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Abstract Partial least squares path modeling is a statistical method that facilitates examining intricate dependence
relationships among various blocks of observed variables, each characterized by a latent variable. The computation of latent
variable scores is a pivotal step in this method and it is accomplished through an iterative procedure. Within this paper, we
investigate and tackle convergence challenges related to Hanafi-Wold’s procedure in computing components for the PLS-PM
algorithm. Hanafi-Wold’s procedure, as well as alternative procedure, demonstrate the property of monotone convergence
when mode B is considered for all blocks combined with centroid or factorial schemes. However, the absence of proof
regarding the convergence of the error towards zero in Hanafi-Wold’s procedure is a limitation compared to alternative
procedure, which possesses this convergence property. Therefore, this paper aims to establish the convergence of the error
towards zero in Hanafi-Wold’s procedure.
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1. Introduction

Partial Least Squares Path Modeling (PLS-PM) is a statistical methodology extensively applied in structural
equation modeling (SEM), with significant popularity in diverse fields such as business, marketing, and the social
sciences [1, 10]. Its primary purpose is to evaluate relationships between latent (unobservable) variables using
observed variables, commonly referred to as Manifest Variables (MVs), serving as indicators for measuring the
latent variables. PLS-PM enables researchers to explore intricate relationships among multiple blocks of observed
variables, each summarized by a weighted composite and assumed to measure a construct.

Originally developed by Herman Wold [16, 17] , PLS-PM stands as an alternative to covariance structure analysis
[7] in Structural Equation Modeling, emphasizing distinct approaches and resulting in different parametrizations.
Numerous research fields, including behavioral sciences and various disciplines within business research such as
marketing, strategy, and management information systems, have embraced PLS-PM for its specific advantages [8].
It proves particularly valuable in handling complex models, non-normal data, and situations with small sample
sizes, excelling in predictive modeling and managing both measurement and structural models simultaneously.

Herman O. A. Wold’s positioning of PLS-PM as "soft modeling" reflects its adaptability to handle diverse and
less-than-ideal data conditions compared to the more rigid assumptions associated with covariance-based structural
equation modeling.

PLS-PM’s flexibility, ability to handle non-normal data, focus on predictive performance, and ease of use make it
a suitable choice for researchers dealing with small sample sizes. It provides a practical alternative when traditional
SEM methods face challenges in such scenarios.
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1

Overall, the implementation of PLS-PM in various software with graphical interfaces, such as SmartPLS and
PLS-Graph, XLSTAT-PLSPM [15, 18], has played a significant role in making PLS-PM more attractive and
accessible to a broader audience. The ease of use and visualization features contribute to the broader adoption
of PLS-PM in diverse fields of research.

In the formal framework of PLS-PM, the assumption is that the entirety of information concerning the
relationships among K blocks of observable variables, referred to as X1, X2, . . . ,XK , is effectively captured by
K components denoted as z1, z2,. . . , zK . Each component zk serves as an operationalization of the corresponding
construct, denoted as ξk, which is not directly observable. ξk is presumed to represent a block of pk Manifest
Variables (MVs), denoted as Xk = [xk,1, xk,2, . . . , xk,pk

]. These diverse blocks of MVs are measured across the
same set of N observations and organized in matrices X1, X2, . . . ,XK .

In PLS-PM analysis, researchers develop a conceptual path model known as a path diagram (see figure 1). In
this diagram, paths symbolize hypothesized causal relationships between a block of variables, and the magnitude of
these relationships is quantified using parameters ( path coefficients and Loadings). The Manifest Variables (MVs)
xk,j (1 ≤ k ≤ K; 1 ≤ j ≤ pk) are represented as squares, while constructs ξk, (1 ≤ k ≤ K) are depicted as circles
in this visual representation.
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Figure 1. Conceptual Model involving 3 blocks of manifest variables.

