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Abstract Analyzing proportional data with excessive zeros and complex relationships presents a significant challenge in
various fields. To address this, we propose a developing semiparametric zero-inflated Beta Regression (SPZIBE) regression
model using both penalized smoothing (Ps) spline and P-spline (Pb) estimators, referred to as SPZIBE-Ps and SPZIBE-
Pb, respectively. This model offers a unique combination of flexibility and interpretability, allowing for the modeling of
nonparametric relationships and the identification of factors contributing to zero-inflation. Extensive simulations demonstrate
the SPZIBE-Pb model’s superior model fit and predictive accuracy compared to existing parametric regression models and
semiparametric advanced regression models such as SPZIBE-Ps. The SPZIBE-Pb regression model achieves competitive
results on metrics such as the akaike information criterion (AIC), bayesian information criterion (BIC), deviance statistic
(DVS) and root mean squared error (RMSE), as confirmed by Monte Carlo simulation studies and real-world applications.
The SPZIBE-Pb regression model has broad applications in various fields, including political science, economics, and social
sciences. To demonstrate its utility, we applied it to the varieties of democracy (V-Dem) dataset. In conclusion, the SPZIBE-
Pb regression model offers a robust and versatile tool for analyzing proportional data with excessive zeros and complex
relationships. Its ability to capture both parametric and nonparametric effects, coupled with its interpretability, makes it a
valuable asset for researchers across various domains.

Keywords Semiparametric Models, Penalized Spline, Zero-Inflated Models, Proportional Data and V-Dem Dataset

Mathematics Subject Classification: 62E10, 60K10, 60N05

DOI: 10.19139/soic-2310-5070-2220

1. INTRODUCTION

It is well known that generalized linear models can be used to represent a relationship between a response variable
and a few predictors, provided that the response variable belongs to the exponential family. However, for the
unknown functional relationships between a collection of predictors and a response variable, this approach is not
appropriate. Thus, the semiparametric generalized linear regression models are suitable and powerful extensions
of generalized linear models that can be used to estimate unknown functional relationships between a collection of
predictors and response variables.

Since the beta regression model was first introduced by Ferrari and Cribari-Neto (2004), it has become one of
the common distributions that fall under the generalized linear models and is used in cases for modeling rates and
proportions. This means the beta regression model is used for modeling a continuous response variable, y, that
takes values in the unit interval (0;1). Many authors have modeled data that assume values in the standard unit
interval (Bayer and Cribari-Neto, 2017; Algamal and Abonazel, 2022; Abonazel et al., 2022; Abonazel and Taha,
2023). The importance of beta regression is due to its representation of many phenomena in which the data is
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in the form of proportions and fractions in the open unit interval (0,1). However, proportions data often deviates
from a beta distribution because proportions data often includes a nonnegligible number of zeros. Previous studies
have found that if the trailing zero is not considered, misleading results are obtained. Thus, the zero-inflated beta
(ZIBE) regression model is a suitable and powerful extension of the beta regression model when it suffers from
this problem. More recently, several works using the ZIBE regression model have been published. For example
(Ospina and Ferrari, 2010, 2012; Baione et al., 2021; Tang et al., 2023; Kaulika and Hajarisman, 2023).

Recently, there has been a noticeable development in semiparametric generalized regression models. For
example, Ibacache-Pulgar and Paula (2011) introduced partially linear Student-t models. Yousof and Gad (2017)
introduces a novel Bayesian semiparametric logistic regression model, which extends the semiparametric logistic
regression model (SLoRM) and improves its estimation process. The study compares Bayesian and non-Bayesian
estimation methods for both parametric and semiparametric logistic regression models, applying them to credit
scoring data, for more details about prior and posterior distributions, see Seliem et al. (2025) . Abonazel et al.
(2019) compares the performance of two different smoothing approaches (kernel and spline) in estimating
the nonparametric component of a partially linear model. The Speckman estimation method is used for both
approaches. The study finds that the spline smoothing approach is generally more efficient than the kernel
smoothing approach. El-sayed et al. (2019) proposes a new estimator for the partially linear model based on the
B-spline approach. The proposed estimator is compared with the traditional Speckman estimator and Abonazel’s
estimator. The study finds that the B-spline Speckman estimator is more efficient than the other two estimators
in terms of bias and mean squared error. Elgohary et al. (2019) address the challenges of estimating partially
linear models when dealing with multicollinearity and the presence of outliers in the data. They propose novel
robust-ridge estimators that combine the robustness of least trimmed squares with the bias-reducing properties of
ridge regression. These estimators are developed within the framework of spline smoothing for the nonparametric
component. Through a Monte Carlo simulation study, the authors demonstrate that their proposed estimators
outperform the traditional Speckman-spline estimator in terms of efficiency and reliability, particularly in the
presence of multicollinearity and outliers. For more details on handling outliers, see Seliem (2022). Also, Abonazel
and Gad (2020) introduced a robust estimation method for semiparametric partially linear models based on
partial residuals. Their results showed enhanced performance and robustness compared to conventional methods,
especially when dealing with outliers.Abonazel et al. (2021) uses a semiparametric approach to estimate Engel
curves and measure food poverty in rural Egypt. The partial linear model is used to estimate the Engel curves,
and two estimation methods (double residual estimator and differencing estimator) are compared. The study finds
that the semiparametric approach is more flexible than the traditional parametric approach and can provide more
accurate estimates of food poverty.

