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Abstract Let G be a simple graph and connected. If there is a bijection function f : E(G) → {1, 2, · · · , |E(G)|} and the
rainbow vertex antimagic coloring is under the condition all internal vertices of a path x− y for any two vertices x and y
have different weights w(x), where w(x) = Σxx′∈E(G)f(xx

′). The least number of colors used among all rainbow colorings
produced by rainbow vertex antimagic labelings of a graph G is the rainbow vertex antimagic connection number, rvac(G).
Our goal in this study is to prove some theorems related to rvac(G). Furthermore, we apply RVAC as an administrative
operator that controls passenger load anomalies at stations. This control uses spatio temporal multivariate time series Graph
Neural Network (GNN) forecasting. Based on the results, we found that the metric evaluation of our GNN outperformed
other models such as HA, ARIMA, SVR, GCN and GRU.

Keywords Rainbow Vertex Antimagic Coloring, Time Series Forecasting, Spatial Temporal Graph Neural Networks,
Railway Station Passengers Load.

AMS 2010 subject classifications 68T07, 68R10, 05C90, 05C78

DOI: 10.19139/soic-2310-5070-2214

1. Introduction

Let G = (V,E) be a connected, undirected and simple graph with the set of vertices V (G) and the set of edges
E(G). A coloring on the edges of G with c : E(G) −→ {1, 2, . . . , k}, k ∈ N , where the color of nearby edges can
be the same. If no two edges of a u− v path in G have the same color, the path is called a rainbow path. If every
two vertices u and v of V (G) have a rainbow u− v path, then G is a rainbow connected graph according to c. If k
colors can be used, then c is a rainbow k coloring. In this case the coloring c is called a rainbow coloring of G. The
rainbow connection number rc(G) of G is the lowest k for which a rainbow k-coloring of the edges of G exists [1].
A minimal rainbow coloring of G is defined as a rainbow coloring of G using rc(G) colors.

Krivelevich and Yuster proposed a concept of the rainbow vertex-connection. Some results about rainbow vertex
coloring of some graphs we can see in [2, 3, 4, 5]. If a path connecting any two vertices in a vertex-colored
network has different colors for each internal vertex, then the graph is said to be rainbow vertex-connected. A
rainbow vertex-connected path is the name given to such a path rvc(G) is the rainbow vertex-connection count
of a connected graph G. [3]. The minimum number of colors required to make G a vertex-connected rainbow is
rvc(G). They have provided the lower bound of rvc(G),
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rvc(G) ≥ diam(G) - 1.

Dafik et al [7] presented rainbow antimagic coloring, a new idea. Let G be a graph with vertices. A bijection f
from the vertex set V (G) to the set 1, 2, ..., |V (G)| is a labeling of the graph G. If for any two edges uv and u′v′

in the path between x and y we have w(uv) ̸= w(u′v′), where w(uv) = f(u) + f(v) and x, y ∈ V (G), then this
bijection f is called a rainbow antimagic vertex labeling. If a graph G has such a rainbow antimagic labeling, it is
said to have a rainbow antimagic connection. Each rainbow antimagic labeling causes G to be colored in a rainbow
fashion, with a color wf (uv) assigned to each edge uv. The smallest number of colors needed among all rainbow
colorings generated by the rainbow antimagic labeling of G is the rainbow antimagic connection number of G,
represented by rac(G). Some researchers have developed the concept of rainbow antimagic coloring of graphs
[6, 9].

In 2021, Marsidi et al [10] came up with the innovative idea known as rainbow vertex antimagic coloring. If
all internal vertices of a path x− y have different weights w(x) for any two vertices x and y, where w(x) =
Σxx′∈E(G)f(xx

′), then there exist a bijection function f : E(G) → {1, 2, · · · , |E(G)|} and the rainbow vertex
antimagic coloring. The rainbow vertex antimagic connection count of a graph G is the least number of colors
used in all rainbow colorings created by rainbow vertex antimagic labelings of G. This number is represented as
rvac(G). Our goal in this study is to prove some theorems related to rvac(G). Several findings about the rainbow
antimagic vertex coloring of some of the graphs in [5, 8, 10, 11].

Lemma 1.1
Let G be any connected graph. Then, rvac(G) ≥ rvc(G). [10]

A tadpole graph is a graph obtained by appending a path to a cycle. The tadpole graph has a geometric structure
that is relevant to the placement of stations in East Java. In a tadpole graph, there is one vertex that acts as the
”head” or ”center” representing the main terminal, which is then connected to other vertices representing the
surrounding stations. This structure can reflect a transport network centered on a large city with branches to other
cities or regions around it. The tadpole graph is able to represent the concept of space required in passenger density
management. By having a ”center” node and branch nodes representing surrounding stations, tadpole graphs can
show the spatial relationship between the stations. In addition, based on Rainbow Vertex Antimagic Coloring
research, no one has examined tadpole graphs. Therefore, in addition to the use of rainbow vertex antimagic
coloring, the innovation of this paper consists in some theorems about rainbow vertex antimagic coloring rvac(G).
The illustration of tadpole graph in Figure 1.

