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Abstract Knowing soil characteristics is one crucial step in the agricultural process. Soil characteristics such as NPK and
pH values could differ the production quantity and quality of a farm. To know soil characteristics, various methods could be
implemented including the use of tools such as Soil Test Kit (STK), and Rapid Soil Testing (RST), among others. For an
extreme case, soil laboratory work is sometimes conducted. However, such a process is considered taking time and expensive
to realize. Nowadays, the use of smartphones is getting common. Smartphones can capture images, in this case soil images, in
no time. However, recognizing soil characteristics based on images needs more processes. Various artificial intelligence (AI)
methods exist and could be used for the purpose, including artificial neural networks, convolutional neural networks, random
forest, and gradient boosting, among others. This paper tries to experiment how the soil images captured using smartphone
could be used to predict soil characteristics. Various image augmentation and preprocessing methods are chosen to produce
images to see the effect of the two processes in the modelling. Modelling using deep learning were also conducted with an
added process of using transfer learning. The results show that SwinModel, a type of transformer deep learning, performed
the best compared to other methods with lower values of evaluation metrics. Gradient Boosting and Random Forest were
also recommended with relatively low values of evaluation metrics. Based on the experiment results, preprocessing and
augmentation were proven to enhance the quality of modelling. For preprocessing, median and homomorphic filters are
recommended, and for augmentation, color, physical, and rotation-based augmentation are recommended. As the soil images
used in this study were captured in a process that can easily be imitated by farmers, further implementation in the form of
mobile application shows a good prospect.

Keywords Soil Images Modelling, Image Capturing Using Smartphone, Image Preprocessing and Augmentation, Transfer
Learning
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1. Introduction

Soil processing is one essential process in quality farming. Soil type measured by its fertility and acidity influences
how the soil should be utilized and maintained [1, 2]. Soil conditions will also affect the way the farmer chooses
the plant and fertilizers needed [3, 4, 5, 6]. The plant choice must do a check on the soil type from the beginning
when selecting the type of seeds to be planted. As for fertilizers, the amount, and the timing when the fertilizers are
applied, are important. The number of fertilizers applied will depend on the type of soil. Lacking or abundance of
fertilizers applied could cause problems including the attack of insects, pests, and diseases [1, 7, 8, 9]. Crop weeds
could also become a problem when soil management is poorly conducted. So, the information about soil types and
their characteristics is important, even before the planting is started.
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1.1. Soil Characteristics ldentification

Identifying soil characteristics can be performed using various processes including the uses of Soil Test Kit
(STK), Rapid Soil Testing (RST), Soil Testing Capsules (STC), Near-Infrared Spectroscopy, Spectrophotometric,
and Lost on Ignition (LOI), among others [10, 11, 12, 13, 14, 15, 16]. Laboratory work by collecting soil samples
and conducting experiments could also be conducted for parameters collection. Experiments are conducted to find
basic soil properties by taking soil samples, drying them, and using spectrophotometer or spectrometer to provide
colour values [17]. However, these approaches are known to be expensive from the farmers’ point of view.

1.2. Capturing Using Smartphone

On the other hand, taking pictures using smartphones for soil analysis could face problems such as the inclusion
of unnecessary and irrelevant objects. Smartphone could also experience lack of focus, so that pictures could also
be exposed to blurriness. Lighting could also become a problem, as some parts of the picture contain colors that do
not represent the soil condition and are affected by the lighting during the image capturing. Certain preprocessing
methods to manage these conditions need to be implemented.

1.3. Soil Image Based NPK and pH Identification
1.4. Contributions

This paper tries to find the effect of image preprocessing in modelling soil images captured using a smartphone.
Two analyses are conducted. Firstly, exploratory data analysis (EDA) and the grouping of soil are conducted to
look at the condition of soil image data, and secondly, the classification modelling to predict NPK and pH values
existing in soil with diverse setting of preprocessing, augmentation, transfer learning, grid search on modelling
parameters, and smartphone types.

1.5. Organization

This paper is arranged as follows: Section 1 elaborates on the general background of the study, Section 2 describes
the research methodology and materials required for the study including clustering and classification methods
implemented in this study, Section 3 provides the modelling results for both clustering and classification processes,
Section 4 discusses the modelling results and provides recommendations on the identification of soil characteristics
using soil image data, and Section 5 concludes the report with some conclusions.

2. Methods, Materials, and Theories

2.1. Research Methodology

Research conducted following the methodology as shown in Figure 1. Research started with soil image data
collection using a smartphone from agricultural fields. Collection is also conducted for soil characteristics
information including NPK and pH values. Various preprocessing and augmentation methods are applied to see
methods that are suitable to be used for soil image classification. Before processing, the data are explored to see
the characteristics of data and the potential cluster and variations exist in the dataset. EDA is conducted in terms
of the ranges, means, standard deviation, and normality of collected NPK and pH values. The clusters exploration
is conducted using the Minimum Message Length (MML) image clustering/mixture modelling method with the
probability bit-costings method used as evaluation.

For image preprocessing, methods considered include Remove Unwanted Elements, Replacing Outliers,
Gaussian Blur, Median Filter, Bilateral Filter, White Balance, MSRCR, and Homomorphic filters. Augmentation
methods investigated include Color, Physical, Rotate, and Moisture Augmentations. Selection of batch sizes, epoch,
neurons, and optimizers is also conducted for ANN and CNN. For CNN, transfer learning methods are applied
which include the uses of ResNet50, EfficientNetB4, ViTModel, and SwinModel. The modellings are conducted
using four methods Gradient Boosting, Random Forest, ANN, and CNN.
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Figure 1. Research Methodology

Once the preprocessing, augmentation, batch size, epoch, neurons, optimizers, and transfer learning are
evaluated, suitable methods are chosen among them to be used for soil image classification using the four methods.
The comparison between modelling using images captured using several types of smartphones is also conducted.
Among the selected ones, one best model will be chosen to be recommended as the best model for modelling soil
images.

Some notes are included in the study. Feature extraction is conducted by implementing k-means segmentation
method, selection of the most dominant class, finding the closest value to Munsell Soil Color database,
normalization of image pixels, and conversion of image values into hue (h), saturation (S), and brightness (V)
values, which are indicative of soil properties. This process only applies to Gradient Boosting, Random Forest, and
ANN. CNN has a specific process for obtaining colour information utilizing the convolutional and max pooling
layers. All four methods are evaluated using three evaluation metrics i.e., Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and R-Squared (R2).

2.2. Soil Image Collection Using Smartphones

With ease in using smartphones to capture images and the availability of the tools on the farmer side, taking soil
images using smartphones is recommended in analyzing soil characteristics. In using smartphone, some parameters
need to be considered during the processes including the resolution of the resulted image and the lighting required
to get the image [18]. In implementing digital photography, it is important to know that digital colour information
is obtained at visible wavelengths [19] or visible/near-infrared spectroscopy [20, 21].

In using a smartphone for capturing soil images, it was also found that the best time to capture images is between
10 am to 4 pm with the lighting condition are within the values of 3500 to 70000 lux [22]. Each device also has its
own characteristics. For one specific image capturing purpose, one device could produce better results compared to
the others. In capturing images, several pieces of information can be obtained from each image including latitude
and longitude, date and time, and altitude. These are available if GPS is set to on.
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Capturing images using smartphones could have some drawbacks. These include the inclusion of irrelevant
objects in images, lacking colour information affected by lack of or abundance of lighting, and blurriness when the
focus is not obtained during the image capturing. These conditions require various preprocessing to make sure that
the images represent the soil conditions as close as possible.