PLS-PM involves two models : (i) the outer or measurement model and (ii) the inner or structural model. The
outer model delineates relationships between a latent variable and its observed indicators or manifest variables
through simple regression. Each path in the outer model corresponds to a specific loading, quantifying the strength
of the relationship between a manifest variable and its corresponding latent variable. Formally, the relationship
between each Manifest Variable (MV) xk,j and its corresponding construct ξk is defined by the following equation
(1 ≤ j ≤ pk; 1 ≤ k ≤ K) :

xk,j = π0
k,j + πk,jξk + ϵk,j . (1)

Although there are no necessary assumptions about the error distribution, it is presumed that the errors (ϵk,j) have
a zero mean and are independent of the construct ξk. This assumption is referred to as the predictor specification
condition and entails the following :

E (xk,j |ξk) = π0
k,j + πk,jξk (1 ≤ j ≤ pk, 1 ≤ k ≤ K) (2)
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2 1 INTRODUCTION

The inner model specifies relationships between latent variables. In this model, a dependent construct ξk′ is
connected to the corresponding predictor constructs ξk, with k ∈ Jk′ , Jk′ = {k : ξk′ is predicted by ξk}, and its
prediction is carried out using a simple or multiple regression, as follows

ξk′ = β0
k′ +

∑
k∈Jk′

βk′kξk + δk′ (3)

The standard assumptions concerning the residuals, as suggested by the predictor specification condition, are put
forth.

In the structural model, the relationships between latent variables are quantified by path coefficients. These
relationships can also be represented in a binary manner using an adjacency matrix. This matrix, denoted by
C = [ckl] is a (K,K) binary square matrix where each element indicates whether a link exists between two
constructs. Specifically, ckl = clk = 1 if there is a connection between the constructs ξk and ξl, and ckl = clk = 0
otherwise. Additionally, for each construct, ckk = 0, (for k = 1, 2, · · · ,K).

The adjacency matrix C represents the relationships between latent variables, where each element indicates the
presence or absence of a link between two variables. From this matrix, we define the Signless Laplacian matrix as
D+C, where D = [dkl] is a (K,K) diagonal matrix. Each diagonal element dkk represents the degree of construct
ξk, which is the number of edges incident to vertex ξk. Additionally, the kth diagonal element dkk of D is given
by the sum of the elements in the kth row of C, i.e., dkk =

∑K
l=1 ckl.

The PLS-PM algorithm unfolds in three stages [16]. In the first stage, it iteratively calculates the outer weights
wk, which are crucial for determining the components zk = Xkwk (1 ≤ k ≤ K) as a linear combination of

its MVs, the weights wk are normalized to ensure the component has unit variance,
w⊤

k X⊤
k Xkwk

N
= 1. The

second stage involves estimating model parameters, including loadings and path coefficients (i.e. the parameters
πk,j (1 ≤ j ≤ pk, 1 ≤ k ≤ K) and βk′k in equations (1) and (3) ). The third stage entails the estimation of the
location parameters π0

k,j , (1 ≤ j ≤ pk, 1 ≤ k ≤ K) and β0
k′ .

Currently, there are three iterative procedures available for the computation of components zk (1 ≤ k ≤ K)
[5] : Hanafi-Wold’s, Lohmöller’s and SLM procedures, specifically addressing the initial stage of the PLS-
PM algorithm. Each procedure offers six potential methods for computing the components : (i) two distinct
methodologies for computing the outer weights for each block, designated as mode A or mode B. (ii) Three choices
for all blocks, known as centroid, factorial, or path weighting schemes.

The error associated with these procedures, denoted by δ(s), is the sum of the differences between the estimated
scores of latent variables across two successive iterations, is given as

δ(s) =
1

K

K∑
k=1

∥∥∥z(s+1)
k − z(s)k

∥∥∥2 (4)

where z(s)k and z(s+1)
k represent the components calculated at iteration (s) and iteration (s+ 1), respectively.

