
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 13, March 2025, pp 1320–1338.
Published online in International Academic Press (www.IAPress.org)

The Odd Generalized Rayleigh Reciprocal Weibull Family of Distributions
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Abstract We introduced a novel family of models in this paper, which we named the odd-generalized Rayleigh reciprocal
Weibull-G (OGR-RW-G) family. This family is noteworthy because it applies the T-X model construction technique to
the generalized Rayleigh reciprocal Weibull model, addressing the inflexibility limits associated with traditional models
and allowing one to use any baseline distribution. We examine some valuable statistical inferences from the OGR-RW-G,
including its probability density function (pdf) represented in a linear fashion, its order statistics’ pdf, moments, residual life
functions and Rényi entropy. Additionally, the hazard rate functions (hrfs) and pdfs of a few particular models are determined
to have analytical shapes. The OGR-RW-G model parameters are determined by the widely recognized maximum likelihood
estimation (MLE) technique. We also perform a simulation exercise to evaluate the performance of the MLEs. Ultimately,
the utility of the OGR-RW-G family is demonstrated by using the odd generalized Rayleigh reciprocal Weibull Burr-XII
(OGR-RW-BXII) example of the OGR-RW-G to three distinct datasets. In actuality, the four parameter OGR-RW-BXII
outperforms the four parameter non-nested models and some nested models that are presented.
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1. Introduction

In actuarial science, probability models play a vital role in evaluating and managing financial risks related to
insurance and pension programs. These models are frequently used to estimate the expected value of future
claims, potential losses, and the likelihood of adverse events. They are also applicable in analyzing events such
as insurance claims, fatalities, and policy cancellations. However, traditional probability distributions often fall
short in accurately representing extreme events or outliers, which occur more frequently in actuarial science and
financial markets. Lighter-tailed distributions, such as the normal, Weibull, and exponential distributions, may
underestimate the risks associated with these extreme occurrences.

In contrast, heavy-tailed probability distributions are designed to assign greater probability to extreme values
or outliers, making them better suited for modeling such phenomena. Unlike light-tailed distributions, where the
probability of extreme values diminishes rapidly, heavy-tailed distributions provide a more realistic representation
of data with long tails. For instance, the Pareto distribution, known for its long right tail, is widely used
to model wealth and income distributions. The Student’s t-distribution, with its heavier tails, is effective for
hypothesis testing and handling data with outliers. The Levy distribution, which has even heavier tails than the
normal distribution, finds applications in financial mathematics and physics. Similarly, the Cauchy distribution,
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characterized by infinite variance, is often used to model phenomena with extended tails, such as network response
times and earthquakes.

These heavy-tailed distributions are indispensable in fields like actuarial science, finance, economics, physics,
and engineering, as they provide a more accurate reflection of real-world scenarios where extreme events occur
more frequently than predicted by lighter-tailed models. Over the past few decades, significant research has
been devoted to the development and enhancement of heavy-tailed distributions. Many of these distributions
are constructed by introducing additional parameters to a parent cumulative density function (cdf), creating new
families of distributions with thicker and longer tails. Researchers have also worked on modifying classical
distributions such as the normal, Weibull, and exponential models to enhance their analytical flexibility and better
capture the characteristics of heavy-tailed data [1, 2, 3, 7, 10, 11, 12, 15, 20, 23, 22].

The Odd Generalized Rayleigh Reciprocal Weibull-G (OGR-RW-G), a unique probability-based reciprocal
Weibull distribution, constructed via the T-X technique [3], is offered in order to provide an adequate explanation
of risk exposure under the reinsurance revenues data set. The cdf and probability distribution function (pdf) of the
Generalized Rayleigh Reciprocal Weibull (GR-RW) are given by

FGR−RW (u) = 1− exp

{
−

[
e−2δ1u

−δ2

(1− e−2δ1u−δ2 )2

]}
,

and

fGR−RW (u) =
2δ1δ2u

−(δ2−1) exp
{
−
[

e−2δ1u−δ2

(1−e−2δ1u−δ2 )2

]}
(1− e−2δ1u−δ2 )3

× [1− e−2δ1u
−δ2

(1− e−2δ1u
−δ2

)],

respectively, for u > 0, δ1 > 0, and δ2 > 0.
Now, the cdf and pdf of the Odd Generalized Rayleigh Reciprocal Weibull-G (OGR-RW-G) distribution are given
by

FOGR−RW−G(y) =

∫ ∇

0

fGR−RW (u)du

= 1− exp

{
−

[
e−2δ1∇−δ2

(1− e−2δ1∇−δ2 )2

]}
, (1)

and

fOGR−RW−G(y) =
2δ1δ2∇−(δ2−1)∇′ exp

{
−
[

e−2δ1∇−δ2

(1−e−2δ1∇−δ2 )2

]}
(1− e−2δ1∇−δ2 )3

(2)

× [1− e−2δ1∇−δ2
(1− e−2δ1∇−δ2

)],

respectively, where δ1, δ2 are non-negative scale and shape parameters respectively, y ∈ R, ∇ = G(y;ω)

Ḡ(y;ω)
,∇′ =

g(y;ω)

Ḡ2(y;ω)
, G(y;ω) is a baseline cdf, Ḡ(y;ω) is a survival function and ω is a vector of parameters. The corresponding

hazard rate function (hrf) is given by

h(y) =
2δ1δ2∇−(δ2−1)g(y;ω) exp

{
−
[

e−2δ1∇−δ2

(1−e−2δ1∇−δ2 )2

]}
Ḡ2(y;ω)(1− e−2δ1∇−δ2 )3

× exp

{
e−2δ1∇−δ2

(1− e−2δ1∇−δ2 )2

}[
1− e−2δ1∇−δ2

(
1− e−2δ1∇−δ2

)]
.
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Using the generalized binomial expansion and the power series, the pdf in equation (2) can be expressed as

fOGR−RW−G(y) =

∞∑
a,b,c=0

χ∗
τg

∗
τ (y;ω), (3)

where

χ∗
τ =

∞∑
d,e=0

(−1)a+b+c+d+e[2δ1(a+ b+ c+ 1)]d

(−(dδ2 + δ2) + h)a!d!