2.3. MML Mixture Modelling

Minimum Message Length (MML) mixture modelling is a type of clustering method which models data into
groups. This method differs from other clustering methods in that the resulting model consists not only of the
probability of the data given the model but also the prior probability of the underlying model. MML mixture
modelling consists of coding two parts of the message which includes coding the number of classes, coding the
relative abundance of each class, coding the model of each class, and coding the probability of the data belonging
to each class [23, 24, 25, 26, 27].

Based on this definition, as also implemented in the MML estimation of statistical distributions, the estimation
of the parameters of each class and the selection of the best mixed model for the data are conducted simultaneously
using the same concept. Thus, MML mixture modelling has been shown to be theoretically consistent compared
to other model selection methods. For the distribution used as a model for each population in mixture modelling,
model selection is also conducted using the MML concept. The distribution model that has the least message length
will be selected as the class distribution model.

2.4. Image Preprocessing

Images captured from the field using a smartphone could contain various issues such as blurriness, poor lighting,
or obstructions. These imperfections could adversely affect the performance of modelling by introducing noises
and irrelevant information. For this, a solution in the form of image cleaning is needed. Image cleaning involves
removing any parts of the images that are of inadequate quality or do not meet predefined criteria or preprocessing
the images by removing irrelevant objects from images. This step ensures that only high quality and relevant images
are used for the modelling.

There are various methods that could be used for image cleaning. They include quality check and removal of
poor-quality images. Image quality check inspects images for clarity, lighting, or presence of obstructions. This
process could be done manually or automatically. Manual process involves human evaluation of images, which can
be time-consuming, but ensures high accuracy.

Automatic quality check uses algorithms for blurriness detection, poor contrast, outliers’ removal, median
filtering, and other quality issues [10, 28]. Their quality checking could be used to improve the quality of images
obtained. If the qualities of images are off the standard set, even after the image cleaning process, then the images
should be removed. Removal of poor-quality images, on the other hand, discards images that are blurry, poorly
lit, or contain irrelevant objects. However, the number of images could decrease significantly when this process is
implemented.

Various methods could be implemented to automatically improve quality of soil images such as Median and
Gaussian Filters [29] or Noise Reduction and Feature Enhancement, Gaussian Blur [30] for noise reduction and
image smoothing, Bilateral Filter [31] for noise reduction without losing soil critical structure features, White
Balance [32] which is crucial for soil image analysis, as it affects applications on organic matter estimation,
MSRCR (Multiscale Retinex with Color Restoration) [33] which combines multi-scale illumination correction
with color preservation, and Homomorphic filter [34] for enhancing soil images by separating and independently
processing illumination and reflectance components.

2.5. Image Augmentation

To overcome lack of images numbers, image augmentation could also be applied for the analysis [35]. Image could
be augmented based on colour, physical, rotation, and soil moisture. Color augmentation [36] is a crucial process
for improving deep learning model robustness, as it provides possible variations by implementing color-based
modification, manipulation, and correction. Physical augmentation [37] enhances soil image datasets by simulating

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 EFFECT OF PREPROCESSING ON MODELLING SOIL IMAGES CAPTURED USING SMARTPHONE

real-world physical variations. Rotation augmentation [38] could be used for improving model generalization and
addressing data scarcity by performing various rotations. Moisture augmentation [39] adds moisture effects such
as light reflection and pore ware retention on soil images varying moisture in available soil images.

By performing image augmentation, variation of images could be obtained, so that training could be conducted
with higher accuracy.

2.6. Classification Methods

2.6.1. Artificial Neural Networks Artificial Neural Networks (ANN) is a method representing how the human
brain works [12, 14]. The inputs from external are the stimulant to the inner hidden layers existing in the model
to produce the expected outputs. Hidden layers consist of nodes/neurons that are connected to one or more inputs
or nodes/neurons from a previously hidden layer. The number of nodes/neurons could vary and could affect the
resulting model [40]. To process the input in producing an output, an activation function is installed. Various
activation functions are available including Relu, tanh, and Sigmoid activation functions, among others. Sometimes,
a bias value is added as part of the node processing.

In training ANN, the process could be set based on batch for a number of epochs. The number of batches
could also interfere with the modelling process in terms of speed, accuracy, and generalizations [41]. The number
of epochs affects the resulting model of soil analysis [42] and can have assorted options including fixed numbers,
early stopping, and cyclic epochs. Optimizers are also involved in ANN modelling training, with diverse options
available including SGD, and AdamW. AdamW has been proven to be superior for some cases [43].

2.6.2. Convolution Neural Networks Convolutional Neural Networks (CNN) is a type of artificial neural network
with steps to preprocess the data so that the data come into the neural networks are compact enough and represent
the condition better compared to the original data [44, 45, 46]. The process is conducted using filter optimization
known as cascaded convolution kernels. Another layer which is also installed in the concept is the pooling layer.
Pooling layers are installed to the neural networks concept so that original data are abstracted to a feature map
which is commonly called activation map which reduces the dimension of data to become smaller following the
size of the activation map.

In CNN, the uses of transfer learning are also introduced using distinct options including the uses in ResNet50,
EfficientNetB4, Vision Transformer (ViT), and SwinModel. ResNet50 [47] is a widely used pre-trained CNN
architecture for transfer learning due to its deep residual connections, robust feature extraction, and efficiency in
training. EfficientNetB4 [48] is a lightweight and powerful CNN for transfer learning due to its compound scaling
and computational efficiency. ViT model [49] is used as pre-trained transfer learning which is based on large
datasets. Swin Transformer [50] bridges the gap between ViT model and CNN with local-window self-attention,
shifted-window partitioning, and hierarchical feature maps.

2.6.3. Random Forest Random forest is an ensemble learning method that constructs multiple decision trees during
training and outputs the mean prediction of the individual trees [51]. This method can manage mixed data types
including numerical and categorical data. This makes it suitable for datasets that include diverse types of features,
which as numerical soil measurements and weather conditions. This method also introduces robustness and the
ability to avoid overfitting, which is particularly beneficial when dealing with noise or incomplete data. This
modelling output of this method is also interpretable which could provide insights into feature importance, helping
common users to understand which factors are the most influential in the resulting prediction model.

2.6.4. Gradient Boosting Gradient Boosting is also an ensemble learning method that builds models sequentially,
with each new model correcting errors made by the previous processes [52]. This method has the advantages of
high accuracy results where this method often outperforms other methods in terms of prediction accuracy. This is
achieved due to its iterative nature and focus on error reduction. This method can also capture complex patterns and
can model intricate relationships between features and targets, making it suitable for complex datasets. This method
is also customizable, which provides many hyperparameters that can be tuned to optimize model performance for
specific datasets.
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2.7. Model Validation

For modelling validation, probability bit-costings is used for mixture modelling, and root means squared error
(RMSE), mean absolute error (MAE), and R-squared (R?) are used for regression.

2.7.1. Probability bit-costings Probability bit-costing method is a validation method used for clustering models.
The method calculates the negative logarithm of the probability of test data given the model obtained from the
training data. The probability bit-costings of the data given the model is given by:

probability bit — costings = —log P(xest| f (16, 0T train)) (1)

where P() is the probability value, x..,; the testing data, f () is the likelihood function, i is the means, o is the
standard deviation, and x4, is the training data.

2.7.2. Root Means Squared Error (RMSE) RMSE is commonly used for evaluating the modelling results and
looking at how good the prediction results are using the resulting models compared to the original targets. The root
means squared error (RMSE) is calculated using the following equation:

2

where n the number of data, Y; the observed data, and 371 the predicted data.
2.7.3. Mean Absolute Error (MAE) Mean absolute error (MAE) the average of the absolute differences between
the predicted values and the actual values. MAE is calculated using the following equation:

n

1 ~
MAE =~ P ERD) 3)

i=1
where n the number of data, Y; is the observed data, and }A/Z the predicted data.