The quantity δ(s), representing the overall change in the model between two successive iterations, this error used
to evaluate the accuracy of the algorithms by observing the reduction of this error from one iteration to the next.
The error δ(s) is theoretically expected to converge to zero as iterations progress, indicating that the latent variable
scores become stationary and the model reaches equilibrium. The convergence of this error is a key indicator of
the model’s stability and the accuracy of the estimated scores.

In the following, by the monotone convergence of a sequence of vectors v(s), s = 1, 2, . . ., we refer to the
existence of a criterion f , a continuous bounded function, such that the real-valued sequence f

(
v(s)

)
, s = 1, 2, ...,

obtained by applying f to v(s), is monotone (i.e., either increasing or decreasing). This implies that the function f ,
when applied to the sequence v(s), s = 1, 2, . . ., ensures the monotonicity of the criterion f

(
v(s)

)
over successive

iterations, ultimately leading to convergence. By monotone convergence of a procedure, we mean that the sequence
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3

of components generated by this procedure converges monotonically according to a certain criterion.

The absence of a formal proof of convergence for the PLS-PM algorithm has been a topic of interest and concern
within the research community [3, 5, 6]. While PLS-PM is widely used in practice and has shown effectiveness
in various applications, the lack of a rigorous mathematical proof of convergence has led researchers to seek
and explore this proof. Researchers and practitioners should stay informed about developments in the field to
understand the strengths and limitations of PLS-PM in various contexts [5].

Both SLM and Hanafi-Wold’s procedures have been proven to converge monotonically. [3] demonstrates that
Hanafi-Wold’s procedure exhibits monotone convergence, while [5] establishes the same property for SLM. This
means that the sequence of components generated by each procedure consistently increases a specific criterion,
leading to convergence. In other words, both SLM and Hanafi-Wold’s procedures aim to optimize the following
criterion

(MP)

{
maximize
w1,...,wk

ρ (w1, . . . ,wk) = maximize
w1,...,wK

∑K
l,k=1 (ckl + τdkl)ϕ

(
w⊤

k X
⊤
k Xlwl

)
s.t. w⊤

k X
⊤
k Xkwk = 1, k = 1, . . . ,K

where τ = 0 for the Hanafi-Wold procedure and τ = 1 for the SLM procedure, and ϕ(x) si a real-valued function
of the scalar x ∈ R such that

ϕ(x) =

{
|x| centroid
x2 factorial

(5)

The convergence of the error is another key concept when evaluating the performance of SLM and Hanafi-Wold’s
procedures. Specifically, it refers to whether the sequence

(
δ(s)
)
s=0,1,...

, as defined in equation (4), converges
to zero, ensuring that the gap between successive iterations progressively decreases. This error convergence is
crucial for assessing the accuracy of the algorithms, ensuring that they not only converge monotonically but also
demonstrate continuous improvement in solution quality. In other words, as the algorithm progresses, the error δ(s)

between successive iterations diminishes, leading to more precise convergence toward the optimal solution.

Table 1. Convergence issues and results when mode B is considered for all blocks.

Procedure Scheme Monotony convergence Error convergence

Hanafi-Wold
Centroid Yes Unknown
Factorial [3] Unknown

Path Unknown Unknown

SLM
Centroid Yes Yes
Factorial [5] [5]

Path Unknown Unknown

When mode B is applied to all blocks, table 1 provides a summary of convergence issues and results for the
SLM and Hanafi-Wold procedures. As demonstrated by [5], combining mode B with centroid or factorial schemes
leads to the convergence of the sequence

(
δ(s)
)
s=0,1,...

toward zero in the SLM procedure. Recent research by [4]
supports the convergence of the error in Hanafi-Wold’s procedure. However, the findings presented in [4] are not
sufficient to conclude that the sequence

(
δ(s)
)
s=0,1,...

converges to zero in all cases.
Motivated by this matter, we were inspired to delve into exploration and actively search for a mathematical proof
of convergence of the error of Hanafi-Wold’s procedure.