Ibacache-Pulgar et al. (2021) studied semiparametric additive beta regression models and developed the
local influence method for these models. Vasconcelos et al. (2022) proposed three semiparametric regression
models (additive, additive partial, and semiparametric) based on the odd log-logistic generalized inverse Gaussian
distribution. Tapia et al. (2019) studied the semiparametric logistic regression model with influential observations.
Logistic regression often performs poorly when dealing with binary data containing an unexpectedly high
proportion of zeros. This is due to the model’s assumption of a specific outcome distribution that may not accurately
represent the real-world data. Aráujo et al. (2021) investigates the factors influencing the academic performance
of undergraduate business students, measured by the number of failing grades. A semiparametric zero-inflated
Negative Binomial (ZINB) regression model was employed to analyze the data, considering various covariates such
as work status, dissatisfaction with affirmative action scholarships, and the difficulty of balancing work and study.
Li and Lu (2022) introduced a semiparametric zero-inflated Bernoulli regression model to overcome this limitation.
Wied (2024) introduces a novel semiparametric distribution regression model with instruments and monotonicity
constraints to address the issue of endogeneity. The model provides a flexible and robust approach to estimating
the entire conditional distribution of an outcome variable. Fendrich et al. (2024) address the challenge of modeling
arsenic contamination in European topsoils, which is often complicated by the presence of censored data. To tackle
this issue, they propose a novel coupled generalized additive models for location, scale and shape (GAMLSS)
and random forest (RF) model. This innovative approach allows for flexible and robust modeling of the entire
distribution of arsenic concentrations, capturing complex relationships with environmental factors. The study’s
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findings contribute to a better understanding of arsenic pollution and its potential health risks. ZIBE regression
models are powerful tools for analyzing proportional data (between 0 and 1). However, their inability to capture
nonparametric relationships with the response variable presents a limitation. To address this, we devolpe a SPZIBE
regression model that incorporates penalized splines (both Pb and Ps estimators). This approach combines the
interpretability of the ZIBE regression model with the flexibility of nonparametric smoothing, allowing for effective
estimation of both parametric and nonparametric effects on proportions. This represents a significant advancement
in the field, as existing research has primarily focused on separate applications: zero-inflated regression models for
count data and semiparametric regression models for continuous data. Our developed SPZIBE regression model
bridges this gap, offering a powerful tool for researchers in various fields like economics, epidemiology, and social
sciences, where data often exhibits complex relationships.

This article is organized as follows: In Section 2 we give a brief sketch of the ZIBE regression model. In section
3, we are concerned with the SPZIBE regression model with a penalized spline estimators (both Pb and Ps) for the
estimation of parametric and nonparametric components. Simulation studies and results are given in Section 4 to
illustrate the advantages of the proposed estimators when simpler models are inadequate. Application, results, and
interpretations to a real dataset are presented in Section 5, to explain the flexibility of the introduced the SPZIBE
regression model via Pb and Ps estimators. Finally, we offer some conclusions in Section 6.

2. Zero-Inflated Beta Regression Model

Since the beta distribution denoted by B(µ, ϕ) is a member of the exponential family, thus that the fractions,
yi ∈ (0, 1)(i = 1, ..., n), are generated independently according to beta distribution, in which the response variable
with shape parameters µ and ϕ has a probability mass function (p.m.f.) given by

fBE(yi;µ, ϕ) =
Γ(ϕ)

Γ(µϕ)Γ[(1− µ)ϕ]
yµϕ−1
i (1− yi)

(1−µ)ϕ−1, yi ∈ (0, 1); i = 1, ..., n (1)

where the Γ(.) is the gamma function. According to equation (1), the mean of yi can be written as

η1i = g(µi) = xT
i β (2)

where X = (x1, x2, . . . , xp)
T denotes the observations on p known covariates, x1 = 1 if the model contains the

intercept term, β = (β1, . . . , βp)
T ∈ Rp is a p-dimensional vector of regression coefficients (p < n), µi = g−1(ηi)

is a function of β, ηi is a linear predictor, and g−1 is inverse of g(.) which is a strictly monotonic and twice
differentiable link function and . Then, from equation (1) the log-likelihood function based on observed data,
yi(i = 1, 2, . . . , n), apart from constant, can be expressed as:

ℓ(β, ϕ) =

n∑
i=1

ℓi(µi, ϕ) = log Γ(ϕ)− log Γ(µiϕ)− log Γ[(1− µi)ϕ] + (µiϕ− 1) log yi + [(1− µi)ϕ− 1] log(1− yi)