2.7.4. R-Squared R-squared (R?) is commonly used to assess the good fitness of a regression model. R? is
calculated using the following equation:

R2 =1— Z?:1(Yz — Yz)Q
Y (Yi = Y)?

where n the number of data, Y; the observed data, 2 the predicted data, and Y; the means of the actual value.

~
7

“

3. Research Results

3.1. Data Preparation

Image data were collected from a number of agricultural fields sites in Bali Island, Indonesia using a smartphone
along with the collection of other soil characteristics such as NPK and pH values. The types of smartphones used
in this study were POCO M4 PRO with Android operating systems supported by a camera specification of 64 MP
f/1.8, and iPhone 13 with IOS operating systems supported by a camera specification of dual camera 12 MP. The
soil images were taken from 10 — 20 cm above the ground, and before the image capturing, the lands have been
cleaned up to a certain degree from irrelevant objects. The image capturing processes were conducted during the
sunny days or partly cloudy days, between 10:00 am to 14:00 pm. Total images collected were 124 soil images.
Samples of soil images and their NPK and pH values are provided in Table 1.
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Table 1. Samples of Soil Images

A R

NPK=6.1, pH=7.0 NPK=5.5, pH=6.5
e b R L ¥ ek 8

i ]

NPK=6.0, pH=7.0 | NPK=4.1, pH=6.5 | NPK=5.0, pH=6.7 | NPK=5.0, pH=6.9

=

NPK=5.0, pH=7.0

3 2
2 1
1 0
5 7.5
0 -1
3 4 6 7
-1 -2
-2 -3
-3 4

Figure 2. QQPlots of NPK and pH Values

For NPK and pH values data collection, we use a tool called Doctor Plant to obtain the values directly from
the soil. The ranges of NPK and pH values obtained were between 4.0 — 6.1 and 5.5 — 7.0, respectively. The means
and standard deviation of NPK and pH values are 5.195 (+ 0.481) and 6.588 (£ 0.333). The QQPlots of NPK and
pH values are as in Figure 2 (left) and Figure 2 (right). Both QQPlots showed straight lines, which proved that the
obtained values were normally distributed.

During modeling, the soil images will undergo preprocessing, augmentation, and feature extraction. The
implementation of these processes will vary for each method and adapt to the characteristics of the method. The
feature extraction involves implementing k-means segmentation method, selection of the most dominant class,
finding the closest value to Munsell Soil Color database, normalization of image pixels, and conversion of image
values into hue (h), saturation (S), and brightness (V) values.

3.2. Data Clustering of Soil Image Data

Data clustering is conducted to see the variations existing in soil image data and make sure that the source data is not
coming form one pattern. Data clustering was conducted using the MML mixture modelling method. The method
can naturally obtain the most appropriate number of clusters existing in the dataset by simultaneously performing
parameter estimation and mixture model selection. In the modelling, each cluster was assumed to come from a
Gaussian distribution. Data used for modelling is the original data without augmentation. Three cases of data
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preprocessing are investigated. They are data without preprocessing, data with selected preprocessing, and data
with complete preprocessing. For complete preprocessing, the methods applied were remove unwanted elements,
replace outliers, gaussian blur, median filter, and bilateral filter. For selected preprocessing, the methods applied
include removing unwanted elements. To check which approach performed better, the probability bit-costings
calculation is applied, where the original data is divided into training and test data with a composition of 80:20.
The results are provided in Table 2.

Table 2. Resulting MML Mixture Models for Data Without, With Selected and Complete Preprocessed Data

Indicators No Preprocessing | Selected Preprocessing | Complete Preprocessing
&) @) 3 “)
No of Classes 7 5 5
Probability Bit Costing 48,608 46,329 44,412

Based on the results, it is shown that modelling with complete preprocessing has resulted in the least probability
bit-costing with five clusters. This means that the clustering with complete preprocessing produced less variations
between the resulting models with the testing data.

Modelling all data using the modelling which has the lowest probability bit-costings, i.e., modelling with
complete preprocessing, resulted in an 8 (eight) class model with the characteristics of each class, represented by
mixing proportion, means and standard deviation of each variable, are as in Table 3.

Table 3. Characteristics of Groups Resulted from MML Mixture Modelling for Data with a Complete Preprocessing

Indicators Class 1 Class 2
0 @106 & 6 60
Mixing Proportion 19,817 9,690
Variable h A% S h A% S
Means 2,692 | 3,813 | 14,637 | 5,935 | 6,264 | 17,280
Standard Deviation | 0,029 | 2,217 | 2,020 1,408 | 0,511 1,145
Class 3 Class 4
Mixing Proportion 6,667 6,667
Means 2,930 | 4,000 | 9,000 | 10,215 | 5,500 | 12,000
Standard Deviation | 0,001 | 0,001 | 4,243 0,049 | 0,707 | 0,001
Class 5 Class 6
Mixing Proportion 11,997 17,160
Means 5,180 | 2,722 | 12,756 | 7,769 | 3,520 | 13,355
Standard Deviation | 0,001 | 0,520 | 1,605 0,115 | 1,806 | 7,687
Class 7 Class 8
Mixing Proportion 18,003 10,000
Means 6,691 | 3,000 | 8,904 5,347 | 5,000 | 10,000
Standard Deviation | 3,097 | 0,001 1,720 2,626 | 0,001 | 0,001

As shown in Table 2, the data were naturally grouped into eight classes with mixing proportions of each class
are 19,817, 9,690, 6,667, 6,667, 11,997, 17,16, 18,003, and 10,0, respectively. The characteristics of each class for
the eight resulting groups are quite different from one to another. This shows that there are enough variations in the
soil images dataset.

3.3. Classification Model

3.3.1. Data Preprocessing To observe the effect of preprocessing on soil image modeling, several image
preprocessing methods were studied. Their resulting accuracies were observed when used in the modeling process.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



EFFECT OF PREPROCESSING ON MODELLING SOIL IMAGES CAPTURED USING SMARTPHONE

The methods studied included Bilateral Filter, Gaussian Blur, Homomorphic filter, Median filter, and MSRCR. The
modeling results were also compared with modeling without preprocessing and modeling with all preprocessing

methods applied.

The four modeling methods, i.e., ANN, CNN, Gradient Boosting, and Random Forest, were studied. The setting
for ANN, CNN, Gradient Boosting, and Random Forest modelling are as in Table 4. The dataset is divided into
80:20 of training:testing data.