In the current paper, we will provide an exhaustive and rigorous proof illustrating the convergence of the error
towards zero in the Hanafi-Wold procedure. This analysis will persist in mode B for all blocks combined with
centroid or factorial schemes.
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4 2 SLM AND HANAFI-WOLD’S PROCEDURES

The present paper is organized as follows. In Section 2, we provide a brief overview of the SLM and Hanafi-Wold
procedures. A compact form of Hanafi-Wold’s procedure is presented in Section 3, along with a discussion of its
theoretical outcomes concerning the previously established convergence properties of Hanafi-Wold’s procedure.
The establishment of error convergence for Hanafi-Wold’s procedure is demonstrated in Section 4. Section 5
includes several simulations and comparisons involving Hanafi-Wold’s procedure. Finally, Section 6 outlines the
conclusions and future perspectives. Proofs for several lemmas are provided in Appendix A.

2. SLM and Hanafi-Wold’s procedures

This section provides a synopsis of the SLM and Hanafi-Wold procedures, which involve the calculation
of vectors of weights wk (1 ≤ k ≤ K), used in computing zk = Xkwk; (1 ≤ k ≤ K). The components zk are

constrained to be centered and have unit variance

(
w⊤

k X⊤
k Xkwk

N
= 1

)
. Both procedures entail iteratively

constructing K sequences of components z(s)k = Xkw(s)
k (1 ≤ k ≤ K) and (s = 0, 1, 2, . . .), as described in Table

2.

Table 2. SLM and Hanafi-Wold’s procedures

SLM procedure Hanafi-Wold’s procedure

1. r(s)kl = cor(z(s)k , z
(s)
l ) 1. r(s)kl =

{
cor(z(s)k , z

(s+1)
l ) l < k

cor(z(s)k , z
(s)
l ) l > k

2. θ(s)kl =

{
sign(r(s)kl ) Centroid
r
(s)
kl Factorial

2. θ(s)kl =

{
sign(r(s)kl ) Centroid
r
(s)
kl Factorial

3. Z(s)
k =

∑K
l=1 cklθ

(s)
kl z

(s)
l 3. Z(s)

k =
∑k−1

l=1 cklθ
(s)
kl z

(s+1)
l +

∑K
l=k+1 cklθ

(s)
kl z

(s)
l

4. w̃(s+1)
k =

{
dkkw

(s)
k +X⊤

k Z
(s)
k mode A

dkkw
(s)
k + (X⊤

k Xk)
−1X⊤

k Z
(s)
k mode B

4. w̃(s+1)
k =

{
X⊤

k Z
(s)
k mode A

(X⊤
k Xk)

−1X⊤
k Z

(s)
k mode B

5. w(s+1)
k =

√
n

w̃
(s+1)
k∥∥∥Xkw̃

(s+1)
k

∥∥∥ 5. w(s+1)
k =

√
N

w̃
(s+1)
k∥∥∥Xkw̃

(s+1)
k

∥∥∥
6. z(s+1)

k = Xkw
(s+1)
k 6. z(s+1)

k = Xkw
(s+1)
k

The path weighting scheme is excluded from consideration in this paper. Each iteration begins with an arbitrary
selection of components, and the sequences of components z(s)1 , z(s)2 , . . . , z(s)K are generated following steps 1 to 6.
The iteration continues over (s) until the quantity δ(s) is less than or equal to a predefined threshold.

SLM and Hanafi-Wold’s procedures compute the component based on the selected mode for determining outer
weights (step 4). The decision between the two modes extends beyond the specified measurement model. In
Mode A, a simple linear regression is applied to each Manifest Variable (MV) using the corresponding composite
computed in the inner step (step 3). In contrast, Mode B utilizes multiple linear regression, with each composite
(computed in step 3) regressed against the corresponding Manifest Variables (MVs).