(3)
The MLE is the most used method for the estimation of unknown regression parameters of the beta regression

model. Since the equation (3) is nonlinear in β, the solution is obtained using iterative methods. A common such
procedure is the iteratively re-weighted least squares (IRLS) method. Let β(r+1) be the estimated value of MLE of
β with r iterations which may be written as

β(r+1) = β(r) − (I)−1
β(r)S(β)

∣∣
β(r)

Subsequently, the estimated coefficients are defined as

β̂ = (XT ŴX)−1XT Ŵ ℧̂ (4)

where
℧̂ = log(µ̂i) + (yi − µ̂i)/

√
var(µ̂i) and Ŵ = diag(ŵ1, ŵ2, ..., ŵn)
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A Zero-one-inflated beta regression model is an alternative way to model fractions data with an excess of zeroes
and can be formulated as follows:

fΛ(yi;µi, ϕ, π) =

{
π, if yi = Λ

(1− π)fBE(yi;µi, ϕ), if yi ∈ (0, 1)
; Λ = 0, 1 (5)

where the parameter π represents the probability of observing zero (Λ = 0) or one (Λ = 1). When Λ = 0,
fΛ = fZIBE(yi;µ, ϕ, π) in equation (5) is known as a ZIBE distribution, suitable for datasets containing excess
zeros. Conversely, when Λ= 1, it’s called a one-inflated beta distribution, appropriate for datasets with an abundance
of ones. The mean of y and its variance can be written as follows:

E(y) = πΛ + (1− π)µ

and

V ar(y) = (1− π)
µ(1− µ)

ϕ+ 1
+ π(1− π)(Λ− µ)2

Note that the expected value, E(y), is the weighted average of two components: the mean of a degenerate
distribution at Λ (either 0 or 1) and the mean of a beta distribution with parameters µ and ϕ. The weights assigned
to these components are π and 1− π, respectively. Additionally, the conditional expectation of y, given that y lies
between 0 and 1, is equal to µ, and its conditional variance is µ(1−µ)

1+ϕ . This article focuses on ZIBE regression
model, assuming the response variable follows a mixed continuous-discrete distribution with probability mass at
zero. In the context of GLMs, three link functions are commonly employed for ZIBE regression modeling:

η1i = g1(µi) = log

(
µi

1− µi

)
= xT

i β

η2i = g2(ϕ) = log(ϕ) = uT
i α

η3i = g3(πi) = log

(
πi

1− πi

)
= zTi ω

(6)

where β = (β1, . . . , βp)
T ∈ Rp, α = (α1, . . . , αℏ)

T ∈ Rℏ and ω = (ω1, . . . , ωq)
T ∈ Rq are vectors of unknown

regression coefficients, which are assumed to be functionally independent and X = (x1, x2, . . . , xp)
T , U =

(u1, u2, . . . , uℏ)
T and Z = (z1, z2, . . . , zq)

T are observations on p, ℏ, and q known explanatory variables. Also,
we assume that the link function g1, g2 and g3 are strictly monotonic and twice differentiable. There are several
possible choices for the link function g(.) For instance, one can use the logit specification. Then, from equations
(5) and (6), the likelihood function for the ZIBE regression model, with respect to the parameter vectors β, α and
ω, given the observed sample, is given as equation:

L(β, α, ω) =
n∏

i=1

fΛ(yi;µi, ϕ, π) = L1(ω)L2(β, α);

L1(ω) =

n∏
i=1

π
I{Λ}(yi)

i (1− πi)
1−I{Λ}(yi) and L2(β, α) =

∏
i:yi∈(0,1)

fBE(yi;µ, ϕ)

where IA(yi) being an indicator function that equals 1 if yi ∈ A and 0, if yi /∈ A and the log-liklihood function
as follows:

ℓ(β, α, ω) = ℓ(ω) + ℓ(β, α) =

n∑
i=1

ℓi(πi) +
∑

i:yi∈(0,1)

li(µi, ϕi) (7)

where

Stat., Optim. Inf. Comput. Vol. 13, March 2025



MUHAMMAD M. SELIEM, SAYED M. EL-SAYED, AND MOHAMED R. ABONAZEL 1107

ℓi(πi) = I{Λ}(yi) log(πi) + [1− I{Λ}(yi)] log(1− πi),

ℓi(µi, ϕ) = log Γ(ϕi)− log Γ(µiϕi)− log Γ[(1− µi)ϕi] + (µiϕi − 1)y∗i + (ϕi − 2)y∗∗i ,

where y∗i = log
(

1−yi

yi

)
and y∗∗i = log(1− yi) if yi ∈ (0, 1), and y∗i = 0 and y∗∗i = 0 otherwise.