Table 4. Parameter Settings for Each Investigated Method

Methods Parameter Setting
() 2

ANN Two hidden layers of 12 and 6 neurons, activation function = sigmoid, use bias,
optimizer = adam, loss function = MSE, epoch = 100, batch_size = 100

CNN Two Convolutional layers (3x3), two Max Pooling layers (2x2), activation function
= relu, ANN with two hidden layers of 12 and 6 neurons, activation function =
sigmoid, use bias, optimizer = adam, loss function = MSE, epoch = 100, batch_size
=32

Gradient Estimator number = 100, learning rate = 0.01, max_depth = 20, loss function =

Boosting squared_error

Random Forest | Estimator number = 100

Table 5. The resulting accuracies of modelling with various preprocessing methods

Classification Preprocessing RMSE MAE R?
Methods NPK pH NPK pH NPK pH
1) (2) (3) “) &) (6) (N (®)

All Processing 0.2215 | 0.3105 | 0.1840 | 0.2680 | -6.7793 | -144.3200
Bilateral Filter 0.2131 | 0.3745 | 0.1624 | 0.3212 | -6.1988 | -210.4264
Gaussian Blur 0.2381 | 0.3354 | 0.2078 | 0.3142 | -7.9875 | -168.5684
Homomorphic 0.1850 | 0.3126 | 0.1565 | 0.2955 | -4.4272 | -146.2925
ANN Median Filter 0.2631 | 0.3828 | 0.2105 | 0.3642 | -9.9709 | -219.8805
MSRCR 0.2274 | 0.3375 | 0.1975 | 0.2984 | -7.1957 | -170.7168
Removing Unwanted | 0.2069 | 0.3679 | 0.1771 | 0.3429 | -5.7879 | -203.0346
Replacing Outliers 0.2064 | 0.3421 | 0.1816 | 0.3238 | -5.7537 | -175.4878
White Balance 0.2702 | 0.2702 | 0.2283 | 0.2547 | -10.5717 | -109.0700
No Preprocessing 0.1729 | 0.3136 | 0.1438 | 0.2928 | -3.7373 | -147.2446

All Processing 0.1779 | 0.2947 | 0.1475 | 0.2369 | -4.0152 | -129.938
Bilateral Filter 0.2177 | 0.2616 | 0.1845 | 0.2252 | -6.5163 | -102.2036
Gaussian Blur 0.2191 | 0.2812 | 0.1606 | 0.2608 | -6.6081 | -118.2249
Homomorphic 0.1885 | 0.3280 | 0.1589 | 0.2922 | -4.6310 | -161.1660
CNN Median Filter 0.1490 | 0.2756 | 0.1273 | 0.2463 | -2.5214 | -113.4776
MSRCR 0.1776 | 0.3227 | 0.1407 | 0.2707 | -4.0010 | -155.9831

Removing Unwanted | 0.2117 | 0.2882 | 0.1765 | 0.2437 | -6.1036 | 124.2292
Replacing Outliers 0.1331 | 0.2720 | 0.1065 | 0.2273 | -1.8064 | -110.5842
White Balance 0.1973 | 0.2709 | 0.1579 | 0.2385 | -5.1703 | -109.6827
No Preprocessing 0.1748 | 0.3322 | 0.1518 | 0.3129 | -3.8459 | -165.3680

All Processing 0.0807 | 0.0259 | 0.0574 | 0.0230 | -0.0326 -0.0085

Bilateral Filter 0.1048 | 0.0455 | 0.0835 | 0.0414 | -0.7424 -2.1279

Gaussian Blur 0.0770 | 0.0408 | 0.0558 | 0.0350 | 0.0599 -1.5144
Stat., Optim. Inf. Comput. Vol. X, Month
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Classification Preprocessing RMSE MAE R?
Methods NPK pH NPK pH NPK pH
(1 2 3) “4) (5) (6) (7 3
Homomorphic 0.0800 | 0.0244 | 0.0584 | 0.0232 | -0.0143 0.1013
Gradient Median Filter 0.0980 | 0.0213 | 0.0795 | 0.0177 | -0.5225 0.3146
Boosting MSRCR 0.0807 | 0.0259 | 0.0574 | 0.0230 | -0.0326 -0.0085

Removing Unwanted | 0.0842 | 0.0444 | 0.0600 | 0.0387 | -0.1229 -1.9747
Replacing Outliers 0.1017 | 0.0388 | 0.0777 | 0.0301 | -0.6404 -1.2649

White Balance 0.0807 | 0.0259 | 0.0574 | 0.0230 | -0.0326 -0.0085

No Preprocessing 0.1126 | 0.0362 | 0.0891 | 0.0276 | -1.0105 -0.9775

All Processing 0.0808 | 0.0259 | 0.0574 | 0.2680 | -0.0344 -0.0123

Bilateral Filter 0.1155 | 0.0430 | 0.0887 | 0.3212 | -1.1158 -1.7886

Gaussian Blur 0.0909 | 0.0370 | 0.0628 | 0.0304 | -0.3087 -1.0696
Homomorphic 0.0797 | 0.0256 | 0.0676 | 0.2955 | -0.0069 0.0111

Random Median Filter 0.0858 | 0.0192 | 0.0723 | 0.0166 | -0.1678 0.4433
Forest MSRCR 0.0808 | 0.0259 | 0.0574 | 0.2984 | -0.0344 -0.0123

Removing Unwanted | 0.0863 | 0.0375 | 0.0581 | 0.0342 | -0.1806 -1.1179
Replacing Outliers 0.1003 | 0.0415 | 0.0685 | 0.0308 | -0.5948 -1.5919
White Balance 0.0808 | 0.0259 | 0.0574 | 0.2547 | -0.0344 -0.0123
No Preprocessing 0.1171 | 0.0405 | 0.0877 | 0.0332 | -1.1738 -1.4678

Judging from the modeling results in Table 5, it can be seen that various preprocessing methods have varying
effects on the modeling methods used. Modeling for predicting pH and NPK values also showed different trends.
For soil NPK modeling, the Homomorphic Filter performed well for both the ANN and Random Forest methods.
For ANN, modeling without preprocessing also showed satisfactory results. For CNN, the Median Filter and
Replacing Outliers had a significant effect on modeling. Meanwhile, for Gradient Boosting, Gaussian Blur had
a moderate effect on modeling. Lastly, for Random Forest, White Balance also showed reliable results.

For soil pH modeling, modeling with preprocessing using all methods and modeling using White Balance for
preprocessing had the best accuracy for the ANN method. For CNN, the Bilateral Filter showed better results.
Meanwhile, for Gradient Boosting, the Median Filter produced better results. Lastly, like Gradient Boosting, the
Median Filter also showed superior results in modeling using the Random Forest method.

3.3.2. Data Augmentation To observe the effect of augmentation on soil image modeling, several augmentation
methods were studied. Their resulting accuracies were observed when used in the modeling process. The
augmentation methods studied included color augmentation, moisture augmentation, physical augmentation, and
rotation augmentation. The modeling results were also compared with modeling without augmentation and
modeling with all augmentation methods applied. Here, the four modeling methods, i.e., ANN, CNN, Gradient
Boosting, and Random Forest, were also studied. Parameter settings used for the four methods are set the same as
the experiments reported in Section 3.3.1.

Table 6. The resulting accuracies of modelling with various augmentation methods

Classsification Augmentation RMSE MAE R?
Methods NPK pH NPK pH NPK pH
) @) 3) “) (5 (6) @) )
ANN All Augmentation 0.2564 | 0.3500 | 0.2090 | 0.3172 | -8.6308 | -111.5300
Color Augmentation 0.1951 | 0.2796 | 0.1615 | 0.2505 | -4.5723 | -70.8365
Moisture Augmentation | 0.2523 | 0.3155 | 0.2120 | 0.2957 | -8.3210 | -90.4266
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Classsification Auementation RMSE MAE R?
Methods & NPK | pH | NPK | pH | NPK pH
(1) (2) (3) 4) (5) (6) (7) (3)