As for the inner scheme (step 2), both procedures depend on two schemes (centroid or factorial), based on
how θ

(s)
kl is calculated, factorial and centroid schemes typically yield very similar results. However, given that the

factorial scheme considers the strength of the correlation, whereas the centroid scheme only takes the sign of the
correlation into account, the factorial scheme is preferable when the correlation between components is close to
zero. Throughout the iteration cycles, the correlation may oscillate from small negative to small positive values.
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The main difference between the two procedures lies in the computation of Z(s)
k (step 3). In SLM procedure,

at iteration (s+ 1), each component z(s+1)
k (1 ≤ k ≤ K) is computed as a function of all the components z(s)k

(1 ≤ k ≤ K) obtained during the previous step (s).
On the other hand, Hanafi-Wold’s procedure operates differently. At iteration (s+ 1), it calculates the

component z(s+1)
k associated with block Xk based on the components from the current iteration (s+ 1):

z(s+1)
1 , z(s+1)

2 , . . . , z(s+1)
k−1 , for the preceding blocks X1,X2, . . . ,Xk−1, as well as the components from the previous

iteration (s): z(s)k+1, z
(s)
k+2, . . . , z

(s)
K for the blocks Xk+1,Xk+2, . . . ,XK . This allows it to adjust better and build on

updated information at each step. In contrast, SLM procedure only uses the results from the previous iteration (s),
making it less dynamic in its adjustments. As a result, it needs to perform more calculations at each iteration to
reach the same solution, which slows down its convergence compared to Hanafi-Wold’s procedure.

3. Compact form of Hanafi-Wold’s procedure

The Hanafi-Wold’s procedure can be presented in a compact form, depending on the two chosen schemes (i.e.,
centroid or factorial). For the centroid scheme, the procedure can be presented as follows :

Σk−1
l=1 ck,l sign

(
r
(
z
(s)
k , z

(s+1)
l

)) (
X⊤

k Xk

)−1
X⊤

k Xlw
(s+1)
l +

+ΣK
l=k+1ck,l sign

(
r
(
z
(s)
k , z

(s)
l

)) (
X⊤

k Xk

)−1
X⊤

k Xlw
(s)
l = λ

(s)
k w

(s+1)
k

w
′(s)
k X⊤

k Xkw
(s)
k

N = 1
k = 1, 2, . . . ,K,

(6)

where  λ
(s)
k = 1√

N

∥∥∥Xk

(
X⊤

k Xk

)−1
X⊤

k Z
(s)
k

∥∥∥ ,
Z

(s)
k = Σk−1

l=1 ck,l sign
(
r
(s)
kl

)
z
(s+1)
l +ΣK

l=k+1ck,l sign
(
r
(s)
kl

)
z
(s)
l .

(7)

For the factorial scheme, the procedure can be presented as follows :
Σk−1

l=1 ck,lr
(
z
(s)
k , z

(s+1)
l

) (
X⊤

k Xk

)−1
X⊤

k Xlw
(s+1)
l +

+ΣK
l=k+1ck,lr

(
z
(s)
k , z

(s)
l

) (
X⊤

k Xk

)−1
X⊤

k Xlw
(s)
l = µ

(s)
k w

(s+1)
k

w
′(s)
k X⊤

k Xkw
(s)
k

N = 1
k = 1, 2, . . . ,K,

(8)

where {
µ
(s)
k = 1√

N

∥∥∥Xk

(
X⊤

k Xk

)−1
X⊤

k Z
(s)
k

∥∥∥ ,
Z

(s)
k = Σk−1

l=1 ck,lr
(s)
kl z

(s+1)
l +ΣK

l=k+1ck,lr
(s)
kl z

(s)
l .

(9)

The compact forms (6) and (8) are directly derived by substituting steps 3 and 4 into step 5 in Hanafi-Wold’s
procedure.

Subsequently, we delve into theoretical findings regarding the previously established convergence properties of
Hanafi-Wold’s procedure.

Theorem 1 presented below establishes the monotonic properties for Hanafi-Wold’s procedure when using mode
B in combination with centroid or factorial schemes.