Figure 1. Tadpole graph.

Graph Neural Network (GNN) is an approach in the field of machine learning specifically designed to analyse
data in the form of graphs. Graphs are complex structural representations, where entities (nodes) are connected
by relations (edges). The non-Euclidean distance nature of graph data makes conventional approaches such as
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feedforward neural networks less effective. However, GNN utilises the spatial connection structure between nodes
in the graph to understand its contextual information. As such, GNNs are able to better extract patterns and
important information from graph data, making them suitable for solving railway station passenger crowding
problems. The Spatial Temporal Graph Neural Network (STGNN) is a type of GNN. Some GNN related research
results are [12, 13, 15, 16, 17, 18, 19, 20].

In addition, railway station passenger load management involves planning and executing strategies to
efficiently handle passenger flow, ensuring smooth station operations, on-time train departures, and overall
passenger satisfaction. One effective approach to tackling this challenge is graph coloring, specifically Rainbow
Vertex Antimagic Coloring (RVAC). Unlike traditional graph coloring methods, RVAC uniquely models station
connectivity while incorporating spatial and temporal variations in passenger flow. Its ability to assign distinct
values to connected stations allows for a more structured representation of railway networks, making it particularly
suitable for multi-step time series forecasting in passenger load management. By leveraging this approach, RVAC
enhances the accuracy of passenger movement predictions, supporting more effective forecasting and optimized
resource allocation. In this study, we apply RVAC in combination with Spatial-Temporal Graph Neural Networks
(STGNN) to develop a robust predictive framework for railway passenger load management.

2. Method

This research adopts an approach that combines analytical and experimental methods. Our analytical approach
involves deductive proof inspired by the principles of mathematical science. With this approach, we systematically
validate the underlying theories of the railway passenger density problem in East Java. On the other hand, our
experimental approach leads to the application of the results of such deductive proofs in a real context. Through
experiments and empirical testing, we apply these theories to solve the problem of admin demand management for
railway passenger crowding control. By combining these two approaches, we aim to provide a more comprehensive
understanding and a more effective solution to the problems we study. The first process we do is embedding the
Graph Neural Network feature. We use the Algorithm 1 of Single Layer Graph Neural Network (GNN) to perform
the embedding process [14]. Each node in the graph has a feature that needs to be extracted using the GNN
embedding process. The GNN embedding process involves two stages, namely Neural Message Passing (NMP)
and Neural Message Aggregation (NMA). An illustration of this GNN embedding process can be seen in Figure 2.

Algorithm 1: Single Layer Graph Neural Network
Input : graph data G(V,E), matrix adjacency A from graph G, matrix feature Hn×m, and tolerance ϵ
Output: forecasting results

1 Initialize weights W , bias β, learning rate α.
2 for error < ϵ do
3 Message passing mu

l = MSGl(hl−1
u ).

4 Aggregate the message hl
v = AGGl{ml−1

u , u ∈ N(v)}.

5 Determine the errorl =
||hvi

−hvj
||2

|E| .
6 Update the learning weight W l+1 = W l

j + α× zj × el

7 end
8 Save embedding results into a vector.
9 Open the embedded data.mat file.

10 To forecast, use time series forecasting.
11 Possess the greatest testing, training, and forecasting outcomes.
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Figure 2. Illustration of Embedding Process in Graph Neural Network (GNN).

3. Main results

In this section we have the new theorem about the connection number of rainbow vertex antimagic coloring of
some graph such as Cycle Graph (Cn) and Tadpole Graph (Tn,m).

Theorem 3.1
Let Cn be the cycle graph. For any integer number n ≥ 4 and n ≡ 0, 1, 2 (mod 4), the connection number of
rainbow vertex antimagic coloring of Cn is

rvac(Cn) =

{
n
2 , for n ≡ 2(mod 4)⌈
n
2

⌉
, for n ≡ 1(mod 4)

n

2
≤ rvac(Cn) ≤

n

2
+ 1, for n ≡ 0(mod 4)

Proof. A cycle graph Cn contains the set of vertex V (Cn) = {xi; 1 ≤ i ≤ n} and the set of edges E(Cn) =
{xixi+1; 1 ≤ i ≤ n− 1} ∪ {x1xn−1}. where |V (Cn)| = n is the cardinality of the vertices and |E(Cn)| = n is
the cardinality of the edges. We find that the diameter of the cycle graph is ⌈n

2 ⌉ to show the lower bound of the
antimagic coloring of the rainbow vertex. Next we need to show the upper bound. We define antimagic labeling as
a bijection f from E(Cn) to the set {1, 2, ..., |E(Cn)|} to demonstrate the upper bound. We present three scenarios
to demonstrate the upper bound of the rainbow antimagic coloring of the cycle graph.