Physical Augmentation | 0.1822 | 0.2335 | 0.1540 | 0.2037 | -3.8640 | -49.1044
Rotate Augmentation 0.2406 | 0.3095 | 0.1789 | 0.2821 | -7.4779 | -87.0178
No Augmentation 0.2276 | 0.3517 | 0.1846 | 0.3384 | -7.2091 | -185.465
CNN All Augmentation 0.1344 | 0.1986 | 0.1047 | 0.1714 | -1.6470 | -35.2424
Color Augmentation 0.1220 | 0.2514 | 0.0953 | 0.2157 | -1.1781 | -57.0881
Moisture Augmentation | 0.1616 | 0.2500 | 0.1182 | 0.1810 | -2.8245 | -56.4274
Physical Augmentation | 0.1362 | 0.1943 | 0.1040 | 0.1732 | -1.7150 | -33.6940
Rotate Augmentation 0.1664 | 0.2443 | 0.1266 | 0.2108 | -3.0556 | -53.8207
No Augmentation 0.1914 | 0.2544 | 0.1643 | 0.2270 | -4.8081 | -96.567
All Augmentation 0.0894 | 0.0319 | 0.0690 | 0.0239 | -0.1713 0.0651
Color Augmentation 0.0750 | 0.0358 | 0.0563 | 0.0277 | 0.1764 -0.1783
Gradient Moisture Augmentation | 0.0818 | 0.0346 | 0.0621 | 0.0290 | 0.0198 -0.0975
Boosting Physical Augmentation | 0.0598 | 0.0295 | 0.0451 | 0.0212 | 0.4767 0.2003
Rotate Augmentation 0.0744 | 0.0304 | 0.0573 | 0.0250 | 0.1901 0.1512
No Augmentation 0.0877 | 0.0455 | 0.0527 | 0.0407 | -0.2184 | -2.1249
All Augmentation 0.0982 | 0.0368 | 0.0757 | 0.3172 | -0.4118 | -0.2436
Color Augmentation 0.0764 | 0.0369 | 0.0594 | 0.0280 | 0.1447 -0.2541
Random Moisture Augmentation | 0.0875 | 0.0337 | 0.0675 | 0.0291 | -0.1207 | -0.0445

Forest Physical Augmentation | 0.0667 | 0.0333 | 0.0483 | 0.0268 | 0.3490 -0.0193
Rotate Augmentation 0.0654 | 0.0335 | 0.0533 | 0.0285 | 0.3741 -0.0329
No Augmentation 0.1000 | 0.0395 | 0.0771 | 0.0327 | -0.5856 | -1.3557

Judging from the modeling results in Table 6, it can be seen that various augmentation methods have varying
effects on the modeling methods used. Modeling for predicting pH and NPK values also showed different trends.
For soil NPK modeling, the color augmentation performed well for both the ANN and CNN methods. For ANN,
physical augmentation also produced better results. For CNN, the modelling with all augmentation had a significant
effect on modeling. Meanwhile, for Gradient Boosting and Random Forest, physical and rotation augmentations
had an advantageous effect on modeling.

For soil pH modeling, similar to NPK, modeling with color and physical augmentations had the best accuracy
for the ANN method. For CNN, modelling with all augmentation and physical augmentation showed better results.
Meanwhile, for Gradient Boosting and Random Forest, physical and rotation augmentations had a favorable effect
on modeling.

3.3.3. CNN Variations with Transfer Learning Four transfer learning methods were studied including ViTModel,
SwinModel, ResNet50, and EfficientNetB4. The parameter setting of each CNN with transfer learning modelling
were as in Tabel 7. ViTModel implemented google/vit-base-patch16-224 as a processor, whereas SwinModel
implemented microsoft/swin-tiny-patch4-window7-224. Both ResNet50 and EfficientNetB4 used pretrained model
of imagenet.

Table 8 shows the accuracy results of CNN modelling using transfer learning. Compared to basic CNN, all CNN
modelling using transfer learning produced better results. Among the four, ResNet50 produced the best results for
both NPK and pH. SwinModel also produced satisfactory results for NPK, whereas EfficientNetB4 resulted in
reliable results for predicting pH values.

3.3.4. Grid Search for CNN and ANN As modelling ANN and CNN need setting for their training processes, grid
search for ANN and CNN modelling was also conducted in terms of their batch size, epoch, neuron, and optimizers
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Table 7. Parameter Settings for Each CNN Modelling with Transfer Learning

Methods Parameter Setting
)] @)
Basic CNN Two Convolutional layers (3x3), two Max Pooling layers (2x2), activation function = relu,
ANN with two hidden layers of 12 and 6 neurons, activation function = sigmoid, use bias,
optimizer = adam, loss function = MSE, epoch = 100, batch_size = 32
ViTModel ImageProcessor = google/vit-base-patch16-224, dropout = 0.1, batch size = 16, epoch =
CNN 100, optimizer = adamW
SwinModel ImageProcessor = microsoft/swin-tiny-patch4-window7-224, dropout = 0.1, batch size =
CNN 16, epoch = 100, optimizer = adamW
ResNet50 Pretrained model = imagenet, hidden layer activation function = relu, output layer
CNN activation function = sigmoid, optimizer = adam, loss function = MSE, epoch = 100,
batch_size = 100
EfficientNetB4 | Pretrained model = imagenet, hidden layer activation function = relu, output layer
CNN activation function = sigmoid, optimizer = adam, loss function = MSE, epoch = 100,
batch_size = 100
Table 8. The resulting accuracies of CNN modelling with various transfer learnings
CNN RMSE MAE R?
Variations NPK pH NPK pH NPK pH
&)) 2 3) “) ) (6) @)
Basic CNN 0.2636 | 0.3036 | 0.219 | 0.2531 | -10.0161 | -137.937
ViTModel CNN 0.1681 | 0.1666 | 0.1303 | 0.1288 | -3.4787 | -40.8344
SwinModel CNN 0.1151 | 0.0952 | 0.0921 | 0.0732 | -1.1011 | -12.6756
ResNet50 CNN 0.0873 | 0.0257 | 0.066 | 0.0225 | -0.2083 0.0029
EfficientNetB4 CNN | 0.1634 | 0.0302 | 0.1427 | 0.0214 | -3.2324 | -0.3772

method. The search is set with the following values: batch size = [64, 100, 128], epoch = [10, 40, 100], neuron
number = [12, 32], and optimizer = [adam, sgd].

Table 9. The resulting accuracies of ANN modelling with various batch size, epoch, neuron, and optimizers

Batch | Epoch | Neu | Opti ANN
Size ron | mizer RMSE MAE R?
NPK | pH | NPK | pH NPK pH
(1 (2) (3) “4) (5 (6) ) (8 &) (10)
12 adam | 0.2697 | 0.4503 | 0.2383 | 0.4338 | -10.5341 | -304.6888
10 sgd 0.3597 | 0.4443 | 0.3174 | 0.4277 | -19.5082 | -296.6664
3 adam | 0.3168 | 0.3990 | 0.2729 | 0.3696 | -14.9100 | -238.9684
sgd 0.3246 | 0.5201 | 0.2837 | 0.4949 | -15.7059 | -406.8668
12 adam | 0.2739 | 0.4102 | 0.2342 | 0.3790 | -10.8971 | -252.7514
64 40 sgd 0.3322 | 0.4154 | 0.2808 | 0.3958 | -16.4997 | -259.1142
3 adam | 0.2519 | 0.3623 | 0.2144 | 0.3413 | -9.0570 | -196.9279
sgd 0.3730 | 0.3641 | 0.3453 | 0.3515 | -21.0593 | -198.9240
12 adam | 0.2038 | 0.3321 | 0.1751 | 0.3054 | -5.5812 | -165.3230
100 sgd 0.2759 | 0.3094 | 0.2528 | 0.2976 | -11.0657 | -143.3378
3 adam | 0.1454 | 0.2328 | 0.1272 | 0.2149 | -2.3521 -80.7433
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Batch | Epoch | Neu | Opti ANN
Size ron | mizer RMSE MAE R?

