Table 5 below.
2- The mathematical form of the multi-objective linear programming problem takes the following form:

Determine the values of the decision variables (xj) where (j=1, 2, . . . ,10) that yield the optimal solution which
maximizes (Z):

Lexic.Max.z = (

7∑
j=1

(xj), 0.3121(x3), (x8 + x9 − 0.2139x10)), (47)

s.t.

x1 ≥ 0.0298CD, (48)

x2 ≥ 0.2225CD, (49)

x3 ≥ 0.4736CD, (50)

x4 ≥ 0.568CD, (51)

x5 ≥ 0.0035CD, (52)

x6 ≥ 0.706(PC +R+RE), (53)

x7 ≥ 0.0465(PC +R+RE), (54)
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Table 5. Constant parameters values: National Bank of Egypt

Symbol parameter values
I 0.3121

CAR 0.2139
P 0.0097
b1 0.0298
b2 0.2225
b3 0.4736
b4 0.568
b5 0.0035
b6 0.706
b7 0.0465
b8 0.95991
b9 0.3802
b10 0.4783
DB 342,817,000,000
CD 2,386,450,000,000
LP 322,328,000,000
PC 50,000,000,000
R 100,836,000,000

RE 31,332,000,000

x8 ≥ 0.95991(PC +R+RE), (55)

x9 ≥ 0.3802(PC +R+RE), (56)

x10 ≤ 0.4783CD, (57)

x8 − x9 ≥ 0, (58)

x10 ≥ x8 + x9, (59)

0.0097 ∗
7∑

j=1

(xj ≤ RE, (60)

(xj ≥ 0, (j = 1, 2, ..., 10) (61)

3- The model defined by equations (51)-(65) was solved using LINGO version 19. The optimal values of the
decision variables are shown in Table 6 below.

As shown in table 6, total risk-weighted assets x10 represent the largest component of the balance sheet, while
fixed assets x7 constitute the smallest. The optimal solution for the objective function Z in equation (51) is
606,098,200000 Egyptian pounds.

Second: a sensitivity analysis was conducted, to determine the range within which the loan interest rate (I) and
the capital adequacy ratio (CAR) can vary. The results are shown in Table 7.

Table 7 shows that the interest rate on loans can be decreased by up to 0.3121, and the capital adequacy ratio
can be decreased by up to 0.7861. Both can be increased without limit, without affecting the optimal solution of
the objective functions.

Third: if the decision-maker wishes to set specific values for certain decision variables, such as loans to banks
and customers x3, total financial investments x4, investments in subsidiaries, associates x5, intangible and other
assets x6, and fixed assets x7 while maintaining the optimal objective function value of 897,285,200,000 Egyptian
Pounds, as shown in Table 8 below.
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Table 6. The optimal values of the decision variables (Values in thousands of pounds): National Bank of Egypt

Variable The derived values of the decision variables
x1 71,116,210
x2 530,985,100
x3 1,135,535,000
x4 1,355,504,000
x5 8,352,575
x6 128,610,600
x7 117.5014
x8 570,719,500
x9 570,719,500
x10 1,141,439,000

Table 7. Sensitivity analysis of objective function coefficients: allowable changes in interest rate (I) and capital adequacy
ratio (CAR): National Bank of Egypt

Variable Current Coefficient Allowable Increase Allowable Decrease
x3 0.3121 Infinity 0.3121
x10 - 0.2139 Infinity - 0.7861

Table 8. The different (feasible) values x0 of the decision variables (Values in millions of pounds): National Bank of Egypt

Variable The derived values of the decision variables
x0
3 1130300

x0
4 1355503

x0
5 13588.575

x0
6 120000

x0
7 9785.614

Then we apply the IMOLP algorithm described in Section 3 to the proposed multi-objective linear programming
model defined in equations (51)-(65). This will enable us to find the minimal modification of the objective functions
that makes the decision-makers’s preference a weakly efficient solution. We will apply the algorithm using R
programming. We start by identifying the binding constraints: The binding constraints are (52), (62) and (63)

x1 ≥ 0.0298 ∗ CD,
x8 − x9 ≥ 0,
x10 ≥ x8 + x9

Accordingly, the set of active constraints I(x0) is I(x0) = (1, 11, 12) and K̂ =
(x ∈ R10/x = β1a1 + β2a2 + β3a3, β1, β2, β3 ≥ 0), where a1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), a2 =
(0, 0, 0, 0, 0, 0, 0, 1,−1, 0), and a3 = (1, 0, 0, 0, 0, 0, 0,−1,−1, 1).

