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Abstract We introduced a multinomial logistic regression model to classify the labeled configurations. In this modeling,
we use a power-divergence test to find an estimator for belonging probability in each category. The estimator is introduced
based on different distances. Since the estimator is biased, we modified the belonging probability by multinomial logistic
regression. We evaluate the performance of the proposed technique in the comprehensive simulation study. Also, we
classified the five real data sets using our multinomial logistic model.
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1. Introduction

Shape analysis is one of the areas of multivariate statistics in which the main focus is on the geometric structures of
objects. “The shape of an object is all the geometric information left after filtering that object’s location, scale, and
rotation effects.” This formal definition was first given by Kendall [26] about shape. In order to analyze the shape,
it is first necessary to record the configurations. The two main approaches in recording configurations are the use of
landmarks and curves. Also, there are various methods to register configurations. The two well-known coordinate
systems are introduced by Kendall [25] and Bookstein[5]. While the former is mainly used for theoretical analysis,
the latter is better for exploratory analysis. In this article, the landmark base approach and Kendall shape space are
followed. A valuable resource to get acquainted with shape analysis is [12] and the shape package in R software.
There are several ways to summarize data; one is the classification of data based on one or more standard features.
Therefore, different methods for categorizing shapes have been introduced to classify the shape data. For example,
[9] studied longitudinal shape data clustering in different unlabeled classes using a new mixed model. Their model
created an average shape trajectory for each cluster and used these curves for clustering. Due to shape space
belonging to the manifold space, another clustering approach is using manifold space This approach to clustering
the shapes is similar to using nonlinear image algorithms such as Isomap projection [32]. Another example of this
approach is the image of shapes on linear space and the use of PCs to classify shapes using logistic regression [28].

Binary decisions are one of the common challenges in many practical problems. In data analysis, there are
two different methods for this work: hypothesis testing and binary classification. However, choosing one of these
is often unclear and confusing. One solution to this indeterminacy is to create a relationship between these two
methods. Studies have been done in this regard. For example, a general kernel mixture model on manifold was
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introduced to establish the relationship between two predictor and response variables in [2]. Also, this study
presented a hypothesis test on the hypersphere using the classification model. Another study, [24], introduced
a classification method using LRT statistics. As an application, we can refer to the [13] in the radar target
classification using means of multiple testing. A binary classification was done in [15] as a two sample testing
problem. This research classified the instances by calculating the distance between the test and training instances.
Then the two-sample test was performed under the null hypothesis.

Logistic regression describes the relationship between explanatory variables and a binary response variable.
This modeling is a convenient tool for classifying data with binary responses. A generalization of this technique
can also be defined in terms of multiple responses in the form of multivariate logistic regression. Due to the
limitations of various application problems, researchers have generalized the logistic regression model to overcome
them. For example, [27] extended nominal logistic regression models for binary responses to ordinal responses
by involving the cumulative logits. They also introduced a nonparametric local linear smoothing technique for
testing the goodness-of-fit of ordinal logistic regression models with continuous and categorical covariates. The
local likelihood logit regression for an application to female labor supply is used by [14]. To estimate parameters,
they employed a kernel function and least square methods. As another application of this method, [23] utilized this
approach to classify diabetes mellitus patients. Another method to classify the categorical data is presented by [19].
They presented a kernel smoothing method for multinomial regression. The estimator of the regression functions
is constructed by minimizing a localized power-divergence measure. The estimators include the bandwidth and
a single parameter originating in the power-divergence measure as a smoothing parameter. A valuable study in
the classification of shape data was done by [30]. They introduced the generalized partially linear models with
covariates on the Riemannian manifold. Their model combined two parts, a nonparametric model of shape and a
function of sizes with error distribution models other than a normal distribution.

Most existing classification methods are in the cast of an optimization problem and do not address the issue of
statistical significance. Then, this paper aims to present a multinomial logistic regression (MLR) based on a power-
divergence as a test statistics measure. In this model, the configurations appear as covariates where the power-
divergence measure calculates the difference between configurations based on different distances in shape space.
The remainder of the paper is organized as follows. In Section 2, we briefly review statistical shape analysis. Then,
the MLR for shape data using the power-divergence measure is presented in Section 3. The model’s performance in
the simulation research and five real data is described in Section 4. The paper ends with some concluding remarks.

2. A Brief Background on the Statistical Shape Analysis

In this section, we will explain the preliminary concepts of shape statistics. The content presented in this section
is taken from [12]. In shape statistics, the set of finite points that determine the geometry of an object is called the
landmarks, and the set of all the landmarks considered for an object is called the configuration of that object. In
addition, to specify the configuration is used a k ×m matrix X where k is the number of landmarks and m is the
dimension of configuration. According to Kendall’s definition of shape, the shape is all the remaining geometric
information of an object after filtering out the effects of location, scale, and rotation [26]. Therefore, to get the
shape of a configuration, it is necessary to remove the effects of location, scale, and rotation. Centering matrices
can be used to remove the location effect. One of these centralizers is the Helmert submatrix H . To see the Helmert
submatrix see definition 2.5 from [12]. Hence, matrix HX is called a centered configuration or Helmertized. In the
following, we will explain some concepts used in this article.

Definition 2.1. Let X1 and X2 as two k ×m configurations matrices. Given Zj = HXj/ ∥ HXj ∥, j = 1, 2 which
is called pre-shape, the Riemannian distance ρ(X1, X2) is the closest great circle distance between Z1 and Z2 on
the pre-shape sphere and calculated by

ρ(X1, X2) = arccos(

m∑
i=1

λi),
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where λi’s are the eigenvalues which are obtained from the following singular value decomposition

ZT
1 Z2 = V diag(λ1, ..., λm)UT . (1)

Definition 2.2. The partial Procrustes distance dp(X1, X2) is obtained by matching the pre-shapes Z1 and Z2 as
closely as possible over rotations and is given by

dp =
√
2

(
1−

m∑
i=1

λi

)1/2

.