Since equation (7) is nonlinear in δ = (βT , αT , ωT )T , the solution is obtained using iterative methods. A common
such procedure is the iteratively re-weighted least squares (IRLS) or expectation-maximization (EM) algorithms.
Then, the maximum likelihood estimator (MLE) is noted as

δ̂MLE = (β̂T , α̂T , ω̂T )T

3. Semiparametric Zero-Inflated Beta Regression Model

While the ZIBE regression model is a powerful tool, it can struggle to capture complex, nonparametric relationships
between the explanatory variables and the response variable. To address this limitation, we can extend the model
to a SPZIBE regression model. This involves introducing a nonparametric function for a specific continuous
explanatory variable, denoted by t in equation (5). This nonparametric function allows the model to capture the
nonlinear effects of t on the response variable (y) in a data-driven manner. This approach generalizes the ZIBE
regression model by providing more flexibility in modeling complex relationships.

Let Y = (y1, . . . , yn)
T be independent random variables, where Yi ∼ ZIBE(µ, ϕ, π) for i ∈ (1, . . . , n) and

y = (y1, . . . , yn)
T are the corresponding observations of Y . Then, we define the SPZIBE regression model structure

based on equation (5) by the systematic component expressed as

η4i = η1i +m(ti) = xT
i β +m(ti) (8)

where β = (β1, . . . , βp)
T ∈ Rp, X = (x1, x2, . . . , xp)

T , t is an observable continuous covariate, m(·) represents
a smoothing function that flexibly captures the relationship between a continuous explanatory variable and the
response variable. The regression structure in equation (5) combined with the systematic component in equation
(8) defines the SPZIP because it contains parametric and nonparametric terms after replacing η1i in (5) with η4i
in (8). The η4i in equation (8) utilizes a two-part. The first part, η1i, represents a linear predictor related to the
mean through a link function, g(µi). The selection of the link function, denoted by g(·), plays a crucial role in
generalized linear models (GLMs). Common choices include logit: g(µ) = log

(
1−µ
µ

)
, probit: g(µ) = Φ−1(µ)

and complementary log-log: g(µ) = log [− log(µ)]. The second part, m(·), incorporates a smoothing function to
capture the nonlinear effects of the continuous explanatory variable and can be estimated by a penalized spline
estimators.

P-splines, a type of penalized spline, are piecewise polynomial functions constructed using B-spline basis
functions. These basis functions represent the relationship between the nonparametric explanatory variable and
the response variable (dependent variable) in a segmented fashion. These basis functions are subject to a penalty
term that controls the smoothness of the resulting spline. This penalty term ensures the P-spline avoids excessive
wiggliness and better captures the underlying trend in the data. The smooth function m(·) can be approximated by
a linear combination of B-spline basis functions. These B-spline functions are defined by a set of knots, which act
like control points, influencing the smoothness and shape of the resulting curve. Let (a, b) be an interval and define
set of knots a = κ1, ..., κK = b, the B-spline basis functions of degree zero, denoted by B0

s , are defined as follows:

B0
s (t, κ) =

{
1 for κs ≤ t ≤ κs+1;

0 otherwise.
(9)

For d > 0, B-spline basis functions of degree d, denoted by Bd
s , are defined by the recursive formula:
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Bd
s (t, κ) =

t− κs

κs+d − κs
Bd−1

s (t, κ) +
κs+d+1 − t

κs+d+1 − κs+1
Bd−1

s+1 (t, κ); s = 1, ...,K + d+ 1 (10)

Note that additional 2d+ 2 knots are necessary for constructing the full B-spline basis of degree d. Then the
final form of the curve created by a B-spline of degree d is given by

m(t, κ) =

K+d+1∑
s=1

τsB
d
s (t, κ) (11)

The total number of B-spline basis functions used is denoted by I = K + d+ 1 and τi represent the control
points of the B-spline curve (Goepp et al., 2018 ). The SPZIBE regression model can estimated by maximizing
the penalized likelihood function. Then, the semiparametric regression model in equations (6), (7) and (8), are
estimated by maximizing the PS spline log-likelihood function as follows:

ℓ(δ,m) = ℓ(δ)− 1

2
λJ(m); J(m) =

∫ b

a

[
m(2)(t)

]2
dt (12)

where, λ ≥ 0 is smoothing papramter, J(m) is a penalty term, m(2) refers to the second derivatives and a = t1 <
· · · < tn = b. The penalty in equation (12) may be expressed as

J(m) =

∫ b

a

[
m(2)(t)

]2
dt = ΥT

s MsΥs (13)

where Ms is a qs × qs positive semidefinite penalty matrix. However, Eilers and Marx (1996) showed that the
integration of the square of the kth derivative of m(t) is well by a penalty on finite differences of the coefficients
Υs with much less effort, namely ∫ b

a

[
m(2)(t)

]2
dt = ΥT

s PkΥs (14)

where Dk of dimension (n− k)× n and Pk = DT
k ×Dk. More details of the number of knots and the degrees of

freedom can be found in Eilers and Marx (1996). Finally, based on equtaions (12) and (14) the logarithm of the pb
likelihood function can be expressed as:

