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Oscar Danilo Montoya 1, Walter Gil-González 2, Adolfo Andrés Jaramillo-Matta 1

1Facultad de Ingenierı́a, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 110121, Colombia
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Abstract This research addresses the challenge of stabilizing a second-order magnetic levitation system through a
nonlinear control approach. The proposed controller is rooted in backstepping control theory, which ensures the asymptotic
convergence of the system’s incremental state variables to the origin through a Lyapunov-based framework. A key advantage
of this method is the generalized control input, expressed in polynomial form with four adjustable control gains, which
enables precise tuning to achieve the desired dynamic performance. A major contribution of this study is the formal
demonstration of stable performance provided by the generalized controller in second-order dynamic systems, with a
particular emphasis on its application in magnetic levitation. Numerical simulations in Matlab/Simulink showcase the
controller’s effectiveness across three different sets of control gains, allowing the system to provide critically damped,
overdamped, and underdamped dynamic responses with respect to the desired position of the levitating metallic mass.
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1. Introduction

1.1. General context

Nonlinear systems control is a critical field in engineering and science as the complex behaviors involved challenge
traditional linear control methods [1]. Nonlinear systems are prevalent in various fields, including robotics,
aerospace, and all branches of engineering, where precise control is essential for ensuring stability and achieving
adequate dynamic performance under varying operating conditions [2].

Magnetic levitation systems (MLS) are among the most classical nonlinear dynamic systems used for testing
advanced control methodologies [3]. This type of system utilizes magnetic forces to suspend objects without
physical contact, thereby exemplifying various challenges [4]. The nonlinear dynamics associated with magnetic
forces significantly complicate their control design. Effective control is essential to prevent instability and ensure
the reliable operation of magnetic levitation technologies in practical applications [5].

1.2. Motivation

The increasing complexity of modern engineering systems necessitates advanced control strategies that can
effectively manage nonlinear dynamics [6]. MLS, utilized in high-speed transportation [7], precision manufacturing
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[8], and medical devices [9], attest to the demand for such sophisticated control mechanisms. The inherent
nonlinearities in magnetic levitation, particularly the magnetic forces that fluctuate with position and velocity,
pose significant challenges to achieving stable and efficient control [3].

Backstepping control design has emerged as a powerful method for addressing the complexities of nonlinear
systems [10]. Its recursive structure facilitates the systematic breakdown of control problems, making it particularly
effective in applications such as MLS, which require precise and robust control strategies [11]. This research
explores the synergy between backstepping control design and MLS, aiming to enhance the stability, performance,
and practical implementation of these cutting-edge technologies.

1.3. Literature review

Magnetically levitating metallic masses have been widely analyzed in literature. This subsection presents some
relevant works on this topic.

The authors of [3] proposed a novel MLS using the real-time control Simulink feature of the SIMLAB
microcontroller. The system’s control was validated through simulations and experiments, exhibiting superiority
over conventional strategies. Three controllers –i.e., a linear quadratic regulator (LQR), the proportional-integral-
derivative (PID), and lead compensation— were compared based on parameters such as peak overshoot, settling
time, and rise time. The LQR reported the best performance, with a peak overshoot of 14.6%, a settling time of
0.199 seconds, and a rise time of 0.064 seconds, proving its stability and effectiveness.

In [4], a robust proportional-derivative gain-scheduling controller (PD-GS-C) for an unstable MLS with two
electromagnets was presented. The system’s nonlinearity required advanced control techniques, which is why a
nonlinear state-space model was derived and linearized around five operating points. The PD controller gains were
determined using a parameter space technique, while big bang-big crunch optimization further refined them. The
controller’s performance was evaluated based on overshoot, settling time, and rise time. MATLAB simulations and
experiments confirmed the PD-GS-C’s effectiveness in stabilizing the system.

The work by [12] designed an optimized PID controller to regulate the ball position of an MLS. The
electromagnetic force in the MLS was controlled by sensing the ball’s position using infrared sensors. System
performance was improved in both the time and frequency domains by optimizing the PID controller parameters
using the grey wolf optimizer. This algorithm tuned the parameters while minimizing performance indices such
as the integral time-weighted absolute error (ITAE) and the integral time-weighted square error (ITSE). The
effectiveness of the proposed controller was validated by comparing it against classical tuning methods.