Definition 2.3. The full Procrustes distance dF (X1, X2) is obtained by matching the pre-shapes Z1 and Z2 as
closely as possible over rotations and scales and is given by

dF =

(
1− (

m∑
i=1

λi)
2

)1/2

.

Definition 2.4. The Riemannian distance in size-and-shape space is given by:

dS(X1, X2) =
√

S2
1 + S2

2 − 2S1S2 cos ρ(X1, X2),

where S1, S2 are the centroid sizes of X1 and X2.

Definition 2.5. Partial Ordinary Procrustes Analysis (OPA) involves Euclidean transformation translation and
rotation match two configurations by minimization of the expression

∥ X2 −X1Γ− 1kγ
T ∥2 . (2)

Using the definition 2.5, the partial OPA fit of X1 onto X2 is:

Xp
1 = X1Γ̂ + 1kγ̂

T ,

where γ̂ and Γ̂ are optimal location and rotation parameters obtained by minimizing the equation (2). The
minimization is carried out over rotations. Now, the optimization procedure can be done easily. Then the partial
OPA solution to the minimization of (2) is given by

γ̂ = 0, Γ̂ = UV T ,

where U and V are special orthogonal matrices (SO(m)) obtained from equation (1). More details about the
optimization procedures can be seen in section 7 from [12].

3. Shape Classification

Let Xi be a configuration matrix and a covariate with a binary response variable Yi(∈ {0, 1}) for i = 1, 2, ..., n.
Then we will present an MLR model to classify the configurations based on their categories. To this end, we first
present a transform of configurations based on the power-divergence measure. Then, an MLR model on size-and-
shape space will be introduced.

3.1. The criterion

For j = 1, . . . , r, suppose that Bj’s are random variables from a beta distribution with parameters aj > 0 and
bj > 0. Next, suppose that Yj are indicator random variables with the property that given Bj = pj ∈ (0, 1), Then
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Y1, ..., Yr are conditionally independent with Bernoulli density where

P (Yj = 1|Bj = pj) = pj .

For n independent trials, each leading to one of the k categories with a fixed success probability, the multinomial
distribution gives the probability of any particular combination of the number of successes for the different
categories. Now, the joint conditional distribution of Y1|B1 = p1, . . . , Yr|Br = pr is the multinomial distribution
MN(p1, . . . , pr; r).

In order to evaluate the estimator, there are some different methods. One of them that can be used for multinomial
data is the goodness-of-fit test. The power-divergence measure is a measure to evaluate the estimator, which is
defined by [6] as

Iλ(p : q) =
1

λ(1 + λ)

r∑
j=1

pj

{(pj
qj

)λ

− 1

}
,

for λ ∈ R, p = (p1, ..., pr) and q = (q1, ..., qr) are probability distribution parameters. By minimizing the power
divergence measure with the Lagrange condition

∑r
j=1 pj = 1. Then, the Lagrange function defined as

L = Iλ(p : q) + ℓ(

r∑
j=1

pj − 1)

where ℓ is Lagrange multiplier The estimator of pj(x) as

p̂j =
qj∑r
j=1 qj

.

To apply the model for shape data, we consider r categories of configuration data Xij , for j = 1, ..., r and
i = 1, ..., nj . Also, we use the two independent samples of Goodall’s test to define our criteria. From section
9 of [12], given Xij as a k ×m random variable from Nkm(µij , σ

2Ikm), the full Procrustes distance of Xij

from any fixed configuration X is d2F (Xij , X) and approximately distributed as τ20χ
2
v distribution where v =

km+m(m+ 1)/2− 1, τ0 = σ/δ0, δ0 is the centroid size of X and σ is small. For r categories of configurations,

Bij(X) =
d2F (Xij , X)∑r
j=1 d

2
F (Xij , X)

,

is a random variable from a beta distribution with parameters v/2 and (r − 1)v/2. So the mean of this classifier is
1/r. Using Bij(X) as an estimation for qj , then a classifier can be defined as

p̂j(X) =

∑nj

i=1 d
2
F (Xij , X)∑r

j=1

∑nj

i=1 d
2
F (Xij , X)

. (3)

Again, the joint conditional distribution of Yi1|Bi1 = p̂1, . . . , Yir|Bir = p̂r is the multinomial distribution
MN(p̂1, . . . , p̂r; r). Since the small value of distance d2F (Xij , X) means two configurations Xij and X are in
the same categories, then p̂j(X) is the failure probability estimation of X belonging to category j. Note that since
our purpose in this paper is to classify the data, there is no difference in using success and failure probability. From
sec 4.2.1 of [12], for shapes that are close together, we have

dp = dF +O(d3F ), ρ = dF +O(d3F ).

For the concentrated configurations, the distances are the same. According to the special features of each of the
introduced distances, they can be used instead of each other. Since size also plays an important role in classifying
shape data in practical examples, the use of dS can be a more suitable criterion for use in the introduced model.
Therefore, dS can be used instead of dF in the equation (3).
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The equation (3) is derived based on the assumptions made about the configuration distribution, and as a result,
it is expected that this estimation may be biased. In other words, the estimator (3) follows a beta distribution with a
mean of 1/r, and the probability values are determined relative to this mean. These probabilities are then classified
according to their proximity to the mean. Moreover, finding a cut point based on the probability p̂j for data with
more than two categories presents additional challenges.