NPK pH NPK pH NPK pH

&) @) B3 | @& &) (6) (N (8) €] 10)
sgd | 0.2271 | 0.3280 | 0.2050 | 0.3045 | -7.1736 | -161.2494
12 adam | 0.3633 | 0.4221 | 0.3063 | 0.4040 | -19.9198 | -267.6659
10 sgd | 0.3327 | 0.3911 | 0.2859 | 0.3640 | -16.5500 | -229.6360
3 adam | 0.3241 | 0.4510 | 0.2793 | 0.4149 | -15.6496 | -305.6088
sgd | 0.3092 | 0.5120 | 0.2707 | 0.4909 | -14.1585 | -394.2298
12 adam | 0.2443 | 0.3622 | 0.2100 | 0.3344 | -8.4623 | -196.7458
100 40 sgd | 0.2809 | 0.3789 | 0.2587 | 0.3573 | -11.5080 | -215.5042
1 adam | 0.2668 | 0.3955 | 0.2283 | 0.3491 | -10.2854 | -234.7743
sgd | 0.3923 | 0.4391 | 0.3731 | 0.4124 | -23.4030 | -289.7225
12 adam | 0.2141 | 0.3038 | 0.1783 | 0.2712 | 6.2658 | -138.1109
100 sgd | 0.2649 | 0.2872 | 0.2189 | 0.2749 | -10.1254 | -123.3395
3 adam | 0.1407 | 0.1567 | 0.1199 | 0.1352 | -2.1389 | -36.0186
sgd | 0.3041 | 0.3586 | 0.2806 | 0.3484 | -13.6631 | -192.8624
12 adam | 0.3521 | 0.4550 | 0.3267 | 0.4356 | -18.6498 | -311.1986
10 sgd | 0.3467 | 0.4778 | 0.3129 | 0.4565 | -18.0536 | -343.1317
1 adam | 0.3262 | 0.4329 | 0.2983 | 0.4226 | 15.8694 | -281.5240
sgd | 0.3546 | 0.4561 | 0.3269 | 0.4254 | -18.9287 | 312.6675
12 adam | 0.2969 | 0.4893 | 0.2405 | 0.4592 | -12.9696 | -360.0069
128 40 sgd | 0.3523 | 0.4239 | 0.3024 | 0.4088 | -18.6813 | -269.9410
3 adam | 0.2001 | 0.3464 | 0.1741 | 0.3248 | -5.3446 | -179.8705
sgd | 0.2434 | 0.4786 | 0.2230 | 0.4600 | -8.3953 | -344.4117
2 adam | 0.2186 | 0.3652 | 0.1673 | 0.3463 | -6.5780 | -200.1268
100 sgd | 0.2065 | 0.2857 | 0.1806 | 0.2735 | -5.7576 | -122.0536
3 adam | 0.2035 | 0.2156 | 0.1632 | 0.1848 | -5.5640 | -69.0839
sgd | 0.2317 | 0.3823 | 0.2052 | 0.3443 | -7.5124 | -219.3135

Table 10. The resulting accuracies of CNN modelling with various batch size, epoch, neuron, and optimizers

Batch | Epoch | Neu | Opti CNN
Size ron | mizer RMSE MAE R?
NPK | pH | NPK | pH NPK pH
(1 (2) (3) “4) (5) (6) (7 ) &) (10)
12 adam | 0.2509 | 0.4187 | 0.2177 | 0.3895 | -8.9828 | -263.2876
10 sgd 0.3865 | 0.4733 | 0.3516 | 0.4515 | -22.6858 | -336.6830
3 adam | 0.2780 | 0.4109 | 0.2275 | 0.3687 | -11.2494 | -253.5485
sgd 0.3809 | 0.4500 | 0.3519 | 0.4245 | -22.0013 | -304.2992
12 adam | 0.1605 | 0.3068 | 0.1209 | 0.2851 | -3.0813 | -140.9132
64 40 sgd 0.3423 | 0.3563 | 0.3137 | 0.3218 | -17.5708 | -190.3823
3 adam | 0.2370 | 0.2374 | 0.1979 | 0.2111 | -7.9042 -83.9510
sgd 0.3038 | 0.3861 | 0.2779 | 0.3574 | -13.629 | -223.7741
D adam | 0.1863 | 0.3384 | 0.1530 | 0.2978 | -4.5012 | -171.6625
100 sgd 0.2161 | 0.3611 | 0.1917 | 0.3381 | -6.3998 | -195.5482
3 adam | 0.1320 | 0.1928 | 0.1152 | 0.1697 | -1.7609 -55.0532
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Batch | Epoch | Neu | Opti CNN
Size ron | mizer RMSE MAE R?

NPK | pH | NPK | pH NPK pH

&) @) B3 | @& &) (6) (N (8) €] (10)
sgd | 0.1878 | 0.2176 | 0.1665 | 0.1979 | -4.5889 | -70.4045
12 adam | 0.2439 | 0.4439 | 0.2057 | 0.4348 | -8.4279 | -296.0308
10 sgd | 0.3183 | 0.4439 | 0.2913 | 0.4010 | -15.0643 | -296.0630
3 adam | 0.2385 | 0.3147 | 0.1837 | 0.2767 | -8.0189 | -148.2951
sgd | 0.4043 | 0.3831 | 0.3630 | 0.3704 | -24.9118 | -220.3156
12 adam | 0.2636 | 0.3431 | 0.2251 | 0.3221 | -10.0113 | -176.4808
100 40 sgd | 0.2221 | 0.3809 | 0.1951 | 0.3506 | -6.8168 | -217.7854
1 adam | 0.2595 | 0.3420 | 0.1985 | 0.3150 | -9.6756 | -110.0697
sgd | 0.2415 | 0.2866 | 0.1586 | 0.2474 | -8.2490 | -175.3180
12 adam | 0.1993 | 0.2866 | 0.1586 | 0.2474 | -5.2948 | -122.8086
100 sgd | 0.1720 | 0.3166 | 0.1479 | 0.2972 | -3.6879 | -150.0910
3 adam | 0.2153 | 0.2073 | 0.1611 | 0.1706 | -6.3518 | -63.8072
sgd | 0.1588 | 0.2735 | 0.1409 | 0.2520 | -2.9958 | -111.7871
12 adam | 0.3014 | 0.3871 | 0.2355 | 0.3776 | -13.4015 | -224.8900
10 sgd | 0.3992 | 0.4630 | 0.3669 | 0.4483 | -24.261 | -322.1641
1 adam | 0.1822 | 0.3104 | 0.1572 | 0.3012 | -4.2631 | -144.3059
sgd | 0.2969 | 0.4235 | 0.2743 | 0.4084 | -12.9711 | 269.3656
12 adam | 0.2695 | 0.3339 | 0.2432 | 0.3155 | -10.5139 | -167.1312
128 40 sgd | 0.2357 | 0.3769 | 0.2119 | 0.3335 | -7.8040 | -213.2255
3 adam | 0.2115 | 0.2252 | 0.1618 | 0.2046 | -6.0892 | -75.4806
sgd | 0.2522 | 0.3549 | 0.2106 | 0.3365 | -9.0855 | -188.9204
2 adam | 0.2520 | 0.3312 | 0.1826 | 0.2991 | -9.0694 | -164.3378
100 sgd | 0.2022 | 0.3034 | 0.1789 | 0.2902 | -5.4815 | -137.7502
3 adam | 0.1165 | 0.1865 | 0.0860 | 0.1633 | -1.1511 | -51.4368
sgd | 0.2144 | 0.2264 | 0.1863 | 0.2063 | -6.2875 | -76.2794

13

Based on the results shown in Table 9 and Table 10, for ANN and CNN, respectively, the best results obtained
when the training parameters were set to agam for the optimizers, 32 for the neuron size, and 100 for epoch size. For
the batch size, for ANN, batch size of 100 produced better results, whereas for CNN, batch size of 128 performed
better than the others.