Then IMOLP (C, x0) is formulated as
Min. q =||c1 − ĉ1||p + ||c2 − ĉ2||p + ||c3 − ĉ3||p,
s.t.
w1ĉ1 + w2ĉ2 + w3ĉ3 − β1a1 − β2a2 − β3a3 = 0,
w1 + w2 + w3 = 1
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w1, w2, w3, β1, β2, β3 ≥ 0,
ĉ1, ĉ2, ĉ3 ∈ R10,
The algorithm is employed for the case when p = 2, aiming for an exact solution by setting the threshold ϵ = 0.
Phase I: The solving of the following convex problem d(conv(C), K̂) = (min.(||x− y||p|x ∈ conv(C), y ∈ K̂)

yields distance d∗ = 0.280646. Since d∗ > 0, this indicates that x0 is not a weakly efficient solution. Therefore, we
set j=1 and proceed to step 1.

Phase II: Step 1: We solve Q1 as follows:
Min.q1 = ∥|c1 − ĉ1||2,

s.t.
ĉ1 + γ2c2 + γ3c3 − θ1a1 − θ2a2 − θ3a3 = 0,
γ2, γ3, θ1, θ2, θ3 ≥ 0
ĉ1 ∈ R10,
The optimal objective value is q∗1 = 2.64575. Since q∗1 − d∗ > 0, we will proceed to solve Q2 as follows:
Min.q2 = ∥|c2 − ĉ2||2,
s.t.
ĉ2 + γ1c1 + γ3c3 − θ1a1 − θ2a2 − θ3a3 = 0,
γ1, γ3, θ1, θ2, θ3 ≥ 0,
ĉ2 ∈ R10,
The optimal objective value is q∗2 = 0.64169. Since q∗2 − d∗ > 0, we will proceed to solve Q3 as follows:
Min.q3 = ∥|c3 − ĉ3||2,
s.t.
ĉ3 + γ1c1 + γ2c2 − θ1a1 − θ2a2 − θ3a3 = 0,
γ1, γ2, θ1, θ2, θ3 ≥ 0,
ĉ3 ∈ R10,
The optimal objective value is q∗3 = 0.3121. As Q3 yields the smallest objective value compared to all

other problems, j is determined to be 3, j∗ = 3. The optimal solution of q3 is η∗3 = (ĉ∗3, γ
∗
1 , γ

∗
2 , θ

∗
1 , θ

∗
2) =

((0, 0, 0, 0, 0, 0, 0, 0.73801, 0.73801,−0.73801), 0, 0, 0, 0). Therefore, the optimal solution of IMOLP (C, x0) is
η∗ = (ĉ∗1, ĉ

∗
2, ĉ

∗
3, w

∗
1 , w

∗
2 , w

∗
3 , β

∗
1 , β

∗
2) = (c1, c2, ĉ

∗
3, 0, 0, 1, 0, 0.73801).

The new criteria matrix C∗, obtained by moving c3 to ĉ∗3, indicates that conv(C∗) intersects K̂. This implies that
x0 is weakly efficient for the new criteria matrix.

4.3. Computational efficiency of the algorithm

In this subsection, we provide a detailed discussion of the computational efficiency of the algorithm, including
runtime and scalability. To mitigate the computational challenges associated with non-convexity, we have
implemented the following strategies:

1. We have explored problem-specific reformulations to transform the non-convex IMOLP into a more tractable
form. By exploiting the specific structure of our problem, the algorithm has been able to reduce the computational
complexity and improve the convergence properties of the optimization algorithms.

2. We used CVXR, a powerful R package for convex optimization, and the Splitting Conic Solver (SCS), a
numerical optimization package designed to efficiently solve large-scale convex cone problems.

5. Conclusion

The paper’s key contribution is the development and successful implementation of a multi-objective linear
programming model to optimize portfolio distribution in commercial banks especially Banque Misr and the
National Bank of Egypt during the period 2020/2021. The findings indicate that the total risk-weighted assets
represent the largest portion of the balance sheet, while fixed assets constitute the smallest. The optimal solution
for the objective function has been determined to be 606,098,200,000 Egyptian pounds for Banque Misr and
897,285,200,000 for the National Bank of Egypt. The sensitivity analysis was performed to assess the impact
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of input parameter variations on the robustness of the optimal solutions. Furthermore, we applied inverse multi-
objective linear programming (IMOLP) to the suggested model to explore its flexibility and practical application.
Our analysis of both case studies using IMOLP demonstrates that decision-makers can achieve Pareto optimal
portfolio allocations by adjusting the coefficients of the third objective, which is related to Tier 1 capital (x8), Tier
2 capital (x9), and Total risk-weighted assets (x10). This findings provide valuable insights for commercial banks
seeking to optimize their portfolio allocation and enhance their financial performance.
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