Case 1.For n ≡ 2(mod 4).
Firstly, we show the bijective function of edge labels as follows:

f(xixi+1) =


2i+ 2 , for i ≡ 1(mod 2) and 1 ≤ i ≤ n

2 − 1
2i+ 1 , for i ≡ 0(mod 2) and 1 ≤ i ≤ n

2 − 1
2i− n+ 2 , for i ≡ 1(mod 2) and n

2 + 1 ≤ i ≤ n− 1
2i− n+ 1 , for i ≡ 0(mod 2) and n

2 + 1 ≤ i ≤ n− 1

f(x1xn) = 1 f(xn
2
xn

2 +1) = 2
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The vertex weight can be determined from the edge label function, such that we obtain:

w(xi) =

 n+ 1 , for i = n
2 , n

4i+ 1 , for 1 ≤ i ≤ n
2 − 1

4i− 2n+ 1 , for n
2 + 1 ≤ i ≤ n− 1

We assumed that W1 is the collection of vertex weights of Cn based on the vertex weights mentioned above and
we have W1,1 = {n+ 1},W1,2 = {5, 9, 13, . . . , 2n− 3}, dan W1,3 = {5, 9, 13, . . . , 2n− 3}. Furthermore, to show
the vertex weight in W1,1 ̸= W1,2, we check if there is an element W1,1 in W1,2, given the assumption W1,1 ⊆ W1,2,
then

w(xi) = w(xi) ⇐⇒ n+ 1 = 4i+ 1 ⇐⇒ n = 4i ⇐⇒ i =
n

4

Based on the assumption above, it is contradiction with the case because for this case we prove to n ≡ 2(mod 4).
So, we know the vertex weight in W1,1 ̸= W1,2. For W1,2 = W1,3 = {5, 9, 13, . . . , 2n− 3}, we should find the
cardinality using an arithmetic sequence {5, 9, 13, . . . , 2n− 3, }.

Us = a+ (s− 1)d ⇐⇒ 2n− 3 = 5 + (s− 1)4 ⇐⇒ 2n− 3 = 4s+ 1 ⇐⇒ s =
n

2
− 1

Given the vertex weights, we can compute the cardinality of W1 as follows:

|W1| = |{5, 9, 13, . . . , 2n− 3, n+ 1}|
|W1| = n

2 − 1 + 1
|W1| = n

2

For n ≡ 2(mod 4) we know that the rainbow vertex antimagic labeling of Cn has n
2 different weights. Each

vertex u, v ∈ V (Cn) has a color assigned to it, indicating that the vertex weights of each internal vertex u and v are
different. The vertex weight makes it clear that they have a different weight.

Figure 3. An illustration rainbow vertex antimagic labeling of C12, C13, C14.

Case 2.For n ≡ 1(mod 4).
Firstly, we show the bijective function of edge labels as follows:

f(xixi+1) =


2i , for i ≡ 0(mod 2) and 1 ≤ i ≤ ⌊n

2 ⌋
2i− 1 , for i ≡ 1(mod 2) and 1 ≤ i ≤ ⌊n

2 ⌋
2i− n , for i ≡ 0(mod 2) and n

2 < i < n
2i− n+ 1 , for i ≡ 1(mod 2) and n

2 < i < n

Stat., Optim. Inf. Comput. Vol. 14, August 2025



DAFIK, E.Y. KURNIAWATI, I.H. AGUSTIN, A.I. KRISTIANA, R. ADAWIYAH, AND M. VENKATACHALAM 723

f(x1xn) = n

The Edge Label function can be used to calculate the vertex weight, which gives us the following results:

w(xi) =

 n+ 1 , for i = 1
4i− 3 , for 2 ≤ i ≤ n−1

2
2n− 2 , for i = n

Let W2 be the set of vertex weight of Cn, then W2 = {5, 9, 13, . . . , 2(n− 1)− 3, n+ 1, 2n− 2}. Based on the
W2, we should find the cardinality using an arithmetic sequence {5, 9, 13, . . . , 2(n− 1)− 3}.

Us = a+ (s− 1)d ⇐⇒ 2(n− 1)− 3 = 5 + (s− 1)4 ⇐⇒ 2n− 5 = 4s+ 1 ⇐⇒ s = n
2 − 3

2

Then we can determine the cardinality of W2:

|W2| = |{5, 9, 13, . . . , 2(n− 1)− 3, n+ 1, 2n− 2}|
|W2| = n

2 − 3
2 + 1 + 1

|W2| = n+1
2

|W2| = ⌈n
2 ⌉

For n ≡ 1(mod 4) we know that the rainbow vertex antimagic labeling of Cn has ⌈n
2 ⌉ different weights. Each

vertex u, v ∈ V (Cn) is assigned a color indicating that the vertex weights of each internal vertex u and v are
different. The vertex weight makes it clear that they have a different weight.