ℓ(δ,m) = ℓ(δ)−ΥT
s PkΥs (15)

4. Simulations and Results

A Monte Carlo simulation study assessed the performance of ZIBE and SPZIBE regression model. Model
estimation was carried out through penalized log-likelihood optimization using the R statistical software
environment with the GAMLSS package. This research focuses on the SPZIBE regression model. Under the
simulated scenario, the response variable, y, was generated from a ZIBE distribution characterized by parameters
µ, ϕ, and π. The location parameter, µ, was modeled as a linear combination of covariates, (x1 and x2), and a
nonparametric function of a continuous variable, t. A series of simulations were conducted for varying sample
sizes (n = 150, 300, and 450) and replicated 1000 times under ZIBE distributions with zero-inflation proportions
of 15% and 30%. Covariates data, X and t, were generated according to the specifications outlined in Table 1.
Model performance was evaluated using the Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), deviance statistic (DVS), and mean squared error (MSE) under diverse conditions detailed in Table 1. The
goodness-of-fit of the nonparametric function, m(t), and the linear coefficients, β, were quantified by average
estimates (AEs), mean squared error (MSE), and root mean squared error (RMSE). Specifically, the MSEs for
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m(t) and β were calculated as:

MSEL(m̂(t)) =
1

n

n∑
i=1

[m̂(ti)−m(ti)]
2; MSEL(β̂) =

1

N

N∑
j=1

[β̂j − βj ]
2

where m̂ and β̂r are the estimated values of m and βr, respectively. The study evaluated the performance of
several regression models in handling data with excess zeros. The models compared included the SPZIBE with Pb
and Ps estimators, the parametric ZIBE model. A comprehensive simulation study assessed model performance
across various sample sizes and ZI levels using metrics like mean absolute error (MAE), AIC, BIC, DVS, MSE,
and RMSE.

Table 1. The generated variables for simulation and the design of the experiment

Variable Value
m(t) 0.6 + sin(3πt)

t U(-0.5, 0.6)
x1 U(-0.5, 0.5)
x2 U(-0.5, 0.5)
(β1, β2) (-0.6, 0.6)
ϕ and π 0.25
Number of explanatory variables (N ) 2
Replications (L) 1000
Zero-Inflation Ratios (ZI%) 30% and 50%
Sample size (n) 150, 300, and 450

In our simulation study, the SPZIBE-Pb regression model by automatic knot selection consistently outperformed
other models. This superiority was evident in terms of AIC, BIC, DVS, MSE, MAE, and RMSE values,
particularly when the percentage of zero-inflation increased. While the parametric ZIBE model also exhibited good
performance, the SPZIBE-Pb regression model demonstrated a more robust and accurate estimation, especially in
the presence of excess zeroes. Additionally, the SPZIBE-Ps regression model, which incorporates both parametric
and nonparametric components, showed competitive results, particularly in terms of MAE and RMSE.

The SPZIBE-Pb regession model consistently outperformed other models, demonstrating superior performance
across varying sample sizes. This robustness underscores its applicability to a wide range of datasets. As the
sample size increased, the performance of all models improved, but the SPZIBE-Pb regression model consistently
maintained its lead. This suggests that its effectiveness is not limited to specific sample sizes. Based on the results
presented in Tables (2 to 4) and Figures (1 to 3), the SPZIBE regression model consistently outperformed the other
models evaluated including both the parametric ZIBE model and other semiparametric advanced regression models
such as SPZIBE-Ps, reinforcing its superiority in handling excess zeros. Its superior performance, consistency
across different sample sizes, and ability to balance model complexity and prediction accuracy make it a valuable
tool for dealing with data containing excess zeros.
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Table 2. Estimated AIC, BIC, DVS, MAE, and RMSE values of all models when n = 150.

Model Estimator ZI
%

AIC DVS BIC MSE Est. Parametric part Nonparametric part

β̂1 β̂2 MAE RMSE MAE RMSE
ZIBE MLE

15%
117.040 103.040 138.115 1.275 -0.390 0.370 0.141 0.176 − −

SPZIBE Pb -21.807 -50.316 21.107 0.998 -0.610 0.600 0.006 0.007 0.025 0.032
Ps 0.530 -19.470 30.637 1.001 -0.540 0.620 0.049 0.055 0.226 0.259

ZIBE MLE 156.235 142.235 177.310 1.285 -0.38 0.38 0.141 0.176 − −

SPZIBE Pb 30% 334.938 6.151 78.271 0.993 -0.61 0.61 0.005 0.006 0.021 0.029
Ps 54.428 34.428 84.534 1.001 -0.53 0.63 0.048 0.055 0.225 0.258

Table 3. Estimated AIC, BIC, DVS, MAE, and RMSE values of all models when n = 300.