The underlying assumptions of the approach include the multinomial distribution of the response variable and
the linear relationship between covariates and the log-odds in the multinomial logistic regression (MLR) model.
For the power-divergence measure, the assumptions rely on the parametric structure of the shape data, such as the
beta distribution used in Goodall’s test for the full Procrustes distance. While these assumptions provide a basis for
the estimator, deviations may introduce biases in practical applications. For instance, the probabilistic classification
of shape configurations based on distance measures could lead to inaccuracies if the distance metric does not align
with the intrinsic characteristics of the data.

To address these potential biases, we employ the MLR model to refine the probabilities estimated by the power-
divergence measure. The MLR framework mitigates biases by incorporating covariate effects and accounting for
the multidimensional structure of the data. Furthermore, the use of MLR facilitates handling challenges such as
cut-point determination in multi-category classification problems.

Despite its robustness, the method has limitations. The performance of the classifier heavily depends on the
chosen distance measure, such as size-and-shape, Riemannian, or full Procrustes distances. In addition, the
computational cost of iterative optimization in the MLR can pose challenges for large datasets. However, these
limitations are offset by the model’s flexibility and its ability to adapt to diverse datasets through informed selection
of distance metrics.

The following subsection provides a detailed description of the MLR model and the process of parameter
estimation, elaborating on how it integrates with the power-divergence-based probabilities to enhance classification
accuracy.

3.2. MLR Model

One method of examining the relationship between two variables is using regression modeling. In regression
modeling, a model is created to predict the dependent variable based on the independent variable. Usually,
in the created model, both independent and dependent variables are quantitative. However, we may want to
measure the relationship between an independent variable (with continuous values) and a variable dependent with
qualitative values. The standard linear regression method will not work in this case, so MLR should be performed
intermittently. MLR is a classification method for classifying two or more discrete results.

Suppose X is a predictor variable with a nominal response variable Y . In the standard linear regression, the
expected value of the response variable Y is a linear combination of covariates. A simple linear model based on
p(x) can be defined as

E(Y |X = x) = α+ βp(x),

where α is the constant parameter as intercept and p(x) is some deterministic function. When the outcome variable
Y is dichotomous, a choice is to use logistic regression. Other options to analyze these models can be found in [7].
Using the logistic distribution, we can define the conditional mean of Y given x (π(x) = E(Y |x)) as

π(x) =
eα+βp(x)

1 + eα+βp(x)
,

where this is also known as success probability. A simple transformation of π(x) that plays a key role in this paper
is logit transformation that is defined in terms of π(x) as

ln

[
π(x)

1− π(x)

]
= α+ βp(x). (4)

Logistic functions lead to very simple structures (linear logits) for the analysis of the impact of the covariates [1].
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For r categories with p covariate, the MLR model, is defined as the extension of (4) as

gm(x) = ln

[
πm(x)

πk(x)

]
(5)

= βm0 + βm1p1(x) + · · ·+ βmrpr(x),

where the k ∈ {1, . . . , r} is the category’s index taken as a “pivot”. A general expression for the conditional
probability in the r category model is

πj(x) = Pr(Y = j | x) = egj(x)∑r−1
k=1 e

gk(x)
, j = 1, . . . , r − 1.

Let configuration matrices Xij , i = 1, . . . , n, j = 1, . . . , r as explanatory variables in r different classes
correspondence to Yij as nominal response variables. A way to parameterize a relatively general nonlinear function
is to use feed-forward neural networks. For a multinomial log-linear model with r classes, a neural network with r
outputs and the negative conditional log-likelihood is

E = −
n∑

i=1

r∑
j=1

tij log πij , πij =
eyij∑r
j=1 e

yij
,

where tij is the target and yi the output for the i-th example pattern. Since exactly one of the responses will be one
(for the class which occurred) and the others all zero, the pretentious name has often known as ‘softmax’ fitting.
The procedure of fitting the MLR with the neural network method in R software is available in [31] in detail. Also,
the package nnet is considered in this paper for fitting the MLR to classify the shape data.

4. Simulation Study and Real Data Analysis

In this section, we will classify the simulated and real data examples. Then in the first subsection, we simulated
data and classified them based on the MLR model. The second subsection is related to the classification of five real
data sets.

4.1. Simulation Study

In order to evaluate the performance of our model, we use the method described in [29] to simulate configurations.
Then, using the simulated data, we classify them based on our methods. The model is

Xij = βijµjΓij + 1kγ
T
ij + εij , i = 1, ..., n, j = 1, ...,m, (6)

where βij , Γij and γij are scale, rotation and location parameters. Also, µj is j-th reference configuration and εij
is a m× k random error from the multivariate normal distribution. We used the four reference configurations ,
star, heart, circle, and ellipse, with ten landmarks in two dimensions. The schematic representation of references is
shown in Figure 1.