×
(
2a+ b+ 2

b

)(
1

c

)(
dδ2 + δ2 + e− 4

e

)
, (4)

and

g∗τ (y;ω) = τg(y;ω)Gτ−1(y;ω), (5)

is an exponentiated-G (Exp-G) distribution with power parameter τ = −(dδ2 + δ2) + h. Similarly, the pdf of the
kth order statistic of the OGR-RW-G family of distributions can be written as

fk:m(y) =

∞∑
a,b,c=0

ϕ∗τg
∗
τ (y;ω), (6)

where

ϕ∗
τ =

m!

(k − 1)!(m− k)!

∞∑
l,p,d,e=0

(−1)l+p+a+b+c+d+e(p+ 1)a[2δ1(a+ b+ c+ 1)]d

(−(dδ2 + δ2) + h)(p+ 1)−aa!d!

×

(
m− k

l

)(
k + l − 1

p

)(
2a+ b+ 2

b

)(
1

c

)(
dδ2 + δ2 + e− 4

e

)
. (7)

Thus, the pdf of the order statistic of the OGR-RW-G can be written as a linear combination of Exp-G with power
parameter τ .

2. Special Cases

The OGR-RW-G family of distributions’ special instances are discussed in this section. Examples of log-logistic,
exponential, Fŕetchet and Burr-XII distributions for the baseline distribution function are given. The pdf and hrf
plots are also shown.

2.1. Odd-Generalized Rayleigh Reciprocal Weibull-Log-Logistic

Suppose we have a log-logistic baseline distribution with cdf and pdf given by G(y;α) = 1− (1 + yα)−1 and
g(y;α) = αyα−1(1 + yα)−2 respectively for y, α > 0. Now, the cdf and pdf of the Odd-Generalized Rayleigh
Reciprocal Weibull-Log-Logistic (OGR-RW-LLoG) distribution are given by

FOGR−RW−LLoG(y) = 1− exp

{
−

[
e−2δ1∇

−δ2
1

(1− e−2δ1∇
−δ2
1 )2

]}
, (8)

and

fOGR−RW−LLoG(y) =
2δ1δ2∇−(δ2+1)

1 ∇′
1e

−2δ1∇
−δ2
1 (1 + e−2δ1∇

−δ2
1 )

(1− e−2δ1∇
−δ2
1 )3

× exp

{
−

[
e−2δ1∇

−δ2
1

(1− e−2δ1∇
−δ2
1 )2

]}
, (9)
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respectively, for α, δ1, δ2 > 0, ∇1 = 1−(1+yα)−1

(1+yα)−1 and ∇′
1 = αyα−1(1+yα)−2

(1+yα)−2 .

Figure 1. The pdf and hrf plots of the OGR-RW-LLoG distribution

2.2. Odd-Generalized Rayleigh Reciprocal Weibull - Exponential

By taking an exponential baseline distribution with cdf and pdf given by G(y;α) = 1− e−αy and g(y;α) = αe−αy

respectively for y, α > 0. Now, the cdf and pdf of the Odd-Generalized Rayleigh Reciprocal Weibull-Exponential
(OGR-RW-E) distribution are given by

FOGR−RW−E(y) = 1− exp

{
−

[
e−2δ1∇

−δ2
2

(1− e−2δ1∇
−δ2
2 )2

]}
, (10)

and

fOGR−RW−E(y) =
2δ1δ2∇−(δ2+1)

2 ∇′
2e

−2δ1∇
−δ2
2 (1 + e−2δ1∇

−δ2
2 )

(1− e−2δ1∇
−δ2
2 )3

× exp

{
−

[
e−2δ1∇

−δ2
2

(1− e−2δ1∇
−δ2
2 )2

]}
, (11)

respectively, for α, δ1, δ2 > 0, ∇2 = 1−e−αy

e−αy and ∇′
2 = αe−αy

e−2αy .

2.3. Odd-Generalized Rayleigh Reciprocal Weibull-Fŕetchet

Suppose our baseline distribution is Fŕetchet with cdf and pdf given by G(y;λ, α) = e−λy−α

and g(y;λ, α) =

λαy−(α+1)e−λy−α

respectively for y, λ, α > 0. Now, the cdf and pdf of the Odd-Generalized Rayleigh Reciprocal
Weibull-Fŕetchet (OGR-RW-Fr) distribution are given by

FOGR−RW−Fr(y) = 1− exp

{
−

[
e−2δ1∇

−δ2
3

(1− e−2δ1∇
−δ2
3 )2

]}
, (12)
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Figure 2. The pdf and hrf plots of the OGR-RW-E distribution

and

fOGR−RW−Fr(y) =
2δ1δ2∇−(δ2+1)

3 ∇′
3e

−2δ1∇
−δ2
3 (1 + e−2δ1∇

−δ2
3 )

(1− e−2δ1∇
−δ2
3 )3

× exp

{
−

[
e−2δ1∇

−δ2
3

(1− e−2δ1∇
−δ2
3 )2

]}
, (13)

respectively, for λ, α, δ1, δ2 > 0, ∇3 = e−λy−α

1−e−λy−alpha and ∇′
3 = λαy−(α+1)e−λy−α

(1−e−λy−α )2
.