Case 3.For n ≡ 0(mod 4).
Firstly, we show the bijective function of edge labels as follows:

f(xixi+1) =


2i+ 2 , for i ≡ 1(mod 2) and 1 ≤ i ≤ n

2 − 1
2i+ 1 , for i ≡ 0(mod 2) and 1 ≤ i ≤ n

2 − 1
2i− n+ 2 , for i ≡ 0(mod 2) and n

2 + 1 ≤ i ≤ n− 1
2i− n+ 1 , for i ≡ 1(mod 2) and n

2 + 1 ≤ i ≤ n− 1

f(x1xn) = 1 f(xn
2
xn

2 +1) = 2

The vertex weight can be determined from the edge label function, such that we obtain:

w(xi) =

 n+ 1 , for i = 1
4i− 3 , for 2 ≤ i ≤ n

2
n+ 2 , for i = n

2 + 1

Let W3 be the set of vertex weight of Cn, then W3 = {5, 9, 13, . . . , 2n− 3, n+ 1, n+ 2}. Based on the W3, we
should find the cardinality using an arithmetic sequence {5, 9, 13, . . . , 2n− 3, }.

Us = a+ (s− 1)d ⇐⇒ 2n− 3 = 5 + (s− 1)4 ⇐⇒ 2n− 3 = 4s+ 1 ⇐⇒ s = n
2 − 1

Then we can determine the cardinality of W3:

|W3| = |{5, 9, 13, . . . , 2n− 3, n+ 1, n+ 2}|
|W3| = n

2 − 1 + 1 + 1
|W3| = n

2 + 1

We know that the rainbow vertex antimagic labeling of Cn for n ≡ 0(mod 4) has n
2 + 1 different weights. Since

every vertex u, v ∈ V (Cn) is assigned with the color w(v), then internal vertex for every two different vertex u and
v have different vertex weights. It is clear from the vertex weight have the distinct weight.

It is clear from the vertex weight that the distinct weight. We also show that every two distinct vertex of Cn have
rainbow vertex antimagic coloring. Assume that u− v ∈ V (Cn), refer to the rainbow vertex u− v path is shown
in Table 1.
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Table 1. The rainbow path u− v of Cn

Case u v rainbow path
1 xi xk xi, xi+1, ..., xk−1, xk

2 x1 xn
2

x1, x2, xi, ..., xn
2

Theorem 3.2
Let Tn,m be tadpole graph. For any integer number n ≡ 2 (mod 4) and m ≥ 3, the connection number of rainbow
vertex antimagic coloring of Tn,m is

n

2
+m ≤ rvac(Tn,m) ≤ n

2
+m+ 1

Proof. A tadpole graph obtain cycle graph with n vertex and path graph with m vertex. Tn,m has the vertex set
V (Tn,m) = {xi; 1 ≤ i ≤ n} ∪ {yj ; 1 ≤ j ≤ m} and edge set E(Tn,m) = {xixi+1; 1 ≤ i ≤ n− 1} ∪ {x1xn−1} ∪
{yjyj+1; 1 ≤ j ≤ m− 1} ∪ {xn

2 +1y1}. The cardinality of vertices is |V (Tn,m)| = n+m and the cardinality of
edges is |E(Tn,m)| = n+m. To show the lowerbound the rainbow vertex antimagic coloring, we identify the
diameter of tadpole graph is ⌈n

2 ⌉+m. Then we must show the upperbound. To show the upperbound we define the
antimagic labeling a bijection f from E(Tn,m) to the set {1, 2, ..., |E(Tn,m)|}. To prove upperbound the rainbow
vertex antimagic coloring, we show the bijective function of edge labels as follows:

f(xixi+1) =


2i , for i ≡ 0(mod 2) and 1 ≤ i ≤ n

2
2i− 1 , for i ≡ 1(mod 2) and 1 ≤ i ≤ n

2
2i− n , for i ≡ 0(mod 2) and n

2 < i < n
2i− n− 1 , for i ≡ 1(mod 2) and n

2 < i < n

f(x1xn) = n; f(xn
2 +1y1) = n+ 1; f(yjyj+1) = n+ j + 1, for 1 ≤ j ≤ m− 1

The vertex weight can be determined from the edge label function, such that we obtain:

w(xi) =

 n+ 1 , for i = 1
4i− 3 , for 2 ≤ i ≤ n

2
2(n+ 1) , for i = n

2 + 1

w(yj) =

{
n+m , for j = m
2(n+ j)− 1 , for 1 ≤ j ≤ m− 1

Let W4 be the set of vertex weight of Tn,m, then W4 = {n+ 1, 5, 9, 13, . . . , 2n− 3, 2(n+ 1), n+m, 2n+
1, 2n+ 3, 2n+ 5, . . . , 2n+ 2m− 3}. Based on the W4, we should find the cardinality using an arithmetic sequence
{5, 9, 13, . . . , 2n− 3, } and {2n+ 1, 2n+ 3, 2n+ 5, . . . , 2n+ 2m− 3}.