In the model, the parameter β is simulated from the uniform distribution on (1, 2). Also, residuals generated
from centered normal distribution from standard deviation σ = 0.1, 0.2, 0.3, 0.4, 0.5. Since the location and rotation
parameters are less important in the classification procedures, we use the identity matrix for rotation and fix
γij = 0. The simulation process were done 1000 times and estimate the class of each obsevation with leave-one-
out approach. The result can be seen in Tables 1-3 for different values of σ and number of configurations 10,
50 and 100 for each categories based on diferent distances. Some well-known statistical criteria such as pseudo-
R-squares, Akaike information criterion(AIC), Bayesian information criterion(BIC), residual deviance (RD), and
percentage of overall correct prediction (OCP) were reported. By increasing σ, the values of pseudo-R-squares and
OCP decreased, and BIC and RD increased. This pattern there exists in all four used distances. Also, by increasing

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6 A METHOD TO CLASSIFY SHAPE DATA USING MULTINOMIAL LOGISTIC REGRESSION MODEL

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

First Coordinate

S
e

c
o

n
d

 C
o

o
rd

in
a

te

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

First Coordinate

S
e

c
o

n
d

 C
o

o
rd

in
a

te

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

First Coordinate

S
e
c
o
n
d
 C

o
o
rd

in
a
te

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

First Coordinate

S
e

c
o

n
d

 C
o

o
rd

in
a

te

Figure 1. The schema of references configurations: Star, Heart, Circle, Ellipse

the number of configurations, the slope in the plot increased. The amount of standard deviation also increased by
increasing σ. The schematic representation of mentioned result can be seen in Figure 2, 3 and Figures SM-1-SM-
6 in Supplementary materials. In evaluating the accuracy of predictions, it can be seen that the three distances,
Riemannian, partial and full Procrustes, have almost the same performance, and the size-and-shape distance has a
lower accuracy compared to the other three distances (see Figure 4).

4.2. Application

In this subsection, five real data sets are examined. We also intend to compare the method introduced in this paper
with the results of [28] for real data. The five real data sets used in this paper where are taken from the package
shapes from “R” software, which is as follows:

• Schizophrenia (Schi): 13 landmarks selected on near midsagittal 2D slices from magnetic resonance (MR)
brain scans of 13 schizophrenia patients and 14 control people. The data are in two dimensions [4].

• Sand: The data were collected from sea and river sand grains. The sea particles are from the Baltic Sea, and
the river particles are from the Caucasian River Selenchuk. There is 24 sea sand and 25 river sand grain
profiles in two dimensions with 50 landmarks of the sands curve outline [22].

• Macaque (Maca): A case study into sex differences in the crania of a species of Macaca fascicularis (a type
of monkey). The data collected randomly from 9 male and 9 female skulls were registered in 7 landmarks
and 3D. see [11] for more details on this data

• Apes: These data were collected from 167 skulls of great apes. The skull configuration of 30 female (gorf)
and 29 male (gorm) adult gorillas, 26 female (panf) and 28 male (panm) adult chimpanzees, and 24 female
(pongof) and 30 male (pongom) adult orangutans were considered. The data are described in detail by [17],
and [18].
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Table 1. Mean and standard deviation (SD) of Pseudo-R-Square measures (McFadden, CoxSnell, and Nagelkerke) and Model Fitting
Criteria (AIC, BIC, RD and OCP) based on 1000 replications of the model (6) for different values of σ and configurations.

Number of configurations is 10
Size-and-shape distance

Pseudo-R-Square Model Fitting Criteria
σ Est. McFadden CoxSnell Nagelkerke AIC BIC RD OCP

0.1 Mean 0.9955 0.9366 0.9991 24.4814 51.5035 0.4814 0.9368
SD 0.0097 0.0018 0.0019 1.0533 1.0533 1.0533 0.0305

0.2 Mean 0.9918 0.9359 0.9984 24.8862 51.9082 0.8862 0.9334
SD 0.0161 0.0030 0.0032 1.7422 1.7422 1.7422 0.0318

0.3 Mean 0.9885 0.9352 0.9977 25.2408 52.2628 1.2408 0.9317
SD 0.0213 0.0041 0.0044 2.3050 2.3050 2.3050 0.0341

0.4 Mean 0.9884 0.9352 0.9977 25.2517 52.2738 1.2517 0.9296
SD 0.0200 0.0038 0.0041 2.1638 2.1638 2.1638 0.0339

0.5 Mean 0.9865 0.9349 0.9973 25.4628 52.4849 1.4628 0.9217
SD 0.0216 0.0041 0.0044 2.3341 2.3341 2.3341 0.0360

Riemannian distance
0.1 Mean 1 0.9374 1 24.0001 51.0222 0.0001 1

SD 0 0.0000 0 0.0000 0.0000 0.0000 0
0.2 Mean 1 0.9374 1 24.0006 51.0227 0.0006 0.9845

SD 0.0001 0.0000 0 0.0067 0.0067 0.0067 0.0215
0.3 Mean 0.9994 0.9373 0.9999 24.0660 51.0881 0.0660 0.9565

SD 0.0047 0.0009 0.0009 0.5064 0.5064 0.5064 0.0274
0.4 Mean 0.9974 0.9369 0.9995 24.2855 51.3076 0.2855 0.9471

SD 0.0094 0.0018 0.0019 1.0179 1.0179 1.0179 0.0318
0.5 Mean 0.9945 0.9364 0.9989 24.5890 51.6111 0.5890 0.9387

SD 0.0146 0.0028 0.0030 1.5755 1.5755 1.5755 0.0355
Partial distance

0.1 Mean 1 0.9374 1 24.0001 51.0222 0.0001 1
SD 0 0.0000 0 0.0000 0.0000 0.0000 0

0.2 Mean 1 0.9374 1 24.0003 51.0224 0.0003 0.9856
SD 0 0.0000 0 0.0030 0.0030 0.0030 0.0208

0.3 Mean 0.9994 0.9373 0.9999 24.0671 51.0892 0.0671 0.9560
SD 0.0046 0.0009 0.0009 0.5018 0.5018 0.5018 0.0275

0.4 Mean 0.9975 0.9369 0.9995 24.2651 51.2872 0.2651 0.9478
SD 0.0089 0.0017 0.0018 0.9640 0.9640 0.9640 0.0317

0.5 Mean 0.9955 0.9365 0.9991 24.4897 51.5118 0.4897 0.9390
SD 0.0132 0.0025 0.0027 1.4230 1.4230 1.4230 0.0338

Full distance
0.1 Mean 1 0.9374 1 24.0001 51.0222 0.0001 1

SD 0 0.0000 0 0.0000 0.0000 0.0000 0
0.2 Mean 1 0.9374 1 24.0005 51.0225 0.0005 0.9891