2.4. Odd-Generalized Rayleigh Reciprocal Weibull-Burr-XII

Suppose our baseline distribution is a Burr-XII distribution with cdf and pdf given by G(y) = 1− (1 + yβ)−α and
g(y) = αβyβ−1(1 + xβ)−(α+1) respectively for y, α, β > 0. Now, the cdf and pdf of the Odd-Generalized Rayleigh
Reciprocal Weibull-Burr-XII (OGR-RW-BXII) distribution are given by

FOGR−RW−BXII(y) = 1− exp

{
−

[
e−2δ1∇

−δ2
4

(1− e−2δ1∇
−δ2
4 )2

]}
, (14)

and

fOGR−RW−BXII(y) =
2δ1δ2∇−(δ2+1)

4 ∇′
4e

−2δ1∇
−δ2
4 (1 + e−2δ1∇

−δ2
4 )

(1− e−2δ1∇
−δ2
4 )3

× exp

{
−

[
e−2δ1∇

−δ2
4

(1− e−2δ1∇
−δ2
4 )2

]}
, (15)

respectively, for α, β, δ1, δ2 > 0, ∇4 = 1−(1+yβ)−α

(1+yβ)−α and ∇′
4 = αβyβ−1(1+xβ)−(α+1)

(1+yβ)−2α .
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Figure 3. The pdf and hrf plots of the OGR-RW-Fr distribution

Figure 4. The pdf and hrf plots of the OGR-RW-BXII distribution

3. Statistical Properties

Assessing the statistical properties of a model is essential for evaluating its performance, reliability, and
applicability in both scientific and practical contexts. Key properties, such as measures of central tendency,
variability, goodness-of-fit, and error metrics, offer valuable insights into the model’s ability to represent the
underlying data or processes it is designed to simulate. These evaluations help identify potential biases, measure

Stat., Optim. Inf. Comput. Vol. 13, March 2025



1326 THE ODD GENERALIZED RAYLEIGH RECIPROCAL WEIBULL FAMILY OF DISTRIBUTIONS

prediction accuracy, and detect issues like overfitting or underfitting. Moreover, statistical analysis facilitates
comparisons between models, aiding in the selection of the most suitable one for a specific task. Understanding
these properties ensures that the model’s outputs are interpretable, reproducible, and valid for informed decision-
making or further research. In this section, we outline some of the key statistical properties.
The rth moment of Y ∼ OGR-RW-G , say µ′

r follows from equation (3) as

µ′
r = E(Y r) =

∞∑
a,b,c=0

χ∗
τE(Y r

τ ). (16)

The mean and variance can be easily derived from equation (16). The moment generating function (mgf) of the
OGR-RW-G distribution can be derived from equation (3) and is given by

MY (t) =

∞∑
a,b,c=0

χ∗
τMτ (t), (17)

where Mτ (t) is the MGF of Yτ . Hence, MY (t) can be determined from the MGF of Exp-G.
The rth incomplete moment can be obtained as follows;

Ir(t) =

∫ t

0

yrfOGR−RW−G(y)dy =

∞∑
a,b,c=0

χ∗
τ

∫ t

0

yrg∗τ (y;ω)dy.

(18)

The probability weighted moment (PWM) of a random variable Y ∼ OGR-RW-G, say (ϱr,j) is given by

ϱr,j = E(Y rF j(Y )) =

∫ ∞

−∞
yrF j

OGR−RW−G(y; δ, γ, β, κ)fOGR−RW−G(y; δ, γ, β, κ)dy.

=

∞∑
a,b,c=0

Q∗
τ

∫ ∞

−∞
yrg∗i+m+1(y;κ)dy =

∞∑
a,b,c=0

Q∗
τE[Y r

τ ], (19)

where

Q∗
τ =

∞∑
p,d,e=0

(−1)p+a+b+c+d+e(p+ 1)a[2δ1(a+ b+ c+ 1)]d

(−(dδ2 + δ2) + h)(p+ 1)−aa!d!

×
(
j

p

)(
2a+ b+ 2

b

)(
1

c

)(
dδ2 + δ2 + e− 4

e

)
, (20)

E(Y r
τ ) is the rth moment of Exponentiated-G (Exp-G) density with power parameter τ = −(dδ2 + δ2) + h and

g∗i+m+1(y;κ) is given in equation (5).
If n is an integer value greater than 1 (n > 1) and y > t, then the rth moment of residual life of the OGR-RW-G

family of distributions is given by;

ϑ∗r(t) =
1

F̄ (y;ω)

∞∑
a,b,c=0

χ∗
τ

∞∑
s=0

(
n

s

)
(−t)s

∫ ∞

t

yn−sg∗τ (y;ω)dy, (21)

where g∗τ (y;ω) is pdf of an Exp-G distribution with power parameter τ given in equation (5), Ḡ(y;ω) is the survival
function and the coefficients of χ∗

τ are given in equation (4).
Now, if n is an integer value greater than 1 (n > 1) and y < t, then the rth moment of reverse residual life of the
OGR-RW-G family of distributions is given by;

θ∗r(t) =
1

F (y;ω)

∞∑
a,b,c=0

χ∗
τ

∞∑
s=0

(
n

s

)
(t)n−s(−1)s

∫ t

0

ysg∗τ (y;ω)dy, (22)
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where g∗τ (y;ω) is a pdf of an Exp-G distribution with power parameter (τ ) given in equation (5) and the coefficients
of χ∗

τ are given in equation (4).
Let X ∼ OGR-RW-G(δ11 , δ21 , ω1

) and Y ∼ OGR-RW-G(δ12 , δ22 , ω2
) respectively, the reliability model of the

OGR-RW-G family of distributions is given by

R =

∫ ∞

x=0

2δ11δ21∇
−(δ21+1)
1 ∇′

1e
−2δ11∇

−δ21
1 (1 + e−2δ11∇

−δ21
1 )

(1− e−2δ11∇
−δ21
1 )3

× exp

{
−

[
e−2δ11∇

−δ21
1

(1− e−2δ11∇
−δ21
1 )2

]}

×

(
1− exp

{
−

[
e−2δ12∇

−δ22
2

(1− e−2δ12∇
−δ22
2 )2

]})
dx, (23)

where ∇1 =
G(y;ω

1
)

Ḡ(y;ω
1
)
, ∇′

1 =
g(y;ω

1
)

Ḡ2(y;ω
1
)

and ∇2 =
G(y;ω

2
)

Ḡ(y;ω
2
)
.

The Rényi Entropy for the OGR-RW-G family of distribution given by;

IR(ν) =
1

1− ν
log
[
(2δ1δ2)

ν
∞∑

a,b,c,d,e=0

(−1)a+b+c+d+eνa[2δ1(a+ b+ c+ 1)]d

a!d!

×
(
2a+ b+ 3ν − 1

b

)(
ν

c

)(
dδ2 + δ2ν − ν + e− 1

e

)
×

∫ ∞

0

gν(x; ζ)Gτ (y;ω)dy
]
, (24)

where τ = −(dδ2 + δ2) + h, ν ̸= 1 and ν > 0.