Theorem 1 ([4]).
Let z

(s)
k = Xkw

(s)
k (1 ≤ k ≤ K), s = 0, 1, 2, ...., be a sequence of LVs scores generated by Hanafi-Wold’s
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6 4 CONVERGENCE OF THE ERROR OF HANAFI-WOLD’S PROCEDURE

procedure, when the centroid or factorial schemes are considered the following equality holds :

ρ
(
z
(s+1)
1 , z

(s+1)
2 , · · · , z(s+1)

K

)
− ρ

(
z
(s)
1 , z

(s)
2 , · · · , z(s)K

)
=

1

N


K∑

k=1

λ
(s)
k

∥∥∥z(s+1)
k − z

(s)
k

∥∥∥2 centroid

K∑
k=1

µ
(s)
k

∥∥∥z(s+1)
k − z

(s)
k

∥∥∥2 factorial

(10)

where ρ is given as the following :

ρ (z1, z2, · · · , zK) =

K∑
k,l=1,k ̸=l

cklϕ (r (zk, zl)) , (11)

ϕ, λ
(s)
k and µ

(s)
k are provided in equations (5), (7) and (9) respectively.

As a direct result of theorem 1 , the monotonic convergence of Hanafi-Wold’s procedure has been established.

In the next section, we will rigorously demonstrate that the error in the Hanafi-Wold procedure converges to
zero. This convergence is a key indicator of the procedure’s stability and efficiency, ensuring consistent results
with each iteration. This step is crucial for validating the method’s relevance in the PLS-PM approach, reinforcing
its position as one of the most effective algorithms.

4. Convergence of the error of Hanafi-Wold’s procedure

When mode B is applied to all blocks combined with the centroid or factorial schemes, an equivalent form for
Hanafi-Wold’s procedure is introduced. The significance of this equivalent form lies in the highlighting of a matrix
that plays an important role in this paper.

By setting uk =

(
X⊤

k Xk

N

)1/2

wk, and Pk = Xk

(
X⊤

k Xk

N

)−1/2

in the optimization problem (MP), this later

becomes

maximize
u∈Ω

ρ(u) =maximize
u1,...,uk

ρ (u1, . . . ,uk) =

K∑
l,k=1

clkϕ
(
u⊤
k P

⊤
k Plul

)
(12)

subject to uk ∈ Ωk for all k = 1, . . . ,K with Ωk =
{
uk ∈ Rpk ;u⊤

k uk = 1
}
,Ω equals the Cartesian product of the

sets Ωk (Ω = Ω1 ⊗ Ω2 ⊗ . . .⊗ ΩK) , and u =
(
u⊤
1 ,u

⊤
2 , . . . ,u

⊤
K

)⊤
.

Lemma 1 announces this equivalent form for Hanafi-Wold’s procedure.

Lemma 1. The sequence of components generated by Hanafi-Wold’s procedure applied to Xk (k = 1, 2 · · · ,K)

and initialized by z(0)k (k = 1, 2 · · · ,K) is identical to the sequence of components generated by the same procedure

applied to Pk = Xk

(
X⊤

k Xk

N

)−1/2

(k = 1, 2 · · · ,K) and initialized by the same z(0)k (k = 1, 2 · · · ,K).

The proof of lemma 1 can be found in appendix A.

Lemma 1 establishes the equivalence between two formulations of Hanafi-Wold’s procedure, as outlined in
table 3. Equivalent findings have been demonstrated for alternative procedures [5]. Additionally, it clarifies the
connection between modes A and B. Mode B can be regarded as a special case of mode A. Specifically, Mode B
applied to data Xk is identical to Mode A applied to Pk because (Pk

⊤Pk)
−1Pk

⊤ = NPk
⊤ (see step 4 in table 3).

Before revealing the convergence result, it is crucial to establish several lemmas that play an important role in
the following.
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Table 3. Two equivalent forms of Hanafi-Wold’s procedure with mode B for all blocks combined with the centroid or factorial
schemes.