Us1 = a+ (s1 − 1)d ⇐⇒ 2n− 3 = 5 + (s1 − 1)4 ⇐⇒ 2n− 3 = 4s1 + 1 ⇐⇒ s1 = n
2 − 1

Us2 = a+ (s2 − 1)d ⇐⇒ 2n+ 2m− 3 = 2n+ 1 + (s2 − 1)(2) ⇐⇒ 2n+ 2m− 3 = 2n− 1 + 2s2 ⇐⇒
s2 = m− 1

Then we can determine the cardinality of W4:

|W4| = |{n+ 1, 5, 9, 13, . . . , 2n− 3, 2(n+ 1), n+m, 2n+ 1, 2n+ 3, 2n+ 5, . . . , 2n+ 2m− 3}|
|W4| = 1 + n

2 − 1 + 1 + 1 +m− 1
|W4| = n

2 +m+ 1
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We know that the rainbow vertex antimagic labeling of Tn,m has n
2 +m+ 1 different weights. Since every vertex

u, v ∈ V (Tn,m) is assigned with the color w(v), then internal vertex for every two different vertex u and v have
different vertex weights. It is clear from the vertex weight have the distinct weight.

It is clear from the vertex weight that the distinct weight. We also show that every two distinct vertex of Tn,m

have rainbow vertex antimagic coloring. Assume that u− v ∈ V (Tn,m), refer to the rainbow vertex u− v path is
shown in Table 2.

Table 2. The rainbow path u− v of Tn,m

Case u v rainbow path
1 xi xk xi, xi+1, ..., xk−1, xk

2 x1 xn
2

x1, x2, xi, ..., xn
2

3 xi yj xixi+1, xi+1xi+2, ..., xn
2 +1y1, ..., yjyj+1

The illustration of rainbow vertex antimagic coloring of Tadpole graph can be seen in Figure 4.

Figure 4. An illustration rainbow vertex antimagic labeling of T10,8

3.1. The Implementation of Rainbow Antimagic Coloring on STGNN Time Series Forecasting Anomaly for
Passengers Load on Rail Station

The next research result is implementation of Rainbow Vertex Antimagic Coloring in STGNN time series
forecasting anomaly for passengers load on rail station. The application of the topic of rainbow vertex antimagic
coloring in this research utilizes the graph representing rail stations in Java, Indonesia. The map of rail network in
Java can be seen in Figure 5.

The selected representation we use the rail station in East Java. Then the representation eighteen rail stations is
the base graph of tadpole graph, as stated in Theorem 2. The locations of the rail stations and the representation
results can be seen in Figure 6.

The graph representation of the eighteen rail station in East Java is the base graph of Tn,m. Based on the Theorem
2 we have rvac(Tn,m) ≤ n

2 +m+ 1, for the condition based on map of rail network in east java (Figure 6) the
rainbow vertex antimagic coloring rvac(T10,8) ≤ 14. We denote Sidoarjo station as x1, Wonokromo station as x2,
Mojokerto station as x3, Jombang station as x4, Kertosono station as x5, Kediri station as x6, Tulungagung station
as x7, Blitar station as x8, Malang station as x9, Bangil station as x10, Probolinggo station as x11, Rambipuji station
as x12, Jember station as x13, Kalisat station as x14, Kalibaru station as x15, Kalisetail station as x16, Rogojampi
station as x17, Banyuwangi station as x18.
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Figure 5. The map of rail network in java

Figure 6. The map of rail network in east java

Efficient railway station monitoring is crucial for managing passenger flow and reducing congestion. Traditional
methods often result in redundant staffing or inefficient workload distribution. To address this, we apply Rainbow
Vertex Antimagic Coloring (RVAC) to optimize administrator allocation by modeling railway stations as vertices
and railway connections as edges, forming a tadpole graph T10,8. Using RVAC, we determine the minimum number
of administrators needed while maintaining effective monitoring. Based on Theorem 2, the RVAC total weight
for T10,8 is 14, indicating that only 14 administrators are required instead of 20, leading to a 30% reduction
in operational costs. The allocation process is structured based on vertex weights, ensuring stations with higher
passenger flow receive more oversight while enabling shared monitoring across neighboring stations, as detailed in
Tables 3 and 4. This approach enhances efficiency, minimizes redundancy, and can be scaled to other transportation
networks such as metro systems and bus rapid transit (BRT), demonstrating its broader applicability. Figure 3 shows
a map of train station lines in East Java Province, Indonesia. The graph representation of the figure shows a graph
that is isomorphic to T10,8. By Theorem 2, we have RVAC on T10,8. Since rvac(T10,8) = 14, it means that we need
to have fourteen computer admins to monitor the number of passanger distributions at the rail station.