4. Key Risk Indicators

In this section, we analyze five Key Risk Indicators (KRIs) for our new model: Value-at-Risk (VaR), Tail-Value-
at-Risk (TVaR), Conditional-Value-at-Risk (CVaR), Tail Variance (TV), and Tail Mean-Variance (TMV). These
metrics are critical for quantifying and managing financial and operational risks, particularly in environments
characterized by extreme events or significant uncertainties. They provide valuable insights into potential losses
under adverse conditions by focusing on the tail of the distribution, where the most severe outcomes are
concentrated.

These indicators not only assess the likelihood of losses but also capture their severity and variability, making
them indispensable tools for stress testing, regulatory compliance, and developing effective risk mitigation
strategies. By incorporating these measures, organizations can enhance their preparedness for low-probability,
high-impact events and make informed decisions to ensure stability and resilience in the face of uncertainty. Let
Y ∼ OGR-RW-G denote a loss random variable.

4.1. VAR Indicator

The VAR of Y at the 100α% confidence level, say VAR(Y ;α) is given by

VAR(Y ;α) = G−1

(
ψ(α)

1 + ψ(α)

)
, (25)

for ψ(α) =
[
log{ − log(1−α)

1−log(1−α)}
−2δ1

]−δ−1
2

.
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4.2. TVAR Indicator

The TVAR of Y at the 100α% confidence level, say TVAR(Y ;α) is given by

TVAR(Y ;α) = E[Y |Y > VAR(Y ;α)] = (1− α)−1

∫ ∞

VAR(Y ;α)

yfOGR-RW-G(y)dy

= (1− α)−1
∞∑

a,b,c=0

χ∗
τ

∫ ∞

VAR(Y ;α)

yg∗τ (y;ω)dy, (26)

where χ∗
τ is given in equation (4), g∗τ (y;ω) is given in equation (5) and τ = −(dδ2 + δ2) + h is the power parameter.

4.3. CVAR Indicator

The CVAR of Y at the 100α% confidence level, say CVAR(Y ;α) is given by

CVAR(Y ;α) = E[Y |Y < VAR(Y ;α)] =
1

α

∫ VAR(Y ;α)

−∞
yfOGR-RW-G(y)dy

=
1

α

∞∑
a,b,c=0

χ∗
τ

∫ VAR(Y ;α)

−∞
yg∗τ (y;ω)dy, (27)

where χ∗
τ is given in equation (4), g∗τ (y;ω) is given in equation (5) and τ = −(dδ2 + δ2) + h is the power parameter.

4.4. TV Risk Indicator

The TV risk indicator of Y at the 100α% confidence level, say TV(Y ;α) is given by

TV(Y ;α) = E[Y 2|Y > VAR(Y ;α)]−
(

TVAR(Y ;α)

)2

= (1− α)−1

∫ ∞

VAR(Y ;α)

y2fOGR-RW-G(y)dy −
(

TVAR(Y ;α)

)2

= (1− α)−1
∞∑

a,b,c=0

χ∗
τ

∫ ∞

VAR(Y ;α)

y2g∗τ (y;ω)dy −
(

TVAR(Y ;α)

)2

,

(28)

where χ∗
τ is given in equation (4), g∗τ (y;ω) is given in equation (5) and τ = −(dδ2 + δ2) + h is the power parameter.

4.5. TMV Risk Indicator

The TMV risk indicator of Y at the 100α% confidence level, say TMV(Y ;α) is given by

TMV(Y ;α) = E[(Y − TVAR(Y ;α))2|Y > VAR(Y ;α)]

= (1− α)−1

∫ ∞

VAR(Y ;α)

(y − TVAR(Y ;α))
2
fOGR-RW-G(y)dy

= (1− α)−1
∞∑

a,b,c=0

χ∗
τ

∫ ∞

VAR(Y ;α)

g∗τ (y;ω) (y − TVAR(Y ;α))
2
dy, (29)

where χ∗
τ is given in equation (4), g∗τ (y;ω) is given in equation (5) and τ = −(dδ2 + δ2) + h is the power parameter.
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5. Maximum Likelihood Estimation

Let X ∼OGR-RW-G(δ1, δ2, ω) and ∆ = (δ1, δ2, ω)
T the vector of model parameters, then the log-likelihood

function ℓn(∆) = ℓn based on a random sample of size n from the OGR-RW-G family of distributions is given
by

ℓn = n log(2δ1δ2)− (δ2 + 1)

n∑
i=1

log(∇) +

n∑
i=1

log(∇′)− 2

n∑
i=1

log(δ1∇−δ2)

+

n∑
i=1

log(1 + e−2δ1∇−δ2
)− 3

n∑
i=1

log(1− e−2δ1∇−δ2
)−

n∑
i=1

[
e−2δ1∇−δ2

1− e−2δ1∇−δ2

]
.

The score equations for the OGR-RW-G model are

∂ℓn
∂δ1

=
n

δ1
− 2

n∑
i=1

∇−δ2 − 2

n∑
i=1

∇−δ2e−2δ1∇−δ2

1 + e−2δ1∇−δ2

− 6

n∑
i=1

∇−δ2e−2δ1∇−δ2

1− e−2δ1∇−δ2
+ 2

n∑
i=1

∇−δ2e−2δ1∇−δ2

(1− e−2δ1∇−δ2 )2
,

∂ℓn
∂δ2

=
n

δ2
−

n∑
i=1

log(∇)− 2

n∑
i=1

∇−δ2 − 2

n∑
i=1

δ1∇−δ2 log(∇)

− 2

n∑
i=1

δ1∇−δ2e−2δ1∇−δ2
log(∇)

1 + e−2δ1∇−δ2
− 6

n∑
i=1

δ1∇−δ2e−2δ1∇−δ2
log(∇)

1− e−2δ1∇−δ2

+ 2

n∑
i=1

δ1∇−δ2e−2δ1∇−δ2
log(∇)