Model Estimator ZI
%

AIC DVS BIC MSE Est. Parametric part Nonparametric part

β̂1 β̂2 MAE RMSE MAE RMSE
ZIBE MLE

15%
229.401 215.401 255.327 1.294 -0.71 0.45 0.149 0.184 − −

SPZIBE Pb -64.366 -95.074 -7.498 0.999 –0.6 0.6 0.014 0.018 0.066 0.081
Ps -16.508 -36.508 20.529 1.002 -0.59 0.59 0.052 0.06 0.242 0.275

ZIBE MLE 307.091 293.091 333.018 1.310 -0.72 0.45 0.149 0.184 − −

SPZIBE Pb 30% 52.199 21.288 109.443 0.996 -0.6 0.6 0.014 0.018 0.064 0.081
Ps 93.043 73.043 130.081 1.005 -0.59 0.58 0.052 0.06 0.242 0.276

Table 4. Estimated AIC, BIC, DVS, MAE, and RMSE values of all models when n = 450.

Model Estimator ZI
%

AIC DVS BIC MSE Est. Parametric part Nonparametric part

β̂1 β̂2 MAE RMSE MAE RMSE
ZIBE MLE

15%
351.652 337.652 380.417 1.305 -0.6 0.53 0.153 0.189 − −

SPZIBE Pb -104.369 -136.38 -38.598 0.999 -0.59 0.6 0.014 0.017 0.062 0.076
Ps -31.714 -51.714 9.378 1.002 -0.53 0.66 0.052 0.06 0.245 0.278

ZIBE MLE 466.234 452.234 494.999 1.32 -0.61 0.53 0.153 0.189 − −

SPZIBE Pb 30% 68.518 36.267 134.783 0.999 -0.59 0.61 0.014 0.017 0.063 0.075
Ps 131.742 111.741 172.834 1.003 -0.54 0.66 0.052 0.06 0.244 0.277
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Figure 1. ZI=15%, n=150.

Figure 2. ZI=15%, n=300.

Figure 3. ZI=30%, n=450.
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5. Empirical Application

To validate the proposed estimator’s efficacy, this section employs the comprehensive Varieties of Democracy
(V-Dem) dataset. There is a group of researchers who used this data, such as Vaccaro (2021), Treisman (2023)
and Ademi and Kimya (2024). Our empirical analysis focuses on a selected group of African countries: Mali,
Niger, and Burkina Faso to investigate the intricate relationship between political institutions and women’s
representation in parliament. Leveraging the V-Dem dataset, we examine the influence of specific political variables
on the proportion of women in national legislatures over a historical period spanning from 1950 to 2015. This
research offers a novel perspective by applying a semiparametric ZIBE model with P-splines to analyze the
relationship between political institutions and women’s representation. By classifying variables, we selected the
optimal model, providing a more nuanced understanding of the complex relationships involved. The dataset
comprises 134 observations, with one response variable (Prop-fem): A measure of the proportion of women in
government, typically in parliament or other legislative bodies, and three explanatory variables (x1, x2 and x3).
These explanatory variables are as follows: Civil Liberties: A measure of the extent to which individuals can
enjoy fundamental freedoms like speech, assembly, and religion without government interference. Corruption:
An indicator of the perceived level of corruption within a country’s government and public institutions. Quota:
A binary variable indicating whether or not a country has implemented a quota system to enhance women’s
representation in government. By analyzing the interplay between these political variables and the proportion of
women in parliament, we aim to shed light on the critical factors influencing women’s political participation in the
selected African countries. The descriptive statistics of the data variables in this study are given in Table 5.

Table 5. Descriptive statistics for the variables

Variable names Description sample size Mean SD
y Prop-fem

134
0.047 0.052

x1 Civil liberties 0.560 0.219
x2 Corruption 0.565 0.195
x3 Quota Binary: 1 = quota exists, 0 = quota does not exist).

Figure 4. Histograms of the response variable.

The histogram reveals a concerning lack of representation for women in parliaments, with a significant number
of countries having no women in their legislative bodies. This underscores the need for policies and initiatives to
promote gender equality in politics. As shown in Figure 4, the proportion of zeros in the dependent variable was
equal to 36.6%, meaning that 36.6% of the countries or regions represented in the data have no women in their
parliaments. This is a significant finding that highlights the underrepresentation of women in political leadership.
Figure 5 presents a correlation matrix that illustrates the relationships among three independent variables: x1, x2

and x3. The heatmap reveals moderate positive correlations between x1 and x2 (0.34).
Furthermore, the correlation between x1 and x3 is positive (.34), indicating that quotas might not always

promote stronger civil liberties. A weak negative correlation exists between x2 and x3 (-0.04), suggesting that
the implementation of gender quotas in government has minimal association with corruption levels. Notably, all
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Table 6. Checking the relationships between the response and explanatory variables

Models Estimate P-value R-square Expected Relation
(1) y ∼ x1 2.7170 < 0.0001 0.188 Parametric
(2) y ∼ x2 0.3581 0.472 0.004 Nonparametric
(3) y ∼ x3 0.93274 < 0.0001 0.16 Parametric

correlation coefficients are below 0.8, indicating an absence of multicollinearity among the variables. This is
favorable for subsequent regression analyses, as it allows for the accurate assessment of each variable’s unique
contribution to the model. Table 6 presents the results of a ZIBE regression model, which analyzes the relationship
between y and the predictors x1, x2, and x3. The model reveals a parametric relationship between y and both
x1 and x3. However, the relationship with x2 is nonparametric. This finding is further supported by the low R2

values for x2 in Figure 6, suggesting that these variables have limited explanatory power. Based on these results,
we recommend including x1 and x3 as parametric terms in the final model, while treating x2 as a nonparametric
term.