SD 0.0001 0.0000 0 0.0073 0.0073 0.0073 0.0185
0.3 Mean 0.9995 0.9373 0.9999 24.0522 51.0743 0.0522 0.9567

SD 0.0039 0.0007 0.0008 0.4188 0.4188 0.4188 0.0290
0.4 Mean 0.9984 0.9371 0.9997 24.1770 51.1990 0.1770 0.9466

SD 0.0070 0.0013 0.0014 0.7518 0.7518 0.7518 0.0296
0.5 Mean 0.9972 0.9369 0.9995 24.2972 51.3192 0.2972 0.9436

SD 0.0093 0.0017 0.0019 1.0082 1.0082 1.0082 0.0324

• Steroid (Ster): The dataset consists of 42 to 61 atoms for each of 31 steroid molecules. This dataset is an array
of dimensions 61× 3× 31. The remaining coordinates are all zero if a molecule has less than 61 atoms. The
steroids have different binding affinities to the corticosteroid-binding globulin receptor, so each molecule has
an activity class of either high, intermediate, or low binding affinity. The aim is to classify steroids based on
their activity class using the MLR model. This dataset has been analyzed before by [10], and [8].

The MLR model was used to classify five real datasets. The results are shown in Table 4. Note that in Table 4, we
leave out each observed and then predict its categories to calculate OCP. As seen for schizophrenia and macaques
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Table 2. Mean and standard deviation (SD) of Pseudo-R-Square measures (McFadden, CoxSnell, and Nagelkerke) and Model Fitting
Criteria (AIC, BIC, RD and OCP) based on 1000 replications of the model (6) for different values of σ and configurations.

Number of configurations is 50
Size-and-shape distance

Pseudo-R-Square Model Fitting Criteria
σ Est. McFadden CoxSnell Nagelkerke AIC BIC RD OCP

0.1 Mean 0.9797 0.9339 0.9961 35.1869 87.9599 11.1869 0.9814
SD 0.0101 0.0019 0.0020 5.5660 5.5660 5.5660 0.0087

0.2 Mean 0.9473 0.9276 0.9894 53.0531 105.8262 29.0531 0.9597
SD 0.0174 0.0035 0.0037 9.6111 9.6111 9.6111 0.0129

0.3 Mean 0.9143 0.9206 0.9819 71.2985 124.0715 47.2985 0.9402
SD 0.0223 0.0049 0.0053 12.3241 12.3241 12.3241 0.0167

0.4 Mean 0.8777 0.9120 0.9728 91.4998 144.2729 67.4998 0.9194
SD 0.0259 0.0063 0.0068 14.3173 14.3173 14.3173 0.0186

0.5 Mean 0.8404 0.9024 0.9626 112.0835 164.8566 88.0835 0.8973
SD 0.0283 0.0076 0.0081 15.5947 15.5947 15.5947 0.0205

Riemannian distance
0.1 Mean 1 0.9375 1 24.0001 76.7732 0.0001 1

SD 0 0.0000 0 0.0000 0.0000 0.0000 0.0003
0.2 Mean 0.9984 0.9372 0.9997 24.8908 77.6639 0.8908 0.9911

SD 0.0040 0.0007 0.0008 2.2340 2.2340 2.2340 0.0059
0.3 Mean 0.9682 0.9317 0.9938 41.5332 94.3063 17.5332 0.9697

SD 0.0179 0.0034 0.0036 9.8531 9.8531 9.8531 0.0118
0.4 Mean 0.9142 0.9205 0.9819 71.3461 124.1191 47.3461 0.9394

SD 0.0246 0.0054 0.0058 13.5588 13.5588 13.5588 0.0160
0.5 Mean 0.8593 0.9074 0.9679 101.6222 154.3953 77.6222 0.9079

SD 0.0275 0.0070 0.0075 15.1553 15.1553 15.1553 0.0196
Partial distance

0.1 Mean 1 0.9375 1 24.0001 76.7732 0.0001 1
SD 0 0.0000 0 0.0000 0.0000 0.0000 0.0003

0.2 Mean 0.9984 0.9372 0.9997 24.8782 77.6512 0.8782 0.9913
SD 0.0040 0.0007 0.0008 2.2314 2.2314 2.2314 0.0060

0.3 Mean 0.9686 0.9317 0.9938 41.3490 94.1221 17.3490 0.9698
SD 0.0178 0.0034 0.0036 9.8446 9.8446 9.8446 0.0119

0.4 Mean 0.9150 0.9207 0.9821 70.8797 123.6528 46.8797 0.9398
SD 0.0244 0.0054 0.0057 13.4715 13.4715 13.4715 0.0160

0.5 Mean 0.8612 0.9079 0.9684 100.5944 153.3674 76.5944 0.9091
SD 0.0272 0.0069 0.0074 15.0122 15.0122 15.0122 0.0194

Full distance
0.1 Mean 1 0.9375 1 24.0001 76.7732 0.0001 1

SD 0 0.0000 0 0.0000 0.0000 0.0000 0.0003
0.2 Mean 0.9985 0.9372 0.9997 24.8416 77.6147 0.8416 0.9932