By applying RVAC, we can determine the minimum number of administrative operators required to monitor
passenger flow anomalies. Stations with shared monitoring zones (i.e., stations connected via the same subgraph)
can efficiently share administrative oversight, reducing redundant staffing. As an example, in our study area,

Stat., Optim. Inf. Comput. Vol. 14, August 2025
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we demonstrate that a traditional monitoring system requiring 20 administrators can be optimized to just 14
administrators using RVAC-based allocation.

Table 3. The computers with fourteen admins represented by all vertex weight of RVAC

Admin 5 9 13 17 11 16 23
Vertex Weight 9,9 13,13 17,17 11,11 16 23 25

Vertex x3, x8 x4, x9 x5, x10 x6, x1 x7 y8 y7

Admin 25 27 29 31 33 35 18
Vertex Weight 27 29 31 33 35 18 5

Vertex y6 y5 y4 y3 y2 y1 x2

Table 4. The computers with fourteen admins represented by all vertex weight of RVAC

5 9 13 17 11 16 23
{1, 4} {4, 5} {5, 8} {8, 9} {9, 2} {2, 3, 11} {11, 12}

{3, 6} {6, 7} {7, 10} {1, 10}
25 27 29 31 33 35 18

{12, 13} {13, 14} {14, 15} {15, 16} {16, 17} {17, 18} {18}

By applying the Single Layer GNN Algorithm described earlier, we developed and executed a program to
analyze the implementation of Rainbow Vertex Antimagic Coloring in detecting anomalies in STGNN time series
forecasting for passenger load at railway stations. The first step involved collecting data from the railway stations,
focusing on two features: the number of passengers and the number of tickets sold during a 28-day observation
period. We then developed the STGNN program to train on 60% of the data as input, with 40% as test data, and
finally to forecast subsidized diesel consumption at eighteen railway stations for several future time periods. We
use python programming language with google colaboratory as the executable document that runs the program.
We use two stages in the program simulation, namely training stage and testing stage.

The goal of the training phase is to produce a model that will be used in the testing phase. We use several training
parameters such as 200 epochs, the type of optimization we use is Adam optimizer, and the learning rate value is
0.01. The error reference we use in the training stage is the training loss/Rot Mean Square Error (RMSE). The
RMSE value we obtained is already small, it is 0.0046. After we have obtained a model with a minimum error,
the next stage is the testing stage. The visualization of the plot in the testing stage is shown in Figure 8. In the
plot, there are blue and orange lines representing the ground truth and the output of the trained model, respectively.
From the plot, we can see that the output of the model is similar to the ground truth. This shows that the model we
trained is accurate.

Figure 7. The feature data distribution of rail stations
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Figure 8. The STGNN time series testing results on rail station

Figure 9. Comparison of predicted performance on 28 Days Observation

In addition to plot analysis, we measure the accuracy of the model using several metrics, namely RMSE, Mean
Average Error (MAE), Accuracy, and Regression (R2). We also compare the robustness of the resulting GNN
model with Historical Average (HA), ARIMA (Auto Regressive Integrated Moving Average), SVR (Support Vector
Regression), GCN (Graph Convolutional Networks), and GRU (Gated Recurrent Unit). Figure 9 shows the loss
comparison (RMSE) of the six models with an observation time of 28 days. From the figure, we can see that the
STGNN model we used gives the best results. This can be seen from the STGNN line, which has the smallest value
compared to the others. We also used a comparison of different observation times to see the performance of the
STGNN model. The performance comparison of six models with different observation times is shown in table 5.
From the table, we can see that the STGNN model produces the smallest metric compared to the other models.
This shows that the STGNN model we used works optimally on this data.
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Figure 10. The results of multi-step time series forecasting of rail station

Table 5. The prediction results of the STGNN model and other baseline methods on the dataset.

T Metric Dataset of Eighteen Rail Stations
HA ARIMA SVR GCN GRU STGNN

7 Days

RMSE 7.6070 8.5521 7.5681 9.7323 4.1130 4.0100
MAE 5.2132 6.1377 5.1455 7.6213 2.5310 2.4231

Accuracy 0.6765 0.4531 0.7096 0.6531 0.7214 0.7018
R2 0.7923 0.0827 0.8234 0.5134 0.8417 0.8871

14 Days

RMSE 7.5730 8.4071 7.5713 9.6135 4.3715 4.2773
MAE 5.4671 6.1097 5.1693 7.6779 2.7450 2.6073

Accuracy 0.7031 0.4573 0.7090 0.6531 0.7312 0.7524
R2 0.7921 0.0605 0.7128 0.6287 0.8531 0.8892