Figure 5. Correlation Matrix.

Figure 6. Scatter plots of y VS.ŷ.
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Table 7 presents the DVS, AIC, BIC, and MSE statistics for the fitted models. The SPZIBE-Pb regression model
consistently outperforms the others based on these metrics, indicating a superior fit to the data. Additionally, the
R2 statistics further confirm the SPZIBE-Pb regression model’s efficacy, demonstrating a higher proportion of the
data’s variability explained by this model compared to the alternatives.

Table 7. Fitted Regressions Model with Model selection measures

Model Systematic Components DVS AIC BIC MSE R²
Parametric Model

ZIBE µi = exp(β0 + β1x1 + β2x2 + β3x3) -192 -176 -153 1.12 0.44
Proposed-Semiparametric models

SPZIBE-Pb µi = exp(β0 + β1x1 + β2x3) + pb(x2) -457 -404 -328 0.98 0.92
SPZIBE-Ps µi = exp(β0 + β1x1 + β2x3) + ps(x2) -363 -324 -267 1.02 0.84

Figure 7 refers to the radar plot that compares the performance of three models (ZIBE, SPZIBE-Pb and SPZIBE-
Ps) across three metrics (BICwt, RMSE,AICwt). Each point on the radar represents a model’s performance for a
specific metric. In this plot, values closer to the outer edge indicate better performance. The SPZIBE-Pb regression
model emerges as the superior model, positioned closest to the outer edge for all metrics.

Figure 7. Comparison of Models Performance Indices.

Conversely, the SPZIBE-Ps regression model falls behind, particularly in RMSE where it’s significantly closer
to the center. The ZIBE regression model exhibits a balanced performance across the metrics, lacking any major
weaknesses. In conclusion, the SPZIBE-Pb regression model demonstrates the best overall performance based on
the evaluated criteria. The provided likelihood ratio tests (LRTs) compare the fit of models. In each test, the null
model is simpler than the alternative model, with fewer degrees of freedom. Hypotheses based on the LRT results
as follows:

Hypothesis 1:

• Null Hypothesis (H0): The parametric ZIBE regression model is sufficient.
• Alternative Hypothesis (H1): At least one semiparametric regression model (SPZIBE-Pb or SPZIBE-Ps) is

superior.

Hypothesis 2:

• Null Hypothesis (H0): There is no difference between SPZIBE-Pb and SPZIBE-Ps.
• Alternative Hypothesis (H1): The SPZIBE-Pb regression model is significantly better.
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The likelihood ratio tests (LRTs) in Table 8 strongly support the use of the SPZIBE regression model via
Pb estimator. This suggests that Pb estimator captures crucial nonlinear relationships in the data, leading to a
more accurate representation of the underlying data patterns compared to other regression models like ZIBE
and SPZIBE-Ps. Furthermore, all three LRTs reported in Table 8 show a highly significant rejection of the null
hypothesis (p− value < 0.0001), indicating that simpler models are insufficient. Tests 1 and 2 demonstrate that
both SPZIBE-Pb and SPZIBE-Ps regression models outperform the basic ZIBE regression model. However, Test
3 further highlights the superiority of SPZIBE-Pb regression model, suggesting that the Pb estimator is crucial for
accurately capturing the underlying data patterns.

Table 8. LR tests

Tests Models Hypothesis Statistic (w) P-value
Test 1 ZIBE vs SPZIBE-Pb Hypothesis 1 265.04 < 0.0001
Test 2 ZIBE vs SPZIBE-Ps 170.46 < 0.0001

Test 3 SPZIBE-Ps VS SPZIBE-Pb Hypothesis 2 94.581 < 0.0001

Table 9. MLEs, SEs, and P−value for the fitted SPZIBE-Pb regression Model

Variables Estimate SE P-value
Coefficients of µ

Intercept -4.6031 0.0767 < 0.0001
x1 2.154 0.0885 < 0.0001
x2 0.5515 0.0362 < 0.0001
x3 0.8352 0.0470 < 0.0001

Coefficients of ϕ
Intercept -2.4229 0.4936 < 0.0001
x1 3.0542 0.5793 < 0.0001
x2 -2.7139 0.5713 < 0.0001
x3 -4.7279 0.2482 < 0.0001

Coefficients of π
Intercept 5.3118 0.2297 < 0.0001
x2 -11.2625 1.0553 < 0.0001
x3 -26.9885 20818.47 0.9001