SD 0.0040 0.0007 0.0008 2.2179 2.2179 2.2179 0.0066
0.3 Mean 0.9690 0.9318 0.9939 41.1296 93.9027 17.1296 0.9702

SD 0.0174 0.0033 0.0036 9.6086 9.6086 9.6086 0.0115
0.4 Mean 0.9178 0.9213 0.9827 69.3634 122.1365 45.3634 0.9416

SD 0.0239 0.0052 0.0056 13.2021 13.2021 13.2021 0.0157
0.5 Mean 0.8677 0.9096 0.9702 97.0104 149.7835 73.0104 0.9131

SD 0.0264 0.0066 0.0070 14.5644 14.5644 14.5644 0.0191

datasets, the performance of three distances, Riemannian, partial, and full, is the same and better compared to size-
and-shape distance. The size-and-shape distance performed the classification better for the sand and apes dataset.
This is because of the importance of size in classifying these types of datasets. The steroids datasets were classified
better by using the full Procrustes distance.

The RMS criteria is a measure used in shape analysis to calculate the variation. This criterion is defined as

RMS =
ds√
k
,
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Table 3. Mean and standard deviation (SD) of Pseudo-R-Square measures (McFadden, CoxSnell, and Nagelkerke) and Model Fitting
Criteria (AIC, BIC, RD and OCP) based on 1000 replications of the model (6) for different values of σ and configurations.

Number of configurations is 100
Size-and-shape distance

Pseudo-R-Square Model Fitting Criteria
σ Est. McFadden CoxSnell Nagelkerke AIC BIC RD OCP

0.1 Mean 0.98005 0.93393 0.99619 46.07474 109.93817 22.07474 0.98545
SD 0.00768 0.00141 0.00151 8.49516 8.49516 8.49516 0.00583

0.2 Mean 0.93958 0.92606 0.98779 90.83986 154.70330 66.83986 0.96105
SD 0.01246 0.00256 0.00273 13.78325 13.78325 13.78325 0.00950

0.3 Mean 0.90222 0.91795 0.97915 132.1748 196.0382 108.1748 0.93893
SD 0.01637 0.00372 0.00397 18.1092 18.1092 18.1092 0.01247

0.4 Mean 0.85593 0.90669 0.96713 183.37619 247.23963 159.37619 0.91334
SD 0.01874 0.00485 0.00518 20.72775 20.72775 20.72775 0.01383

0.5 Mean 0.81320 0.89493 0.95460 230.64461 294.50804 206.64461 0.88749
SD 0.01986 0.00578 0.00617 21.97053 21.97053 21.97053 0.01539

Riemmanian distance
0.1 Mean 1 0.9375 1 24.00014 87.86358 0.00014 0.99998

SD 0 0.0000 0 0.00003 0.00003 0.00003 0.00022
0.2 Mean 0.99627 0.93684 0.9993 28.12136 91.98479 4.12136 0.99348

SD 0.00479 0.00085 0.0009 5.29585 5.29585 5.29585 0.00404
0.3 Mean 0.95513 0.92917 0.99111 73.63328 137.49671 49.63328 0.97005

SD 0.01387 0.00273 0.00291 15.34267 15.34267 15.34267 0.00847
0.4 Mean 0.89036 0.91519 0.97621 145.2865 209.1499 121.2865 0.93385

SD 0.01796 0.00422 0.00450 19.8660 19.8660 19.8660 0.01171
0.5 Mean 0.82990 0.89969 0.95967 212.1686 276.0321 188.1686 0.89872

SD 0.01965 0.00547 0.00583 21.7405 21.7405 21.7405 0.01410
Partial distance

0.1 Mean 1 0.9375 1 24.00014 87.86358 0.00014 0.99999
SD 0 0.0000 0 0.00003 0.00003 0.00003 0.00018

0.2 Mean 0.99633 0.93685 0.99931 28.05795 91.92138 4.05795 0.99336
SD 0.00479 0.00085 0.00090 5.30399 5.30399 5.30399 0.00405

0.3 Mean 0.95530 0.92920 0.99115 73.44581 137.30924 49.44581 0.97004
SD 0.01389 0.00273 0.00291 15.36419 15.36419 15.36419 0.00842

0.4 Mean 0.89087 0.91531 0.97633 144.72514 208.58857 120.72514 0.93414
SD 0.01792 0.00421 0.00449 19.82849 19.82849 19.82849 0.01174

0.5 Mean 0.83100 0.89999 0.96000 210.95948 274.82292 186.95948 0.89934
SD 0.01958 0.00543 0.00579 21.65837 21.65837 21.65837 0.01403

Full distance
0.1 Mean 1 0.9375 1 24.00014 87.86358 0.00014 0.99941

SD 0 0.0000 0 0.00003 0.00003 0.00003 0.00106
0.2 Mean 0.99639 0.93686 0.99932 27.99447 91.85790 3.99447 0.99328

SD 0.00483 0.00085 0.00091 5.34043 5.34043 5.34043 0.00403
0.3 Mean 0.95572 0.92928 0.99124 72.98874 136.85217 48.98874 0.97036

SD 0.01381 0.00271 0.00289 15.27843 15.27843 15.27843 0.00849
0.4 Mean 0.89244 0.91568 0.97673 142.98737 206.85080 118.98737 0.93515

SD 0.01778 0.00415 0.00443 19.67309 19.67309 19.67309 0.01162
0.5 Mean 0.83468 0.90101 0.96108 206.88699 270.75043 182.88699 0.90154

SD 0.01933 0.00530 0.00566 21.38621 21.38621 21.38621 0.01396

where k is the number of landmarks. The small value of RMS means the category is homogeneous. In other words,
the classification was done effectively if the RMS within each category before and after classification was close.
The RMS measure helps us to compare our method in classification with others. We compare our method with the
methods described in [28] and [29] based on the gorilla skulls data. These results are shown in Table 5. As seen in
this table, the RMS quantities before and after clasification with our model are too close together, indicating that
the model presented in this article outperforms the method presented in [28] and [29].