(1− e−2δ1∇−δ2 )2
,

and

∂ℓn
∂ωk

= −(δ2 + 1)

n∑
i=1

∂(log(∇))/∂ωk +

n∑
i=1

∂(log(∇′))/∂ωk

− 2

n∑
i=1

∂(log(δ1∇−δ2))/∂ωk +

n∑
i=1

∂(log(1 + e−2δ1∇−δ2
))/∂ωk

− 3

n∑
i=1

∂(log(1− e−2δ1∇−δ2
))/∂ωk −

n∑
i=1

∂

([
e−2δ1∇−δ2

1− e−2δ1∇−δ2

])
/∂ωk,

where ∇ = G(y;ω)

Ḡ(y;ω)
and ∇′ = g(y;ω)

Ḡ2(y;ω)
. Therefore the estimates of the parameters are obtained by solving the

non-linear systems of equation ∆̂ = (∂ℓn∂δ1
, ∂ℓn∂δ2

, ∂ℓn
∂ωk

)T = 0, using a numerical method such as Newton-Raphson
technique [17, 18], via statistical softwares such as MATHEMATICA, MAPLE, Ox and R.

6. Simulation Study

In this section, a simulation exercise was conducted using the R programming language (stats4 package) to assess
the consistency of the maximum likelihood estimators (MLEs). The OGR-RW-BXII distribution was used to
generate 3000 samples with varying sizes (n = 100, 200, 400, 800, 1000, 1600, 1800 and 2000) through iterative
simulations. For each of the 3000 replications, the MLEs were computed. The average bias (ABias) and root
mean square error (RMSE) were calculated for the estimated parameters (refer to [14, 16] for the mathematical
formulations of ABias and RMSE).
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It is expected that as the sample size increases, both the ABias and RMSE will decrease toward zero, indicating
good model performance. As shown in Tables 1 and 2, the ABias and RMSE for all parameter estimates consistently
decline toward zero with increasing sample size. This demonstrates that the MLEs are consistent and produce
reliable estimates for the model parameters, confirming the robustness of the model.

Table 1. OGR-RW-BXII Simulation Results 1

(1.0, 1.0, 1.0, 1.0) (1.0, 1.0, 1.5, 1.0)

parameter Sample Size Mean RMSE ABias Mean RMSE A.Bias
δ1 100 1.7963 2.8691 0.7963 1.6712 3.6361 0.6712

200 1.4372 1.8024 0.4372 1.4566 2.5401 0.4566
400 1.2227 1.2856 0.2227 1.4837 2.4789 0.4837
800 1.0722 0.4964 0.0722 1.2589 1.2322 0.2589

1000 1.0573 0.4668 0.0573 1.2223 1.0633 0.2223
1600 1.0253 0.2943 0.0253 1.1974 0.8863 0.1974
1800 1.0361 0.2612 0.0361 1.1951 0.8478 0.1951
2000 1.0299 0.2653 0.0299 1.2350 0.8681 0.2350

δ2 100 0.8811 0.3679 -0.1189 0.8047 -0.6712 0.1953
200 0.9220 0.3131 -0.0780 0.8411 -0.6154 0.1589
400 0.9705 0.2395 -0.0295 0.9005 -0.5531 0.0995
800 0.9854 0.1493 -0.0146 0.9184 -0.5060 0.0816

1000 0.9883 0.1331 -0.0117 0.9421 -0.4821 0.0579
1600 0.9971 0.0899 -0.0029 0.9630 -0.4316 0.0370
1800 0.9951 0.0656 -0.0049 0.9496 -0.4344 0.0504
2000 0.9955 0.0777 -0.0045 0.9672 -0.4264 0.0328

α 100 1.3614 1.1162 0.3614 1.7869 1.7529 0.2869
200 1.1819 0.7627 0.1819 1.5973 1.1795 0.0973
400 1.0768 0.4658 0.0768 1.5642 0.9855 0.0642
800 1.0310 0.2701 0.0310 1.4986 -0.5367 0.0014

1000 1.0172 0.2479 0.0172 1.4739 -0.4672 0.0261
1600 1.0086 0.1903 0.0086 1.4857 -0.3765 0.0143
1800 1.0188 0.1706 0.0188 1.4975 -0.3615 0.0025
2000 1.0142 0.1638 0.0142 1.5107 0.3539 0.0107

β 100 1.4381 1.5242 0.4381 3.2173 4.3280 2.2173
200 1.3329 1.3022 0.3329 2.7617 3.5730 1.7617
400 1.1425 0.7157 0.1425 2.2086 2.6175 1.2086
800 1.0455 0.3623 0.0455 1.8826 1.9930 0.8826

1000 1.0409 0.3122 0.0409 1.7821 1.8426 0.7821
1600 1.0094 0.1643 0.0094 1.5556 1.4604 0.5556
1800 0.9994 0.0927 -0.0006 1.5595 1.4105 0.5595
2000 1.0040 0.1327 0.0040 1.5074 1.3515 0.5074

7. Application

This section demonstrates the utility of the OGR-RW-G family by applying the OGR-RW-BXII distribution to
fit three distinct datasets. The model’s performance is assessed using various goodness-of-fit (GoF) statistics,
including -2 log-likelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (AICC), Bayesian Information Criterion (BIC), Cramér-von Mises (W∗), Anderson-Darling (A∗), and
the Kolmogorov-Smirnov (K-S) statistic along with its p-value. Among the models considered, the one with the
lowest values for these statistics and the highest K-S p-value is deemed the most optimal.
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Table 2. OGR-RW-BXII Simulation Results 2

(1.0, 1.0, 1.2, 1.0) (1.1, 1.1, 1.5, 1.1)

parameter Sample Size Mean RMSE Bias Mean RMSE A.Bias
δ1 100 1.7641 3.6072 0.7641 1.7645 3.8650 0.6645

200 1.4134 2.1130 0.4134 1.6397 3.3009 0.5397
400 1.3403 1.7863 0.3403 1.4861 2.1106 0.3861
800 1.1283 0.8190 0.1283 1.3035 1.1731 0.2035
1000 1.1013 0.7398 0.1013 1.2955 1.1402 0.1955
1600 1.0610 0.5193 0.0610 1.2596 0.9110 0.1596
1800 1.0758 0.5158 0.0758 1.2742 0.8951 0.1742
2000 1.0604 0.4850 0.0604 1.2892 0.8778 0.1892