The study by [13] presented a control approach for a MLS using exact feedback linearization. The system’s
nonlinear dynamics were analyzed via the Euler-Lagrange method and transformed into a linear equivalent.
MATLAB simulations showed that the controlled output accurately followed the desired reference.

The authors of [14] addressed the challenge of large-displacement magnetic levitation actuation and stability in
non-liquid environments by proposing a system with an active levitation mode. The system ensured uniform force
and reduced overshoot using dual electromagnetic actuators for a superimposed magnetic field as well as dual Hall
sensors for displacement measurement. A neural network-based PID controller automatically tuned the parameters,
enhancing adaptability and solving tracking performance deterioration issues. Strong robustness and stability were
achieved during both ascending and descending motions.

The work by [15] focused on the modeling and control of an MLS, developing a nonlinear model for a specific
region while accounting for gravity compensation. A control strategy based on the concept of passivity was
designed, equating the levitation system to a passive one and implementing a position regulation approach. Real-
time experiments were conducted to validate the performance of the proposed control scheme.

Additional control approaches for MLS include the use of artificial neural networks [16], sliding mode control
combined with integral backstepping [17], fuzzy logic controllers [18], and Lyapunov-based methods [19], among
others.

1.4. Contributions and scope

Considering the above-presented literature review regarding the existing control methods applied to MLS, this
research presents the following contributions:
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i. A generalization of the backstepping control design applied to a second-order class of nonlinear dynamic
systems.

ii. A polynomial control law that ensures the asymptotic stabilization of a MLS during closed-loop operation in
the sense of Lyapunov.

It is important to note that, within the scope of this research, the following considerations have been made:
(i) the third-order dynamic model of the MLS is simplified into a second-order model, wherein the control input
corresponds to the current flowing through the system’s inductor; and (ii) it is assumed that all system parameters
are known and free from any uncertainties. In applying backstepping control to the MLS, the key difference
between the approach proposed in this research and the methods reported in [17] lies in our focus on the second-
order dynamic model of the MLS. Our study introduces a general polynomial control law with four control gains,
allowing for flexible tuning to achieve the desired ball position, including damped, underdamped, and overdamped
behaviors. This approach differs from the integral versions of backstepping control discussed in the referenced
works.

1.5. Document structure

The remainder of this document is organized as follows. Section 2 presents the general theory of backstepping
control design applied to second-order dynamical systems, including the corresponding stability analysis. Section
3 details the dynamical modeling of the second-order MLS, covering the state-variable representation, and the
incremental dynamical modeling. Section 4 discusses the application of backstepping control to the MLS and
demonstrates its stability, and Section 5 presents the numerical validations carried out for different control
parameter configurations. Finally, Section 6 summarizes the main conclusions of this research and suggests
potential directions for future work.

2. Backstepping control theory

Backstepping control theory is a structured and iterative approach used in control engineering. It is particularly
well-suited for stabilizing nonlinear systems in strict feedback form [10]. This technique systematically breaks
down complex control tasks into smaller, more manageable sub-problems, allowing for the step-by-step
construction of control laws and the development of Lyapunov functions at each stage. The Lyapunov function is
meticulously selected to ensure system stability, and its derivative is made negative-definite by carefully designing
the control inputs. Backstepping is especially useful for nonlinear systems and can be extended to handle cases
whose system parameters are unknown or vary over time by integrating parameter estimation methods into the
framework. This approach provides a robust and systematic method for designing stabilizing controllers across a
broad spectrum of nonlinear systems.

2.1. General system form

A controller design using backstepping control theory facilitates the analysis of the nonlinear system dynamics
described by Equations (1) and (2) while preserving generality in the approach.