Table 9 presents MLEs, Standard Errors (SEs), and P−values for the fitted SPZIBE-Pb regression model, which
accounts for excess zeros. The model includes three components: µ, ϕ, and π, representing the mean, dispersion,
and zero-inflation probabilities, respectively. In the µ component, all variables (quotaTRUE, civil liberties, and
corruption) exhibit statistically significant positive effects (p < 0.0001), with civil liberties having the strongest
impact. The ϕ component shows significant effects as well, with quotaTRUE and corruption having negative
impacts on dispersion, while civil liberties positively influence dispersion. In the π component, both quotaTRUE
and corruption exhibit significant negative effects on the probability of observing zeros. The small standard errors
relative to the estimates suggest reliable parameter estimation throughout the model. These findings highlight the
complex and nuanced relationships between the predictors and the response variable, emphasizing the importance
of employing flexible modeling approaches like the for the fitted SPZIBE-Pb regression model to accurately
capture these relationships. Figure 8, a moment bucket plot, visually assesses the distribution of residuals from
the fitted SPZIBE-Pb regression model. This plot displays transformed moment skewness against transformed
moment excess kurtosis. The shaded area represents the ”normal region,” where residuals are expected to fall if
the model is well-specified and the error terms are normally distributed. In this analysis, most residuals from the
SPZIBE-Pb regression model fall within the normal region, indicating a good model fit and suggesting that the
error terms are approximately normally distributed. Figure 9(a), known as a detrended transformed Owen’s plot,
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is used to assess the distribution of residuals from a statistical model. It plots the detrended transformed Owen’s
residuals against the ordered quantile residuals. The shaded area represents confidence intervals, and a horizontal
line indicates the expected value under normality. In this specific case, most residuals fall within the confidence
intervals, suggesting a good model fit and normally distributed errors. However, a few points near the edges might
require further investigation. The Q-statistics plot is a diagnostic tool used to assess the normality of residuals in a
centile estimation analysis as shown in Figure 9(b).

Figure 8. Moment Bucket Plot for Residual Diagnostics.

Figure 9. (a) Owen’s plot. (b) Q-statistics plot for Residual Diagnostics.

By visualizing the distribution of residuals across different Z-statistic ranges, the plot helps identify potential
deviations from normality. However, to draw definitive conclusions, additional information about the sample size,
the meaning of color-coded dots, and the specific context of the analysis is needed. Figure 10 contains four
diagnostic plots used to assess residual distribution. Plots (a), (b), and (c), which are normal probability plots,
suggest normality of residuals. Plot (d), a residual vs. index plot, shows no clear pattern, indicating random
distribution. Overall, the plots indicate normally distributed residuals, suggesting a well-fitted model. Further,
the worm plot presented in Panel (a) indicates that there is no evidence of inadequacies in the model since
all the residuals fall in the ‘acceptance’ region inside the two elliptic curves. This study has investigated the
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complex relationship between political institutions and women’s representation in parliament within selected
African countries. By employing a SPZIBE-Pb regression model, we have identified significant nonlinear and
linear relationships between civil liberties, corruption, and women’s representation. Our findings demonstrate that
increasing civil liberties can lead to a more equitable political landscape. Additionally, higher levels of corruption
may be associated with greater female participation in government. While quota systems alone may not directly
influence women’s representation, they can create a more conducive environment for female political participation.
The semiparametric modeling approach used in this study provides a more flexible and robust analysis than
traditional parametric methods. Our results offer valuable insights for policymakers and researchers seeking to
promote gender equality and enhance women’s political participation.

Figure 10. (a) Worm plot. (b-c) Residual Diagnostics. (d) Residuals vs. Order data.

6. Conclusion

This study introduces a SPZIBE regression model that incorporates Pb and Ps estimators to predict a dependent
variable influenced by a nonparametric component. The model effectively handles data with zero-inflation levels
of 15% and 30%. Comprehensive comparisons using AIC, BIC, deviance, MSE, and RMSE metrics consistently
demonstrate the superiority of the proposed model over alternative models, whether parametric models such as
ZIBE or semiparametric advanced models such as SPZIBE-Ps regression model. Visualizations further support
these findings, showing closer alignment to the true function across various conditions. Simulation results
reinforce the model’s robustness and superior performance. The developing SPZIBE regression model with Pb
estimator represents a substantial advancement in modeling proportional data characterized by excessive zeros
and intricate relationships. By adeptly capturing both linear and nonlinear patterns, this model surpasses existing
approaches in terms of model fit and predictive power. Rigorous evaluation using AIC, BIC, DVC, MAE, and
RMSE consistently affirmed the superiority of the proposed model. Its flexibility renders it an invaluable tool for
researchers across diverse fields confronted with zero-inflated data. Future research should explore extensions to
accommodate intricate data structures, such as correlated observations or time-varying covariates, to expand the
model’s applicability.
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