δ2 100 0.8343 -0.5182 0.1657 0.8910 -0.7265 0.2090
200 0.8870 -0.4353 0.1130 0.9053 -0.6524 0.1947
400 0.9564 -0.3752 0.0436 0.9910 -0.5801 0.1090
800 0.9871 -0.2943 0.0129 1.0033 -0.5247 0.0967
1000 0.9811 -0.2868 0.0189 1.0377 -0.5043 0.0623
1600 0.9958 -0.2161 0.0042 1.0556 -0.4461 0.0444
1800 0.9901 -0.2229 0.0099 1.0350 -0.4307 0.0650
2000 0.9947 -0.2047 0.0053 1.0539 -0.4291 0.0461

α 100 1.5397 1.4386 0.3397 1.7967 1.7967 0.2967
200 1.3428 0.8876 0.1428 1.6365 1.3629 0.1365
400 1.2814 0.6875 0.0814 1.5326 0.8775 0.0326
800 1.2194 0.3536 0.0194 1.4795 -0.4979 0.0205
1000 1.2055 0.3209 0.0055 1.4651 -0.4630 0.0349
1600 1.2046 0.2473 0.0046 1.4745 -0.3710 0.0255
1800 1.2168 0.2280 0.0168 1.4935 -0.3534 0.0065
2000 1.2095 0.2184 0.0095 1.4940 -0.3400 0.0060

β 100 1.9868 2.3237 0.9868 3.4431 4.6703 2.3431
200 1.6594 1.6981 0.6594 2.8542 3.5304 1.7542
400 1.3901 1.2132 0.3901 2.2719 2.5523 1.1719
800 1.1884 0.7732 0.1884 1.9650 1.9745 0.8650
1000 1.1968 0.7513 0.1968 1.8443 1.7809 0.7443
1600 1.0879 0.4855 0.0879 1.6265 1.4069 0.5265
1800 1.0964 0.5083 0.0964 1.6240 1.3590 0.5240
2000 1.0772 0.4546 0.0772 1.5792 1.3033 0.4792

The OGR-RW-BXII distribution is compared to its nested models as well as five competing non-nested five-
parameter models: the Beta Generalized Lindley (BGL) distribution [19], Generalized Gompertz-Poisson (GGP)
distribution [8], Beta Odd Lindley-Exponential (BOLE) distribution [5], Weibull Lomax (WL) distribution [21],
and Marshall-Olkin-Gompertz-Weibull (MO-Gom-W) distribution [6].

Parameter estimates, along with their standard errors (in parentheses), for the selected datasets are provided in
Tables 3 and 7, while the corresponding GoF statistics are summarized in Tables 4 and 6. Figures 5 and 9 illustrate
the fitted density, probability plots, and Kaplan-Meier (KM) curves for the OGR-RW-BXII model. Additionally,
Figures 6 and 10 present the empirical cumulative distribution function (ECDF), estimated hazard rate function
(HRF), and total-time-on-test (TTT) plots for the OGR-RW-BXII model.

These analyses highlight the flexibility and effectiveness of the OGR-RW-BXII model in accurately fitting
diverse datasets.
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7.1. Repair Lifetimes of an Airborne Transceiver

The dataset represents the duration of active repairs measured in hours for an airborne communication transceiver.
These data points are sourced from the studies conducted by Raj S. Chhikara and J Leroy Folks [4] and Victor Leiva
et.al. [9]. The variance-covariance matrix for OGR-RW-BXII model on Repair lifetimes of an airborne transceiver

Table 3. Fitted models parameter estimates for the repair lifetimes of an airborne transceiver dataset

Model Estimates and standard errors
δ1 δ2 α β

OGR-RW-BXII 2.2552×10−4 0.7492 2.6700×10−5 1.0424
(3.7497×10−7) ( 8.5481×10−10) (2.3730×10−6) (3.3238×10−11 )

OGR-RW-BXII(1, δ2, α, β) - 14.7030 1.0104 2.8863
( 4.1329×10−6) (0.0048 ) (0.0029 )

OGR-RW-BXII(δ1, 1, α, β) 3.0031×10−5 - 5.3642×10−5 0.7338
(1.5652×10−6) (8.7628×10−7) (3.1085×10−11 )

α θ a b
BGL 1.1741×10−1 1.3021×10−7 0.0408 8.0996

( 0.0010 ) (1.8480×10−6 ) (6.0198×10−3 ) (2.9912×10−5 )
θ α β γ

GGP 1.5838×10−4 0.8065 0.2266 3.9440×10−9

( 1.0223) (0.2288 ) (0.0668) (0.0180)
λ θ a b

BOLE 80.209 8.0481×10−5 0.9317 40.511
(1.2470×10−11 ) (1.2289×10−5 ) (1.0488×10−9 ) (2.4410×10−11)

a b α β
WL 2.0041×102 1.1500 0.1738 3.7634

(0.0017 ) (0.2283 ) (0.0086 ) (3.6149)
δ θ λ γ

MO-GOm-W 0.0273 0.0122 1.1551 0.0403
(0.0747 ) ( 0.0342 ) ( 0.1734) (0.0632)

a b
G 0.2585 0.9323

(0.0615 ) (0.1701)
λ

W 0.5649
(0.0500)

dataset is given by
1.4060× 10−13 3.2053× 10−16 −8.8983× 10−13 −1.2463× 10−17

3.2053× 10−16 7.3069× 10−19 −2.0284× 10−15 −2.8412× 10−20

−8.8982× 10−13 −2.0285× 10−15 5.6312× 10−12 7.8875× 10−17

−1.2463× 10−17 −2.8412× 10−20 7.8875× 10−17 1.1048× 10−21


and the 95% confidence intervals for the model parameters are given by

δ1 ∈ [2.2552× 10−4 ± 7.3495× 10−7], δ2 ∈ [0.7492± 1.6754× 10−6], α ∈ [2.6700× 10−5 ± 4.6511× 10−6]
and β ∈ [1.0424± 6.5147× 10−11]. Table 4 shows that the OGR-RW-BXII model provides the overall best fit on
the repair lifetimes of an airborne transceiver dataset as compared to nested and non-nested models presented in
the table.
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Table 4. Fitted models GoF statistics for the repair lifetimes of an airborne transceiver dataset