Xk (k = 1, . . . ,K) Pk = Xk

(
X′

kXk

N

)−1/2

(k = 1, . . . ,K)

1. r(s)kl =

{
cor(z(s)k , z(s+1)

l ) l < k

cor(z(s)k , z(s)l ) l > k
1. r(s)kl =

{
cor(z(s)k , z(s+1)

l ) l < k

cor(z(s)k , z(s)l ) l > k

2. θ(s)kl =

{
sign

(
r
(s)
kl

)
Centroid

r
(s)
kl Factorial

2. θ(s)kl =

{
sign

(
r
(s)
kl

)
Centroid

r
(s)
kl Factorial

3. Z(s)
k =

k−1∑
l=1

cklθ
(s)
kl z(s+1)

l +

K∑
l=k+1

cklθ
(s)
kl z(s)l 3. Z(s)

k =

k−1∑
l=1

cklθ
(s)
kl z(s+1)

l +

K∑
l=k+1

cklθ
(s)
kl z(s)l

4. w̃(s+1)
k =

{
Xk

⊤Z(s)
k mode A

(Xk
⊤Xk)

−1Xk
⊤Z(s)

k mode B
4. ũ(s+1)

k =

{
Pk

⊤Z(s)
k mode A

Pk
⊤Z(s)

k mode B

5. w(s+1)
k =

√
N

w̃(s+1)
k∥∥∥Xkw̃(s+1)
k

∥∥∥ 5. u(s+1)
k =

√
N

ũ
(s+1)
k∥∥∥Pkũ

(s+1)
k

∥∥∥
6. z(s+1)

k = Xkw(s+1)
k 6. z(s+1)

k = Pku
(s+1)
k

Lemma 2. For any vector
(
u⊤
1 , . . . ,u

⊤
K

)⊤ ∈ Ω and for all k = 1, 2, · · · ,K, we define the function φk as

φk(vk) =
K∑

l=1,l ̸=k

cklθklv⊤k P⊤
k Plul (13)

such that θkl =

{
sign (cor (Pkuk;Plul)) Centroid
cor (Pkuk;Plul) Factorial

Then the maximum of φk on Ωk is achieved for

v̄k =

∑K

l=1,l ̸=k

cklθklP
⊤
k Plul∥∥∥∥∥ ∑K

l=1,l ̸=k

cklθklP⊤
k Plul

∥∥∥∥∥
(14)

The proof of lemma 2 can be found in appendix A.

Lemma 3. For any vector
(
u⊤
1 , . . . ,u

⊤
K

)⊤ ∈ Ω, the following equalities hold :

ρ
(
v̄1, v̄2, · · · , v̄K

)
− ρ
(
u1,u2, · · · ,uK

)
= 2

( K∑
k=1

(
φk

(
v̄k

)
− φk

(
uk

))
=

K∑
k=1

αk ∥Pkv̄k −Pkuk∥2 (15)

with αk = ∥
∑K

l=1,l ̸=k

cklθklP
⊤
k Plul∥ and v̄k, k = 1, . . . ,K given in (14)

The proof of lemma 2 is available in Appendix A.
Theorem 2 below establishes the convergence of the error associated with Hanafi-Wold’s procedure in computing
components for the PLS-PM algorithm.

Theorem 2. Let u
(s)
k be a sequence of weights generated by Hanafi-Wold’s procedure, then the sequence(

u
(s+1)
k − u

(s)
k

)
s=0,1,...

converges to 0, when the centroid or factorial schemes are considered.
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8 5 ILLUSTRATION AND NUMERICAL COMPARISONS

Proof
Let Φk : Ω → Ωk be a function defined as

Φk (u1, . . . ,uK) =

∑K

l=1,l ̸=k

cklθklP
⊤
k Plul∥∥∥∥∥ ∑K

l=1,l ̸=k

cklθklP⊤
k Plul

∥∥∥∥∥
,

and hk : Ω → Ω the function defined as hk (u1, . . . ,uK) = (u1, . . . ,uk−1,Φk(u),uk+1, . . . ,uK) and h : Ω → Ω
the recurrence equation defined as h = hK ◦ . . . ◦ h1. By construction, we have

u(s+1) = h
(
u(s)

)
.