3.3.5. Modelling using Selected Parameters and Methods Based on the experiments conducted previously,
selected modellings were conducted with various selected settings of parameters for soil image dataset captured
using two types of smartphones, i.e., POCO M4 PRO with Android operating systems and iPhone 13 with
IOS operating systems. The methods further investigated were Gradient Boosting, Random Forest, ANN,
EfficientNetB4 CNN, ResNet50 CNN, and SwinModel CNN. Parameter set for the modelling are as in Table
11.

Table 12 shows modelling results based on images captured using POCO M4 PRO Android. Based on the results
shown in the table, SwinModel CNN has shown the best results compared to the others, with Gradient Boosting
coming second. These results are the contrary of the results shown in Table 6 where ResNet50 outperformed
the other CNN. The additional processes before the modelling including augmentation and preprocessing made
SwinModel CNN have enough variations on the data to be used for training. EfficientNetB4 also came second for
modelling pH value. This is also the same case of the availability of variations in data training.

As shown in Table 13, modelling based on images captured using iPhone 13 IOS resulted in similar patterns,
where SwinModel CNN performed the best among the method investigated for both NPK and pH. Gradient
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Table 11. Parameter Settings for Each Selected Method

Methods Parameter Setting
)] @)

Gradient Augmentation [Color, Physical, Rotation], preprocessing = [Median, Homomorphic],

Boosting estimator number = 100, learning rate = 0.01, max_depth = 20, loss function =
squared_error

Random Forest | Augmentation [Color, Physical, Rotation], preprocessing = [Median, Homomorphic],
estimator number = 100

ANN Augmentation [Color, Physical, Rotation], preprocessing = [Median, Homomorphic], two
hidden layers of 12 and 6 neurons, activation function = sigmoid, use bias, optimizer =
adam, loss function = MSE, epoch = 16, batch_size = 100

EfficientNetB4 | Augmentation [Color, Physical, Rotation], preprocessing = [Median, Homomorphic],

CNN EfficientNet pretrained model = imagenet, hidden layer activation function = relu, output
layer activation function = sigmoid, optimizer = adam, loss function = MSE, epoch = 100,
batch_size = 16

ResNet50 Augmentation [Color, Physical, Rotation], preprocessing = [Median, Homomorphic],

CNN Reset pretrained model = imagenet, hidden layer activation function = relu, output layer
activation function = sigmoid, optimizer = adam, loss function = MSE, epoch = 100,
batch_size = 16

SwinModel Augmentation [Color, Physical, Rotation], preprocessing = [Median, Homomorphic],

CNN ImageProcessor = microsoft/swin-tiny-patch4-window7-224, epoch = 100, batch size =
16, optimizer = adamW

Table 12. Accuracies of selected modelling with selected preprocessing and augmentation for POCO M4 PRO Android

Classification RMSE MAE

Methods NPK pH NPK pH NPK pH

(H (2 (3 4 (5) (6) (7
Gradient Boosting 0.1008 | 0.0393 | 0.0838 | 0.0349 | -0.0190 | -0.0444
Random Forest 0.1010 | 0.0396 | 0.0841 | 0.0351 | -0.0240 | -0.0584
ANN 0.1024 | 0.1104 | 0.0851 | 0.0891 | -0.0522 | -7.2523
EfficientNetB4 CNN | 0.1363 | 0.0469 | 0.0985 | 0.0274 | -0.8638 | -0.4907
ResNet50 CNN 0.1677 | 0.0470 | 0.1357 | 0.0277 | -1.8236 | -0.4922
SwinModel CNN 0.0596 | 0.0299 | 0.0376 | 0.0212 | 0.6439 | 0.3956

Table 13. Accuracies of selected modelling with selected preprocessing and augmentation methods for iPhone 13 10S

Classification RMSE MAE RZ

Methods NPK pH NPK pH NPK pH

(1 (2) (3) “4) (5 (6) (7
Gradient Boosting 0.05712 0.0372 0.0395 0.033 -0.01098 | -0.02756

Random Forest 0.05738 0.03754 | 0.03984 | 0.03328 | -0.01898 -0.0461

ANN 0.05738 0.08868 | 0.03872 | 0.08302 | -0.02026 | -6.50766
EfficientNetB4 CNN | 0.12084 0.06242 | 0.10926 | 0.05048 | -4.7469 -1.89052
ResNet50 CNN 0.17088 0.06168 | 0.15968 | 0.04948 | -8.04398 | -1.82338
SwinModel CNN 0.027125 | 0.022275 | 0.01745 | 0.0172 0.7461 0.631225

Boosting also came second, which still shows lower evaluation of metric values. However, all the results of
modelling using images captured using iPhone 13 IOS are more accurate in predicting NPK and pH values with
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less evaluation of metric values compared to modelling based on images captured using POCO M4 PRO Android.
This also shows that type of smartphone influences the accuracy in predicting the value of NPK and pH.

Table 14. The resulting accuracies of Gradient Boosting and SwinModel modelling with Setting Variations

Methods Setting RMSE MAE R?
Combination NPK pH NPK pH NPK pH
@) &) 3) “) o) (6) ) ®)
No Preproces & Augmentation 0.1126 | 0.0362 | 0.0891 | 0.0276 | -1.0105 | -0.9775
With Preprocessing 0.0770 | 0.0213 | 0.0558 | 0.0177 | 0.0599 | 0.3146
Gradient With Augmentation 0.0598 | 0.0295 | 0.0451 | 0.0212 | 0.4767 | 0.2003
Boosting With Both (POCO M4 PRO) 0.1008 | 0.0393 | 0.0838 | 0.0349 | -0.0190 | -0.0444
With Both ()iPhone 13) 0.0571 | 0.0372 | 0.0395 | 0.0330 | -0.0110 | -0.0276
No Preproces & Augmentation 0.1151 | 0.0952 | 0.0921 | 0.0732 | -1.1011 | -12.6756
SwinModel | With Both (POCO M4 PRO) 0.0596 | 0.0299 | 0.0376 | 0.0212 | 0.6439 | 0.3956
With Both (iPhone 13) 0.0271 | 0.0223 | 0.0174 | 0.0172 | 0.7461 0.6312

Comparing Gradient Boosting and SwinModel with and without preprocessing and augmentation, as shown
in Table 14, it can be seen that modelling with preprocessing and/or augmentation performed better compared to
the modelling without preprocessing and augmentation. For Gradient Boosting, modelling with preprocessing and
augmentation using image captured using iPhone 13 performed the best. However, the R2 is better for modelling
with preprocessing only or with augmentation only. For SwinModel, it is shown that modelling with preprocessing
and augmentation performed significantly better compared to the modelling without the two processes. Modelling
with preprocessing and augmentation using image captured using iPhone 13 even performed the best compared to
the modelling of other methods, combination of processes and smartphone types.
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Figure 3. SHAP Values of Variables in Gradient Boosting Modelling for NPK (above) and pH (below)

To look at the effect of each variable in dataset toward the resulting model, Figure 3 shows the SHAP values
of each variable in Gradient Boosting modelling. Hue shows the highest influence among the others and hence has
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the strongest impact. Value has a high value which pushes the prediction higher, whereas hue has low value which
decreases predictions. SHAP values for modelling NPK and pH show similar patterns with Saturations have the
lowest impact in the two modellings.