GoF Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

OGR-RW-BXII 199.3641 207.3641 208.3397 214.6786 0.0460 0.2841 0.0928 0.8235
OGR-RW-BXII(1, δ2, α, β) 204.769 471.4273 471.9988 476.9133 0.0527 0.3351 0.7875 2.2×10−16

OGR-RW-BXII(δ1, 1, α, β) 199.8261 205.8261 206.3975 211.3120 0.0501 0.3234 0.1043 0.6989
BGL 539.3437 547.6217 548.5973 554.9363 0.0742 0.4838 0.9561 2.2×10−16

GGP 210.8166 218.8167 219.7923 226.1313 0.1441 1.0013 0.1334 0.3856
BOLE 209.8717 217.8717 218.8473 225.1862 0.1434 0.9950 0.1455 0.2842

WL 204.2995 212.2995 213.2751 219.6140 0.0803 0.5158 0.1157 0.5692
MO-GOm-W 204.0075 212.0075 212.9831 219.3221 0.0683 0.4692 0.1251 0.4675

G 209.8619 213.8619 214.1410 217.5192 0.1069 0.6729 0.1603 0.1877
W 241.9077 243.9077 243.9986 245.7364 0.0978 0.6719 0.4479 1.9×10−8

Figures 5 and 6 show that the OGR-RW-BXII model can accommodate the extremely tailed data sets, KM

Figure 5. Fitted density, probability plot and KM survival plots of the OGR-RW-BXII model for repair lifetimes of an
airborne transceiver data

Figure 6. ECDF, estimated hazard rate plot and TTT of the OGR-RW-BXII model for repair lifetimes of an airborne
transceiver data

and ECDF curves are close to the empirical data exhibiting better performance of our novel model. Furthermore,
the fitted hrf exhibits an upside-down bathtub shape which is supported by the TTT plot produced by the dataset.
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7.2. Growth Hormone Dataset

The second dataset comprises the estimated duration from the administration of growth hormone medication until
the children reached the desired age [13].

Table 5. Fitted models parameter estimates for the growth hormone dataset

Model Estimates and standard errors
δ1 δ2 α β

OGR-RW-BXII 2.1510×10−4 1.5690 3.2190×10−4 13.3160
(6.4410 ×10−4) ( 2.0940 ×10−6) (6.1250×10−4) (6.9100×10−8)

OGR-RW-BXII(1, δ2, α, β) - 0.9760 0.0460 14.0380
(0.1450) (0.0040) (1.4080×10−5 )

OGR-RW-BXII(δ1, 1, α, β) 0.0670 - 0.1110 0.4910
(0.1070) (0.1720) (0.0850)

α θ a b
BG-L 0.1151 1.6105×10−7 0.0391 8.0101

( 9.6102×10−3 ) (1.9382×10−6 ) (6.5904×10−3 ) (3.4570×10−5 )
θ α β γ

GG-P 5.2833×10−9 1.4484 0.1400 0.1300
(0.0101 ) (0. 4664 ) (0.0631 ) (0.0590)

λ θ a b
BOL-E 24.2867 0.0025 4.1427 12.8370

(0.004 ) (4.988×10−4 ) (0.9550 ) (0.0024)
a b α β

W-L 546.4500 4.4581 0.0664 0.8486
(6.6900×10−5 ) (3.2384 ) (0.0166 ) (2.2971)

δ θ λ γ
MO-GOm-W 0.0370 2.1544×10−5 0.3410 5.3427

(0.0107 ) (5.9010×10−6 ) (0.0186) (7.1244×10−4)
a b

G 0.7861 4.1711
(0.1923 ) ( 0.9599)

λ
W 0.4836

(0.0513)

The variance-covariance matrix for OGR-RW-BXII model on growth hormone data set set is given by
1.406× 10−13 3.205× 10−16 −8.898× 10−13 −1.246× 0−17

3.205× 10−16 7.307× 10−19 −2.028× 10−15 −2.841× 10−20

−8.898× 10−13 −2.028× 10−15 5.631× 10−12 7.888× 10−17

−1.246× 10−17 −2.841× 10−20 7.888× 10−17 1.105× 10−21


and the 95% confidence intervals for the model parameters are given by

δ1 ∈ [2.151× 10−4 ± 7.349× 10−07], δ2 ∈ [1.569± 1.675× 10−09], α ∈ [3.219× 10−4 ± 4.651× 10−06] and
β ∈ [13.316± 6.515× 10−11]. Table 6 shows that the OGR-RW-BXII model provides the overall best fit on the
growth hormone dataset as compared to the nested and non-nested models under consideration. Figures 9 and 10
that the OGR-RW-BXII model can accommodate the extremely tailed data sets, the KM and ECDF are aligning
closely with the model thus exhibiting better performance for our model. Additionally, the estimated hrf exhibits
the TTT plot produced by the dataset.
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Table 6. Fitted models GoF statistics for the Growth hormone data set

Statistics
Model −2 log L AIC CAIC BIC W ∗ A∗ K-S p-value

OGR-RW-BXII 154.4357 162.4358 163.7691 168.6572 0.0376 0.2584 0.0822 0.9721
OGR-RW-BXII(1, δ2, α, β) 156.2151 386.5832 387.3574 391.2493 0.0329 0.2332 0.8055 2.2×10−16

OGR-RW-BXII(δ1, 1, α, β) 209.3691 215.3691 216.1433 220.0351 0.0610 0.4173 0.4160 1.095×10−5

BG-L 471.1036 479.1123 480.4456 485.3337 0.0627 0.4285 0.9582 2.2×10−16

GG-P 169.0884 177.0885 178.4218 183.3099 0.1986 1.2386 0.1702 0.2625
BOL-E 160.2746 168.2746 169.6079 174.496 0.1019 0.6609 0.1251 0.6438