η̇ = f (η) + g (η) ζ, (1)

ζ̇ = h (η, ζ) + j (η, ζ)u. (2)

In these equations, η and ζ represent the state variables, where f (η) and h (η, ζ) are smooth nonlinear functions
describing the system’s intrinsic dynamics. The terms g (η) and j (η, ζ) correspond to the control input matrices
that connect the state variables to the control inputs, enabling the design of a control law that stabilizes the system.

2.2. Controller design

To design a backstepping controller that asymptotically stabilizes the Dynamical System (1)–(2) around the origin,
the following assumptions are made:
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Assumption 1 (Existence of the inverse function)
The structure of the nonlinear matrix j (η, ζ) allows for the existence of the inverse function j−1 (η, ζ), such that
j (η, ζ) j−1 (η, ζ) = 1.

Assumption 2 (Candidate Lyapunov function)
There is a candidate Lyapunov function V (x) that satisfies the following conditions:

1. V (x) is positive-definite, meaning that V (x) > 0 for all x ̸= 0, and V (0) = 0.
2. The derivative V̇ (x) is negative-definite, i.e., V̇ (x) < 0.

Considering Assumptions 1 and 2, the general backstepping control design is defined below.

Lemma 1 (Control input)
The dynamical system defined by (1) and (2) is asymptotically stabilized at the origin with a general control input
u that takes the following form:

u = j−1 (η, ζ)

(
−kpζ + kpφ (η)− ∂V

∂η
g (η) +

∂φ

∂η
(f (η) + g (η) ζ)− h (η, ζ)

)
. (3)

where φ (η) is a design function defined based on the structure of the functions f (η) and g (η), and kp is a positive
proportional control gain.

Proof

To demonstrate that the control input u defined in (3) asymptotically stabilizes the Dynamical System (1)–(2),
Assumption 3 is required.

Assumption 3 (Existence of a positive-definite function)
The time derivative of the Lyapunov candidate function V (x), i.e., V̇ (x) satisfies the following condition:

V̇ (x) ≤ −W (x) , (4)

where W (x) is a positive-definite function.

Now, if the control input u in (3) is substituted into Equation (2), the following result is obtained:

ζ̇ = −kp (ζ − φ (η))− ∂V
∂η

g (η) +
∂φ

∂η
(f (η) + g (η) ζ) . (5)

Note that an auxiliary variable z can be defined as ζ − φ (η), which allows defining the following augmented
Lyapunov candidate function H (η, ζ):

H (η, z) = V (η) +
1

2
z2, (6)

which has the following time derivative function:

Ḣ (η, z) =V̇ (η) + zż,

=V̇ (η) + (ζ − φ (η))
(
ζ̇ − φ̇ (η)

)
,

=V̇ (η) + (ζ − φ (η))

(
ζ̇ − ∂φ

∂η
η̇

)
. (7)

Now, the Dynamical System (1)–(5) is substituted into (7), which yields the following:

Ḣ (η, z) =V̇ (η) + (ζ − φ (η))

(
−kp (ζ − φ (η))− ∂V

∂η
g (η) +

∂φ

∂η
(f (η) + g (η) ζ)− ∂φ

∂η
(f (η) + g (η) ζ)

)
,

=V̇ (η) + (ζ − φ (η))

(
−kp (ζ − φ (η))− ∂V

∂η
g (η)

)
,

=V̇ (η)− kp (ζ − φ (η))
2 − (ζ − φ (η))

∂V
∂η

g (η) . (8)
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Here, considering the definition provided by the authors of [10] regarding backstepping control design, the selection
of the auxiliary control input ζ = φ (η) is as follows:

Ḣ (η, z) =
∂V
∂η

η̇ − kp (ζ − φ (η))
2 − (ζ − φ (η))

∂V
∂η

g (η) ,

=
∂V
∂η

(f (η) + g (η) ζ)− kp (ζ − φ (η))
2 − (ζ − φ (η))

∂V
∂η

g (η) ,

=
∂V
∂η

(f (η) + g (η)φ (η))− kp (ζ − φ (η))
2
. (9)

Note that, if φ (η) is selected as the state variable ζ, then the following is obtained:

Ḣ (η, z) ≤ −W (η)− kp (ζ − φ (η))
2
< 0, (10)

which confirms that the control input defined in (3) asymptotically stabilizes the Dynamical System (1)–(2) around
the origin of coordinates, thus completing the proof.