Comparing the evaluation metric of squared errors between Gradient Boosting modelling and SwinModel,
modelling, the t-statistic for the NPK modelling for the two methods is 1.8477 and p-value of 0.0775. For
pH modelling, the t-statistic is 1.3522 and p-value is 0.1895. With these values, it can be concluded that the
two modellings resulted in significant differences of squared errors. SwinModel has been remarkably better in
performing soil image modelling and predicts the values of NPK and pH.

4. Discussion and Recommendation

4.1. Discussion

Modelling soil images to predict NPK and pH values requires a number of processes including preprocessing,
augmentation, feature extraction, and classification modelling. For the modelling, various methods could be used
including Gradient Boosting, Random Forest, ANN, and CNN. For ANN and CNN, a number of parameters need
to be set for the training including batch size, epoch, neuron number, and optimizer. For CNN, an additional
procedure of transfer learning could be implemented, to help CNN perform the training faster and obtain better
results. Transfer learning could include ViTModel, SwinModel, ResNet50, and EfficientNetB4.

For the preprocessing, each method shows different tendencies. As shown in the experiments for soil NPK
and pH modelling, some stood out preprocessing methods for soil analysis include median filter and homomorphic
filter. Median filter is beneficial for soil analysis with its characteristics of noise removal and edge preservation
[53]. Noise removal is needed for soil analysis, as soil images could consist of a lot of noises such as irrelevant
objects, dust, and other noises. Edge preservation is also needed as the soil types, roots, and cracks still need to be
retained. Median filters also have an advantage of ignoring extreme values, which can provide more reliable data.
Homomorphic filters, on the other hand, have some advantages such as their capability to normalize brightness on
soil images, moisture gradients enhancement, shadow effect reduction, and soil roughness enhancement, among
others [54].

Other preprocessing methods such as white balance, replacing outliers, bilateral filter, and Gaussian blur,
also showed reliable results for some setting of experiments [53]. These preprocessing methods also have their
advantages for handling noises and brightness, which are beneficial for certain classification methods. At one
experiment, modelling without preprocessing also produced satisfactory results when modelling NPK using ANN.
These conditions could be due to the available data, as there are not too many shadows and irrelevant objects in the
captured soil images, but they are still value variations on the dataset, as shown in the clustering results. ANN also
known to be straight forward and can process raw pixel values directly without normalization or preprocessing,
recognizing noises as flat feature without spatial invariance.

For the augmentation, color augmentation, physical augmentation, and rotation augmentation have shown
good modelling results. Color augmentation is especially good for modelling NPK in ANN and CNN. Physical
augmentation, on the other hand, performed well for all methods in modelling NPK and pH. Rotation augmentation,
however, only suits Gradient Boosting and Random Forest methods.

Color augmentation is particularly good for soil analysis as it introduces variations of lighting, moisture,
debris, and organic matter during the image preparation, making the dataset become invariant [55]. This also avoids
modelling to experience overfitting, because of limitation of data. This is especially good for ANN and CNN, as it
forces the feature to be spatially invariant, and makes the methods to learn global statistical patterns easily. Physical
augmentation, on the other hand, replicates the existences of cracks, clumps, debris, and varying moisture levels
[55]. Soil could also consist of diverse types of lands such as sandy, clayey, or loamy. This generalizes different soil
conditions and improves modelling robustness. Rotation augmentation is particularly good for Gradient Boosting
and Random Forest needs more data compared to ANN and CNN and the augmentation method can increase the
availability of data needed. Unlike ANN or CNN, Gradient Boosting and Random Forest also use tabular feature
inputs and need to diverse data feature manually.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



Y. AGUSTA, N. K. M. JULYANTARI 17

For parameter setting in ANN and CNN modelling, as the number of available data is limited, the experiments
show that lower batch sizes performed better. For the epoch and neurons, the highest number set are chosen also
due to the availability of data in the data training, since for small dataset more epoch and neurons are needed to
avoid overfitting. The agam optimizer is performed better than SGD (Stochastic Gradient Descent) since the agam
optimizer is very flexible in setting the learning rate of the modelling. As soil data is noisy and complex, the type
of optimizer that can be flexible following the conditions of data is needed [56]. Agam is also known to be better
suited for small datasets because of its flexibility.

For transfer learning in CNN, ResNet50 performed the best compared to other transfer learning methods. This
is due to its capabilities in handling small datasets [47]. As image data consists of noises and features, the method
is suitable as it can recognize local patterns existing in the data. The other transfer learning methods, on the other
hand, come second during the experiments as they have a number of specifications to be met such as the need
of large amount of data, use complex scaling rules for EfficientNetB4 [48], need to implement advanced training
tricks including warm-up and learning rate schedulers, for SwinModel and ViTModel [49, 50], and preference to
be used for non natural science based structured data for SwinModel and ViTModel [49, 50].

Comparing the modelling of soil images captured using different smartphones based on selected set of processes
shows that the patterns are the same with SwinModel performed the best and Gradient Boosting came second.
However, the evaluation of metrics values is different between one to another as the specifications of cameras used
to capture the images influence the resulting soil images used for modelling and prediction.

4.1.1. Recommendation Based on the results, soil images captured using smartphones could have large variations.
This could be due to the conditions of soil which are affected by the crops that have been planted, the number of
days in between farming processes, nutrient conditions, sunlight, temperature, and others. Based on the study, as
many as eight variations were found in soil images. Treatment to soil nutrients based on soil color analysis could
be conducted differently. Comparison between modelling images captured using several types of smartphones also
shows that several types of smartphones result in different sets of soil images and consequently produce different
accuracies in modelling and predicting the values of NPK and pH.

However, for the resulting classification model, different sets of soil imaged captured using several types of
smartphones, do not alter the pattern of results produced from the modelling. Transformer types of deep learning
performed better compared to conventional machine learning methods such as Gradient Boosting, Random Forest,
and ANN. Variations of CNNs with inclusion of pretrained model also cannot compete with the modelling
performed by Swin Transformer Model (SwinModel).

As for the preprocessing and augmentation needed before the modelling, it can be recommended to implement
various preprocessing and augmentation methods before the process. For preprocessing, median filter and
homomorphic filter are two preprocessing methods that could enhance the accuracy of modelling results.
Augmentations based on color, physical, and rotation have also proven that they improved the quality of the
modelling. As for the setting of modelling parameters such as batch size, number of epochs, image sizes, and
optimizers, for batch size it will depends on the size of the soil dataset, number of epochs could be set to 100,
image sizes are needed to be larger, and the most suitable optimizer is adam.

As the evaluation on aspects related to soil image modelling to predict NPK and pH values has been conducted,
implementation in the form of mobile application is further recommended. The process of capturing images used
in this study is set to be as natural as possible, so the farmer could easily imitate the process in the same way. The
thing that the farmer needs to be aware of in implementing any mobile application for soil analyses is that the area
of soil to be analyzed needs to be cleaned in a certain degree to have a bit clearer soil image for the analysis.

S. Conclusion
Several conclusions could be drawn from this study:
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. Soil images captured using smartphones could vary a lot. This is due to numerous factors such as soil nutrient,
soil environment conditions, and smartphone types. The latter is even proven to influence the accuracy of
modelling results.

. Augmentation and preprocessing are still needed, even when we use deep learning methods. Color, physical,
and rotation-based augmentation, and median and homomorphic filters are the methods that could be
recommended for augmentation and preprocessing, respectively.

. Transformer type of deep learning method such as SwinModel is good to be implemented for analysis of soil
images in predicting the values of NPK and pH. However, conventional machine learning methods such as
Gradient Boosting and Random Forest are also not far behind. With the speed of modelling, the use of the
two latter methods is also recommended.

. The study is suitable to be implemented into a mobile application used by farmers, as the soil images for the
study were captured in a natural process which can be performed by farmers easily.
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