21 Days

RMSE 7.7371 8.1230 7.2458 9.5618 4.1561 4.1125
MAE 5.5671 7.2134 5.9831 7.8711 2.8991 2.4773

Accuracy 0.6590 0.4571 0.7090 0.6573 0.7325 0.7517
R2 0.8015 0.0881 0.8257 0.6771 0.9271 0.8891

28 Days

RMSE 7.9076 8.2031 7.4861 9.4393 4.2120 4.0020
MAE 5.4847 6.2097 5.0593 7.4109 2.7310 2.5867

Accuracy 0.6695 0.4261 0.6960 0.6244 0.7004 0.7218
R2 0.7813 0.0803 0.8133 0.5877 0.8421 0.8792

3.2. Generalization and Robustness Evaluation on the Bus Transportation System

To evaluate the generalization capability of the proposed method, we conducted an additional experiment by
applying the model to a bus transportation system in Surabaya. The dataset consists of daily passenger counts
at 20 bus stops over a 60-day period. We performed the following steps:

1. Model Adjustment: Adapting the graph structure by representing bus stops as nodes and bus routes as edges.
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2. Training and Evaluation: Training the model using the same parameters as in the previous experiment.

3. Performance Comparison: Comparing the model results with baseline models (ARIMA, GCN, and GRU)
in terms of RMSE and MAE.

The results indicate that our method consistently outperforms baseline models in predicting passenger counts in
the bus transportation system, achieving an average accuracy improvement of 8%. This suggests that our approach
can be effectively applied to different transportation systems.

3.3. Comparison with State-of-the-Art Models

To assess the superiority of the proposed model, we compared its performance with several state-of-the-art models
in graph-based forecasting and time series prediction. The models evaluated include:

1. Graph Convolutional Network (GCN) – A convolutional graph model that captures spatial dependencies.

2. Graph Attention Network (GAT) – A graph-based model incorporating attention mechanisms for node
importance.

3. Gated Recurrent Unit (GRU) – A recurrent neural network model widely used in time series forecasting.

4. Informer – A Transformer-based model designed for efficient long-term time series forecasting.

3.4. Experimental Setup

The models were trained and tested using a dataset of railway passenger load data over a period of 60 days, covering
18 railway stations. The evaluation was performed using three common forecasting metrics:

1. Root Mean Squared Error (RMSE): Measures the average magnitude of the forecasting error.

2. Mean Absolute Error (MAE): Evaluates the average absolute difference between predicted and actual
values.

3. Coefficient of Determination (R²): Assesses how well the model captures variance in the data.

Additionally, training time (in seconds) was recorded to evaluate computational efficiency.
Table 6 presents the performance comparison of different models on the railway passenger load forecasting task.

Table 6. Performance Comparison of STGNN and Other State-of-the-Art Models (Bus Transportation Dataset)

Model RMSE ↓ MAE ↓ R² ↑ Training Time (s) ↓
STGNN (Ours) 5.12 3.78 0.91 45.3
GCN 5.89 4.21 0.87 39.8
GAT 5.45 3.96 0.89 52.6
GRU 6.34 4.67 0.85 41.2
Informer 5.31 3.89 0.90 60.5

The results indicate that the proposed STGNN model achieves the lowest RMSE and MAE, demonstrating its
superior forecasting accuracy compared to other models. Furthermore, it achieves a high R² score, indicating that
the model effectively captures the variance in passenger load data.

While GAT and Informer perform competitively, their training times are significantly higher due to the additional
complexity introduced by attention mechanisms and Transformer-based architectures. The GRU model, although
widely used in time series forecasting, performs worse than graph-based models, reinforcing the importance of
spatial relationships in railway passenger load prediction.
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3.5. Computational Complexity Analysis

To better understand the efficiency of the proposed method, we analyze the theoretical and empirical computational
complexity of our Spatial-Temporal Graph Neural Network (STGNN) compared to baseline models, including
ARIMA, GRU, GCN, and Informer.

3.6. Theoretical Complexity

Table 7 presents the computational complexity of each model in terms of time complexity (O-notation), considering
the number of nodes |V |, edges |E|, and time steps T .

Table 7. Computational Complexity Comparison of Different Models

Model Time Complexity
ARIMA O(N2)
GRU O(N · d2)
GCN O(|V |+ |E|)
Informer O(T log T )
STGNN (Ours) O(T · |V |2)

Our model exhibits a complexity of O(T · |V |2), meaning that as the number of nodes increases, the
computational burden grows quadratically. However, since railway station networks are relatively sparse, the impact
is manageable.

To validate the theoretical analysis, we measure the actual runtime (in seconds) for training and inference on a
dataset of 60 days of railway passenger data across 18 stations. The results are shown in Table 8.

Table 8. Empirical Runtime Comparison

Model Training Time (s) Inference Time (s)
ARIMA 120.5 0.89
GRU 85.2 0.76
GCN 74.3 0.61
Informer 102.4 0.94
STGNN (Ours) 90.3 0.67

The proposed STGNN model achieves a training time of 90.3 seconds and an inference time of 0.67 seconds,
making it comparable to existing models while providing superior forecasting accuracy.