Note that the backstepping control method is particularly well-suited for MLS due to its effectiveness in
handling nonlinear dynamics [10]. Unlike other control methods, backstepping allows for the systematic design of
controllers for systems with complex, nonlinear behavior, as is the case of the second-order dynamics of MLS [19].
Additionally, backstepping provides a clear framework for ensuring stability in the sense of Lyapunov, making it
highly advantageous for achieving asymptotic stability during closed-loop operation [17]. This control method also
offers flexibility in addressing uncertainties and disturbances, which are common in practical MLS applications,
providing robust performance compared to conventional methods such as PID or linear feedback control [10].

3. MLS modeling

This section presents the dynamical model of the MLS. Additionally, it explores the transformation of this model
into an equivalent state variable representation, defines the equilibrium point, and analyzes the error dynamics.

3.1. Mathematical modeling

Figure 1 depicts the schematic representation of an MLS, where Fmag represents the magnetic force associated with
the current flow i through the inductor L; Fg corresponds to the gravitational force acting on the metal mass m; R
represents the equivalent resistance effect on the inductor; v is the input voltage; and e represents the equivalent
voltage measured through the Hall effect [3].

To obtain the dynamical model of the MLS, Newton’s laws of motion are applied, which yields

mÿ = Fg − Fmag. (11)

Remark 1
The formulation of the equivalent magnetic force varies across different studies. This work considers the model
provided by the authors of [3], representing the magnetic force applied to the metallic ball as cubic regarding the
distance and linear in the case of the current.

Fmag = kmag

(
1

y3

)
i, (12)

with kmag being a constant related to the electromagnet’s turn ratio and cross-sectional area.

Now, considering the definition of the magnetic force in (12), and the gravitational force (i.e., Fg = mg) in
Equation (11), the following dynamical model is obtained:
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Figure 1. Schematic representation of a MLS

mÿ = mg − kmag

(
1

y3

)
i, (13)

Remark 2
The dynamical model of the MLS neglects the dynamics of the inductor by assuming the recommendations of [3],
where i is considered as the control input for the mechanical part of this system.

It is worth mentioning that our selection of a second-order model for the MLS, instead of the classical third-order
model, was based on the following considerations:

i. Computational efficiency: The second-order model reduces the computational load in comparison with the
third-order one. This is essential for real-time control applications, where fast response times are critical,
particularly in MLS, whose dynamics can change rapidly [20].

ii. Accuracy: The second-order model sufficiently captures the key dynamic behaviors, e.g., the oscillations
and settling times, commonly seen in MLS. Higher-order terms often provide diminishing returns in terms
of accuracy while adding complexity [3].

iii. Simplified control design: Second-order models are easier to control and stabilize. Their reduced
complexity allows for more straightforward control strategies that ensure system stability, particularly when
managing levitation height and force dynamics in MLS [21].

iv. Easier parameter identification: Parameter estimation is simpler in second-order models, making it easier
to tune the system in real-world scenarios, where measurement noise may affect higher-order models [22].

v. Established precedents: Various research works, including [3], have demonstrated that second-order models
can accurately describe the essential dynamics of MLS without requiring the additional complexity of third-
order models.
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3.2. State variable representation and equilibrium point

To represent the dynamical model of the MLS in (13), the following state variables are defined: η = y − y⋆, ζ = ẏ,
and the control input ω = i, which yields the following equivalent dynamical system:

η̇ = ζ, (14)

ζ̇ = g −
(
kmag

m

)(
1

(η + y⋆)
3

)
ω, (15)

where y⋆ is the desired operating point of the metallic mass, implying that η⋆ = 0.