Compared to the clustering-based approach of [29], which does not leverage probabilistic classification
frameworks, our method provides a more precise grouping by incorporating probabilistic estimates derived from
the power-divergence measure. Similarly, the approach in [28] uses principal components but does not integrate
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Figure 2. Mean of Pseudo-R-Square measures (McFadden, CoxSnell, and Nagelkerke) and Model Fitting Criteria (BIC, RD,
and OCP) based on 1000 replications of the model (6) for different values of σ and number of configurations. The plots are
based on Tables 1-3 and size-and-shape distance.

Table 4. McFadden, CoxSnell and Nagelkerke pseudo R-square and the summary of fitting the logistic regression such as
AIC, BIC, residual deviance (RD) and percentage of overal correct prediction (OCP) for data sets schizophrenia, macaques,
sand apes and steroids.

Pseudo R-Square Model Summary
Data Set Method McFadden CoxSnell Nagelkerke AIC BIC RD OCP

Schi Size-and-shape 0.56 0.54 0.72 21.12 26.45 17.12 85.71
Riemannian 0.70 0.62 0.83 15.80 21.13 11.80 92.86

Partial 0.70 0.62 0.83 15.79 21.12 11.79 92.86
Full 0.70 0.62 0.83 15.75 21.08 11.75 92.86

Maca Size-and-shape 0.86 0.70 0.93 7.46 11.02 3.46 88.89
Riemannian 0.99 0.74 0.99 4.37 7.93 0.37 100.00

Partial 0.98 0.74 0.99 4.61 8.17 0.61 100.00
Full 0.95 0.73 0.98 5.24 8.80 1.24 100.00

Sand Size-and-shape 0.60 0.57 0.76 30.90 38.47 26.90 87.76
Riemannian 0.29 0.34 0.45 51.90 59.47 47.90 69.39

Partial 0.30 0.34 0.45 51.84 59.40 47.84 69.39
Full 0.30 0.34 0.45 51.64 59.21 47.64 69.39

Apes Size-and-shape 0.94 0.97 0.99 96.59 128.64 36.59 91.62
Riemannian 0.88 0.96 0.98 129.74 161.80 69.74 83.83

Partial 0.88 0.96 0.99 129.47 161.53 69.47 83.83
Full 0.88 0.96 0.99 128.66 160.72 68.66 83.83

Ster Size-and-shape 0.98 0.88 0.99 13.21 21.22 1.21 96.77
Riemannian 0.98 0.88 1.00 13.05 21.06 1.05 87.10

Partial 0.96 0.88 0.99 14.33 22.34 2.33 96.77
Full 1.00 0.89 1.00 12.20 20.21 0.20 100.00

logistic regression or the flexibility of multiple distance measures as employed in this paper. These distinctions
underscore the advantages of our two-stage classification framework.
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Figure 3. The standard deviation of Pseudo-R-Square measures (McFadden, CoxSnell, and Nagelkerke) and Model Fitting
Criteria (BIC, RD, and OCP) based on 1000 replications of the model (6) for different values of σ and number of
configurations. The plots are based on Tables 1-3 and size-and-shape distance.
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Figure 4. Left to right: OCP of classification with different distance measures size-and-shape (s), Riemannian (r), partial (p),
and full (f) Procrustes for different values of σ and number of configurations 10, 50, and 100, respectively.

Additionally, our method’s ability to incorporate diverse distance measures, such as Riemannian, partial, and
full Procrustes distances, enhances its adaptability to various datasets. This flexibility is especially advantageous
for datasets with complex structures or significant size variations, as demonstrated by the improved performance
on the gorilla skulls data. The close alignment of RMS values before and after classification further reflects the
robustness of our approach in maintaining within-category homogeneity.

Future comparisons could expand upon this analysis by including methods that utilize Riemannian manifold
approaches or kernel smoothing techniques, which are often used in shape analysis. However, the results presented
here strongly suggest that our method is effective and competitive, particularly for datasets where probabilistic
classification and flexible metric selection are critical.
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Table 5. The RMS measure for both groups of male and female gorillas skulls before and after classification (clas.) according
to the method described in [29](a) and [28] (b) and our model (c) based on size-and-shape distance.

Before After After After
clas. clas. (a) clas. (b) clas. (c)

RMS Female 0.0437 0.0469 0.0432 0.0437
Male 0.0499 0.0466 0.0479 0.0499

Mean of 0.0468 0.0468 0.0456 0.0468
two RMS
Distance 0.0586 0.0591 0.0595 0.0586
between means

Table 6. The overall correct prediction (OCP) for the schizophrenia, macaque, sand, ape, and steroid datasets was evaluated
using machine learning methods, including MLR, SVM, k-NN, Naive Bayes, XGBoost, and LDA, with a 70-30 train-test
split approach.