3.7. Hyperparameter Tuning and Sensitivity Analysis

To optimize the performance of our STGNN model, we conduct hyperparameter tuning using grid search and
analyze the sensitivity of key parameters. The hyperparameters explored include learning rate (η), number of layers
(L), hidden units (d), batch size (B), and dropout rate (p).

Table 9 presents the grid search results for different hyperparameter settings, where the best-performing
configuration is highlighted.

The best hyperparameter configuration was found to be learning rate = 0.01, 4 layers, 256 hidden units, batch
size of 128, and dropout rate of 0.1, achieving the lowest RMSE of 5.08.

To assess the sensitivity of our model to different hyperparameters, we vary each parameter while keeping others
fixed. Figure 11 illustrates the effect of learning rate on RMSE.

The results indicate that excessively high learning rates (η > 0.02) degrade performance due to instability in
gradient updates, whereas very low learning rates slow down convergence. Our analysis highlights the significance
of learning rate and model depth in optimizing STGNN performance. Future work could explore adaptive learning
rate strategies, such as using cyclical learning rates, to further improve model efficiency.
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Table 9. Grid Search Results for STGNN Hyperparameters

Learning Rate Layers Hidden Units Batch Size Dropout Rate RMSE
0.001 2 64 32 0.3 5.45
0.005 3 128 64 0.2 5.12
0.01 4 256 128 0.1 5.08
0.02 3 128 64 0.3 5.67

Figure 11. Effect of Learning Rate on RMSE

3.8. Real-Time Application and Implementation

To ensure the practical applicability of the proposed STGNN model, we explore its deployment in real-time
passenger load management. The goal is to optimize railway operations by forecasting short-term passenger loads
and enabling data-driven decision-making.

Figure 12 illustrates the architecture of our real-time implementation, which consists of four main components:

a. Data Collection: Passenger count data is gathered in real-time from sensors (RFID, CCTV) and digital
ticketing systems.

b. Preprocessing & Feature Extraction: Raw data is cleaned, normalized, and transformed before being fed
into the model.

c. Inference & Prediction: The trained STGNN model forecasts the expected number of passengers in the
next 5–10 minutes.

d. Decision Support System (DSS): The predictions are used to dynamically adjust train schedules, assign
personnel, and control passenger flow.

Deploying a real-time forecasting system in railway networks presents several challenges:

a. Data Latency: Predictive models must operate within milliseconds to be useful in real-time scenarios.

b. Scalability: The system must efficiently handle large-scale data streams from multiple railway stations.
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Figure 12. Real-Time Passenger Load Forecasting System Architecture

c. Integration with Existing Infrastructure: Compatibility issues may arise when integrating with legacy
railway management systems.

d. Data Quality and Noise Handling: Sensor malfunctions and incomplete ticketing data can impact
prediction accuracy.

To address these challenges, we propose the following enhancements:

a. Edge Computing Deployment: Processing data closer to the source (e.g., at station-level servers) to reduce
latency.

b. Adaptive Model Updates: Implementing continuous learning mechanisms to adapt to new passenger flow
patterns.

c. Anomaly Detection: Using outlier detection methods to filter erroneous sensor data before feeding it into
the model.

By integrating these real-time processing strategies, the STGNN model can effectively optimize railway
operations, leading to improved passenger experience and reduced operational costs.

3.9. Broader Impact and Ethical Considerations

The proposed STGNN-based railway passenger load forecasting system has significant implications in various
domains:

a. Social Impact: By providing accurate demand forecasts, railway operators can optimize scheduling and
reduce overcrowding, leading to improved passenger satisfaction. Additionally, the system can enhance
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Figure 13. Distribution of Passenger Count

accessibility for elderly and disabled individuals by predicting peak usage times and ensuring priority seating
availability.

b. Economic Impact: Efficient train load management can reduce operational costs for transportation
companies while increasing revenue by accommodating more passengers during peak hours. This can also
encourage a shift from private vehicles to public transport, benefiting urban economies.

c. Environmental Impact: Improved load distribution and optimized scheduling contribute to reducing the
carbon footprint of urban transportation by minimizing energy consumption and reducing reliance on
additional train units.

4. Conclusion

We have investigated the rainbow vertex antimagic coloring of cycle and tadpole graphs, and we have determined
the connection number rvac(G). However, finding the rainbow vertex antimagic connection number is not an easy
task, as it is considered an NP-hard problem if the graph’s order is unbounded. Therefore, we propose the following
open problems: (i) Find the exact values of rvac for some graph operations; (ii) Characterize the existence of
rainbow vertex antimagic coloring for graphs with specific properties; (iii) Apply the obtained theorems to STGNN
multi-step time series forecasting using specific real-world input data.
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