Remark 3
Note that, in order to calculate the equilibrium point, it is assumed that the desired position of the metallic mass
(i.e., y⋆1) is known. This implies that, under steady-state conditions, η̇ = 0 and ζ̇ = 0, which yields

ζ⋆ = 0, (16)

ω⋆ =

(
mg

kmag

)
(y⋆)

3
. (17)

3.3. Incremental model

The application of backstepping control requires the dynamical system to have an equilibrium point at the origin of
coordinates. To this effect, the incremental model is used. The structure of the control input ω is defined as follows:

ω = (η + y⋆)
3

(
m

kmag

)
(g − u) , (18)

where u is an auxiliary control input that regulates the state variables. Note that, by substituting Equation (18) into
(15), the following incremental model is reached:

η̇ = ζ, (19)

ζ̇ = u. (20)

Remark 1
The main idea of the backstepping controller design is to obtain the structure of the control input u that
asymptotically stabilizes the Incremental Model (19)-(20) via the general structure defined by (5).

4. Backstepping control applied to the MLS

This section presents the general backstepping control input to stabilize the second-order MLS. In addition, the
general structure of W (η) is obtained in order to confirm Assumption 3.

4.1. Control input design

The backstepping design requires the identification of the functions in (1)–(2) through a comparison with the
incremental model in (19)–(20). This yields the following results:

f (η) = 0,

g (η) = 1, (21)
h (η, ζ) = 0,

h (η, ζ) = 1.
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In addition, the structure of φ (η) is defined, as well as the initial candidate Lyapunov function V (η):

φ (η) = −αη2n−1, (22)

V (η) =
1

2
βη2n, (23)

with α and β being two positive-definite constants and n a positive integer number.
Now, the partial derivatives of the functions φ (η) and V (η) are then obtained:

∂φ

∂η
= − (2n− 1)αη2(n−1), (24)

∂V
∂η

= nβη2n−1, (25)

Finally, the General Control Input (5) to stabilize the Incremental Model (19)–(20) takes the following structure:

u = −kp
(
ζ + αη2n−1

)
− nβη2n−1 − (2n− 1)αη2(n−1)ζ. (26)

Remark 2
Note that the general control input ω, as defined by (18), becomes a general control input for stabilizing the MLS
(14)–(15) when the backstepping control input (26) is substituted into it, which yields the following:

ω = (η + y⋆)
3

(
m

kmag

)
g + (η + y⋆)

3

(
m

kmag

)(
kp

(
ζ + αη2n−1

)
+ nβη2n−1 + (2n− 1)αη2(n−1)ζ

)
, (27)

It is worth mentioning that, at the equilibrium point (i.e., η⋆ = 0 and ζ⋆ = 0), the General Control Input (27) is
reduced to (17), which is the control input at the equilibrium point.

4.2. Finding the W (η) function

To determine the structure of W (η), ζ = φ (η) is defined, and the time derivative of the initial candidate Lyapunov
function in (23) is taken, resulting in

V̇ (η) = nβη2n−1η̇,

= nβη2n−1 (f (η) + g (η) ζ) ,

= −nβη2n−1αη2n−1,

= −nαβη2(2n−1) ≤ W (η) . (28)

Here, it is evident that W (η) can be selected as follows:

W (η) = nαβηγ(2n−1), (29)

which clearly is a positive-definite function for the appropriate selection of the positive constant γ.

5. Numerical validation

To validate the effective performance of the proposed generalized backstepping controller and its application to the
second-order MLS, simulation parameters were obtained from [3]. These parameters include operating and current
limits, the equivalent metallic mass, and the magnetic force constant, among others. All these parameters are listed
in Table 1.

Three parameter combinations were analyzed to evaluate the performance of the proposed backstepping control
design. The studied parameters are listed in Table 2. Note that, in all parameter combinations, n has been selected
as 1 since it corresponds to a linear control input in Equation (26).
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Table 1. Parameters of the MLS

Parameter Value Unit Parameter Value Unit Parameter Value Unit
kmag 2.40× 10−6 kgm45/s2A y⋆ 20×10−3 m imin 0 A
m 0.02985 kg i⋆ 0.9758 A imax 4 A

Table 2. Control gain parameters for the simulations

Case α β kp n
I 5 6 20 1
II 10 1250 8 1
III 6 7 2 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1.5

2

2.5

·10−2

a)
y

(m
)

Case I Case II Case III ref

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

Time (s)

b)
i

(A
)

Figure 2. Position of the levitating metallic mass

Figure 2 illustrates the dynamic behavior of the metallic mass for three position references and their effect on
the control input’s performance: from 0 to 2 seconds, y⋆ = 20 mm; from 2 to 4 seconds, y⋆ = 24 mm; and, from 4
to 6 seconds, y⋆ = 16 mm.