Data set Method MLR SVM k-NN Naive Bayes XGBoost LDA
Schi Size-and-shape 100 100 100 100 100 100

Riemannian 100 100 87.5 100 100 100
Partial 100 100 87.5 100 100 100
Full 100 100 87.5 100 100 100

Maca Size-and-shape 75 75 75 75 75 75
Riemannian 100 100 100 100 100 100
Partial 100 100 100 100 100 100
Full 100 100 100 100 100 100

Sand Size-and-shape 85.71 85.71 78.57 85.71 71.43 85.71
Riemannian 57.14 78.57 71.43 78.57 78.57 71.43
Partial 57.14 78.57 71.43 78.57 78.57 71.43
Full 64.29 78.57 71.43 78.57 71.43 71.43

Apes Size-and-shape 93.75 2.08 39.58 91.67 91.67 97.92
Riemannian 81.25 2.08 14.58 81.25 77.08 85.42
Partial 81.25 2.08 14.58 81.25 77.08 85.42
Full 83.33 2.08 14.58 81.25 77.08 85.42

Ster Size-and-shape 66.67 11.11 66.67 55.56 88.89 55.56
Riemannian 55.56 11.11 66.67 55.56 77.78 55.56
Partial 66.67 11.11 66.67 55.56 88.89 55.56
Full 55.56 11.11 55.56 66.67 77.78 55.56

The method proposed in this paper consists of two stages for classifying shape data. In the first stage, the
estimation (3) is introduced. This estimation, based on the power-divergence measure, calculates probabilities of
data points belonging to specific categories by leveraging shape distances. In the second stage, these probabilities
are used in combination with a logistic regression model to classify the shape data. To enhance classification
efficiency and adaptability, various machine learning models are employed in the second stage. These include
Multinomial Logistic Regression (MLR), Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive
Bayes, Extreme Gradient Boosting (XGBoost), and Linear Discriminant Analysis (LDA).

The OCP values for classifying the real data using these methods are presented in Table 6, based on an 70-
30 train-test split approach. As observed, methods other than MLR occasionally demonstrate better performance.
However, the choice of method should depend on the dataset’s structure and characteristics. Additionally, it is
evident that for datasets with insufficient volume, this approach does not yield optimal results due to the limited
information available for model training and validation.

From a computational perspective, the method’s two stages involve challenges in terms of efficiency, particularly
when applied to large datasets. The calculation of shape distances, especially computationally intensive metrics like
full Procrustes distance, can become a bottleneck. Furthermore, the iterative parameter estimation required in MLR
or alternative machine learning methods adds to the computational load.
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To address these bottlenecks, we suggest leveraging parallel computing techniques to accelerate both the distance
calculations and the model fitting process. Modern libraries in R, such as nnet and Rcpp, can provide optimized
implementations for these tasks, significantly reducing execution time. Additionally, dimensionality reduction
techniques like principal component analysis (PCA) can be employed to preprocess the data, thereby reducing
computational complexity without sacrificing accuracy.

For future improvements, exploring GPU computing or approximate methods for distance calculations, such
as approximate nearest neighbor techniques, could further enhance scalability. These strategies, combined with
algorithmic refinements and distributed computing, could extend the applicability of the proposed method to much
larger datasets while maintaining classification accuracy.

Conclusion

The paper focuses on shape data classification. This classification is done using the MLR model based on the
estimator in shape space. The estimator part of the model is obtained by minimizing the power-divergence measure.
Four different distances, size-and-shape, Riemannian, partial and full Procrustes, were used in the classification
method. In this model, the estimation of the MLR parameters was done using the neural network method. The
performance of the model was evaluated using simulated data. Also, as an application of our classification method,
five real data sets were classified using our MLR model. In the simulation study, since most of the differences
in the configurations were due to their shape structure differences, the size-and-shape distance was less accurate
compared to the other three distances. Versus, in the study of the sand and apes real datasets, the size-and-shape
distance performed better than the others due to the point of view of large size differences. The mentioned method
was compared with the methods described in [28] and [29] based on size-and-shape distance on the gorilla’s skulls
dataset.

Two key factors distinguish shapes: size differences and shape differences. For shapes of the same size, metrics
such as Riemannian distance are particularly effective. Conversely, for shapes that differ primarily in size, size-
and-shape distance measures are more suitable. In the sand and apes datasets, for example, size differences are
prominent across categories. River sands are generally larger than sea sands, and in the ape dataset, male gorillas
are typically larger than other monkeys, although some species exhibit similar sizes. In such cases, size serves as a
critical factor in classification. The result showed that the MLR method in this paper classified data better than the
two methods mentioned in the literature.

For highly similar shapes, most distance metrics produce nearly identical results, making it difficult to classify
each shape accurately. One common challenge in shape classification is the issue of collinearity between shape
and reflection. However, this challenge was not encountered in the analysis of the data presented in this article.
Researchers such as [25] and [16] have proposed methods for calculating distances in these special cases. While
the shapes package performs efficiently on small datasets, its speed becomes a limitation when applied to medium
and large datasets. To address this, researchers like [20] have introduced optimizations to enhance the performance
of certain functions within the package.

While the proposed method demonstrates strong performance, there are several exciting directions for
future research. One potential extension is to handle more complex shapes, such as 3D objects or shapes
with topological features, by incorporating techniques like persistent homology or topological data analysis.
Additionally, incorporating other covariates, such as size, orientation, or texture, alongside shape data, could
enhance classification accuracy, particularly in fields like biometrics and robotics.

Another important direction is to explore multiscale and multimodal analyses, combining shape data with other
data types, such as sensor data, to improve classification performance in applications like medical imaging and
autonomous systems. Improving the method’s computational efficiency is also a key area for future work, with
opportunities to optimize the approach through GPU acceleration, parallel processing, or approximate distance
calculations to handle larger datasets and enable real-time applications.
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Finally, further theoretical advancements could focus on alternative divergence measures or integrating the
method with other statistical models to enhance its robustness and adaptability. These directions will help expand
the method’s applicability and improve its practical use across diverse fields.
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