W-L 161.0264 169.0264 170.3597 175.2478 0.1098 0.7068 0.1244 0.6508
MO-GOm-W 161.5606 169.5607 170.8940 175.782 0.1134 0.7346 0.1037 0.846

G 160.2165 164.2165 164.5915 167.3272 0.0816 0.5885 0.8671 2.2×10−16

W 258.6514 260.6514 260.7727 262.2068 0.0771 0.5138 0.7650 2.2×10−16

Figure 7. Fitted density, probability plots and KM survival plots of the OGR-RW-BXII model for the growth hormone data

Figure 8. ECDF, estimated hazard rate plot and TTT of the OGR-RW-BXII model for the growth hormone data

7.3. Survival Dataset of Patients Suffering from Acute Myelogeneous Leukaemia

The third dataset comprises of patients suffering from acute myelogeneous leukaemia. The data, that can also be
found at library SMIR of the R program (http://cran.r-project.org). The variance-covariance matrix for OGR-RW-
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Table 7. Fitted models parameter estimates for the myelogeneous leukaemia dataset

Model Estimates and standard errors
δ1 δ2 α β

OGR-RW-BXII 1.5252 0.0817 0.0687 57.6924
(0.2958) ( 0.0237) (0.0215) (17.6076)

OGR-RW-BXII(1, δ2, α, β) - 0.4183 0.2355 2.4818
(0.1594) (0.1780) (2.5172 )

OGR-RW-BXII(δ1, 1, α, β) 1.0610 - 0.7025 0.4171
(1.9050) (1.0600) (0.2960)

α θ a b
BG-L 0.1034 1.6105×10−8 0.0331 8.0997

( 8.378×10−3 ) (1.409×10−6 ) (5.766×10−3 ) (3.129×10−5 )
θ α β γ

GG-P 7.142×10−5 0.5478 0.0124 0.0056
(0.1274 ) (0. 1548 ) (0.0077 ) (0.0073)

λ θ a b
BOL-E 1.5185 0.0028 0.6204 4.9850

(2.2114 ) (0.0045 ) (0.1732 ) (0.4522)
a b α β

W-L 1.2047 0.6017 1.510×103 1.156×103

(0.2141 ) (0.0805 ) (1.6227×10−4 ) (2.1186×10−6)
δ θ λ γ

MO-GOm-W 0.1715 0.0106 0.8313 0.0263
(0.2648 ) (0.0181 ) (0.2039) ( 0.0401)

a b
G 0.0168 0.6878

(0.0050 ) ( 0.1440)
λ

W 0.2393
(0.0259)

BXII model on myelogeneous leukaemia dataset set is given by
8.7490× 10−2 −4.7800× 10−5 1.5970× 10−3 0.8730
−4.7800× 10−5 5.6330× 10−4 −2.3720× 10−4 −0.1958
1.5970× 10−3 −2.3720× 10−4 0.0004 −0.1737

0.8732 −0.1958 −0.1737 310.0262


and the 95% confidence intervals for the model parameters are given by

δ1 ∈ [1.5252× 10−4 ± 0.5797], δ2 ∈ [0.0817± 0.0465], α ∈ [0.0687× 10−4 ± 0.0421] and β ∈ [57.6924±
34.5108]. Table 8 shows that the OGR-RW-BXII model provides the overall best fit on the myelogeneous
leukaemia dataset as compared to the nested and non-nested models under consideration. Figures 9 and 10 that the
OGR-RW-BXII model can accommodate the extremely tailed data sets, the KM and ECDF are aligning closely
with the model thus exhibiting better performance for our model. Additionally, the estimated hrf exhibits the TTT
plot produced by the dataset.
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Table 8. Fitted models GoF statistics for the myelogeneous leukaemia dataset

Statistics
Model −2 log L AIC CAIC BIC W ∗ A∗ K-S p-value

OGR-RW-BXII 298.9213 306.9213 308.3499 312.9074 0.0705 0.4767 0.1267 0.6644
OGR-RW-BXII(1, δ2, α, β) 304.6768 339.974 340.8016 344.4635 0.1097 0.7076 0.4068 3.62×10−5

OGR-RW-BXII(δ1, 1, α, β) 305.3852 311.3852 312.2128 315.8747 0.0862 0.5710 0.1440 0.5008
BG-L 549.7148 557.8677 559.2963 563.8538 0.1276 0.8035 0.9644 2.2×10−16

GG-P 307.1409 315.1409 316.5694 321.1269 0.1030 0.7129 0.1172 0.7556
BOL-E 307.0134 315.0134 316.4420 320.9995 0.0987 0.6849 0.1369 0.5664

W-L 306.4082 376.8067 376.9357 378.3032 0.1001 0.6548 0.6368 4.78×10−12

MO-GOm-W 305.3181 313.3181 314.7467 319.3041 0.0857 0.5889 0.1312 0.6206
G 307.3473 311.3473 311.7473 314.3403 0.1284 0.8533 0.2695 0.0166
W 374.8067 260.6514 260.7727 262.2068 0.0771 0.5138 0.7650 2.2×10−16

Figure 9. Fitted density, probability plots and KM survival plots of the OGR-RW-BXII model for the myelogeneous
leukaemia data

Figure 10. ECDF, estimated hazard rate plot and TTT of the OGR-RW-BXII model for the myelogeneous leukaemia data

8. Concluding Remarks

In this study, we introduced the Odd Generalized Rayleigh Reciprocal Weibull (OGR-RW-G) family of probability
distributions, representing a novel and versatile class of probability models. The statistical properties of this
newly developed family were thoroughly analyzed, and key characteristics were derived. The maximum likelihood
estimation (MLE) method was employed to estimate the model parameters, and a Monte Carlo simulation study
was conducted to evaluate the performance of the MLEs.
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Additionally, the empirical performance of the OGR-RW-BXII distribution, a member of the OGR-RW-G family,
was assessed using real-world datasets. The results demonstrate that the OGR-RW-BXII distribution outperforms
its nested distributions as well as other non-nested competing distributions under consideration. These findings
underscore the flexibility and effectiveness of the OGR-RW-G family in modeling complex datasets and provide a
foundation for its application in various fields requiring robust statistical modeling.
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