The dynamic behavior of the metallic mass and the current input depicted in Figure 2 allows stating the following:

i. The three control parameter combinations asymptotically stabilize the magnetic ball’s position around the
desired reference (see Figure 2a). In Case I, the system exhibits a critically damped behavior, whereas, in
Case II, it resembles an underdamped system. Finally, in Case III, the position of the metallic mass also
behaves as an underdamped dynamical system.

ii. The control input associated with the inductor current reaches three equilibrium points (see Figure 2b),
which depend on the desired reference position of the metallic mass (i.e., y⋆), as shown in Equation (17). The
equilibrium points for the current input are as follows: i⋆ = 0.9758 A between 0 and 2 seconds; i⋆ = 1.6862 A
between 2 and 4 seconds; and i⋆ = 0.4996 A between 4 and 6 seconds.

iii. The main result regarding the control input is that, regardless of the analyzed case, it remains within its upper
and lower bounds (i.e., between 0 and 4 A). However, the most significant control challenges arise in Case
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II, where the current peak is higher than those of Cases I and III. Additionally, the behavior of the control
signal highlights the non-minimum phase characteristics of the second-order dynamical model representing
the MLS.

To determine which of the simulation cases featured a better performance, three classical indices were analyzed
(Table 3): the integral time square error (ITSE), the integral absolute error (IAS), and the integral time absolute
error (ITAE). Table 3 also presents the average stabilization times.

Table 3. Summary of the analyzed indices

Case ITSE IAE ITAE Ts [s]
I 4.096 ×10−5 3.302 ×10−3 1.008 ×10−2 1.2
II 1.008 ×10−5 1.067 ×10−3 0.316 ×10−2 0.7
III 8.304 ×10−5 5.904 ×10−3 1.863 ×10−2 1.4

Regarding the indices and stabilization times presented in Table 3, the following can be stated:

i. The stabilization times indicate that, in Case III (overdamped control gain parametrization), the metallic mass
takes longer to reach the desired reference, i.e., approximately 1.4 seconds, which is twice the time reported
for Case II (underdamped parametrization). In the critically damped case, the stabilization time falls between
the aforementioned scenarios, taking around 1.2 seconds to reach the desired reference.

ii. The performance indices show that the best parametrization corresponds to Case II, the underdamped
scenario. Although the system exhibits oscillations around the reference, they quickly diminish, allowing
the system to efficiently reach the desired reference.

6. Conclusions and future work

This research designed a nonlinear controller for a second-order MLS using backstepping control theory. The
proposed controller approach is general and took a polynomial structure with four control gains that allows
selecting the desired system performance as a function of the operational requirements and physical constraints
associated with the control input’s lower and upper bounds.

Numerical simulations with three different control gain combinations demonstrated the expected performance
of the levitating metallic mass position concerning asymptotic stabilization.. However, the behavior of the
dynamic response reported damped, underdamped, and overdamped performances, demonstrating the importance
of adequate control parameters selection.

The generalization of the backstepping controller for a second-order dynamical system demonstrated that the
generalized control input enables the asymptotic convergence of the controlled variable with various time-domain
performances. This poses a challenge for researchers in determining the most effective strategy for tuning control
parameters in order to achieve the desired dynamic performance, emphasizing the nonlinear relationship between
these parameters and the expected behavior of the metallic mass position.

As future work, the following areas could be explored: (i) the application of an optimization methodology to
tune the control parameters that minimizes stabilization times while maintaining a first-order-like behavior; (ii) the
proposal of new controllers for the second-order nonlinear equivalent model of the MLS, ensuring stability and
addressing parameter uncertainties; and (iii) a comparison of the existing models for MLS, particularly concerning
the magnetic force model.
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