1. Suppose there are two subsequences
{
u(ns)

}∞
s=0

et
{
u(ns+1)

}∞
s=0

of
{
u(s)

}∞
s=0

, such that u(ns) −→
ns→∞

u

and u(ns+1) −→
ns→∞

v̄, v̄ ̸= u.

By continuity of ρ we have ρ(u(ns)) −→
ns→∞

ρ(u) and ρ(u(ns+1)) −→
ns→∞

ρ(v̄).

(i) From the monotonic convergence of
{
ρ
(
u(s)

)}∞
s=0

we get ρ(v̄) = ρ(u).

(ii) From continuity of h, it result that v̄ = h(u).

2. As v̄ ̸= u and v̄ = h(u), thus, there exist k0 ∈ {1, . . . ,K}; v̄k0
̸= uk0

.
Since v̄k0

is the unique maximum of φk0
on Ωk0

, then φk0
(v̄k0

) > φk0
(uk0

) As

ρ(v̄)− ρ(u) = ρ
(
v̄1, v̄2, · · · , v̄K

)
− ρ
(
u1,u2, · · · ,uK

)
= 2

( K∑
k=1

(
φk

(
v̄k

)
− φk

(
uk

))
> 0

This is a contradiction.

As a direct consequence of theorem 2 , the convergence of the error towards zero in Hanafi-Wold’s procedure
has been established.
As for each k ∈ {1, . . . ,K}

∥∥∥z(s+1)
k − z

(s)
k

∥∥∥ ≤ ∥Pk∥
∥∥∥u(s+1)

k − u
(s)
k

∥∥∥ ,
then δ(s) ≤

∑K
k=1

1

K
∥Pk∥2

∥∥∥u(s+1)
k − u

(s)
k

∥∥∥2 , using theorem 2, δ(s) converges to 0.

The convergence of the sequence δ(s) to 0 involves the sequence defined by the difference between two
successive components

(
z(s+1)
k − z(s)k

)
s=0,1,...

converging to 0 for each k ∈ {1, . . . ,K}. This implies that the

latent variable scores become stationary and the model reaches equilibrium. The convergence of this error is a
key indicator of the model’s stability and the accuracy of the estimated scores.

5. Illustration and Numerical Comparisons

5.1. Illustration

After establishing a solid theoretical foundation with rigorous demonstrations, we now turn to the illustration of
these results. This subsection will highlight the practical application of the conclusions using a relevant example
or a well-known model in the literature. The objective is to validate the developed theories and demonstrate their
relevance in real-world contexts.
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5.1 Illustration 9

The European Customer Satisfaction Index (ECSI) is a well-established model for measuring customer
satisfaction across Europe. The ECSI model introduces seven interrelated latent variables (LVs) that provide a
comprehensive framework for assessing factors such as image, customer expectations, perceived value, perceived
quality, customer satisfaction, complaints, and customer loyalty. Widely applied in sectors like marketing and
financial services, the model is grounded in well-established theories of customer behavior, making it applicable
across various industries.

The study conducted by [14] applied the ECSI model to mobile phone consumers, highlighting the importance
of measuring user satisfaction in this sector by considering factors such as image, customer expectations, perceived
value, and perceived quality. A questionnaire was administered to a sample of 250 mobile phone consumers,
resulting in a dataset called ’mobile’ (see [14] for more details). This data set is available in the semPLS package
[9].

We will apply SLM and Hanafi-Wold’s procedures in the analysis of the mobile dataset extracted by [14],
allowing us to evaluate the latent variable scores and validate the model’s convergence properties. The algorithm
iteratively computes the latent variable scores, refining the estimations at each step to ensure more accurate results

By following the classic structure of the ECSI model, we will evaluate the key latent variables that define
customer satisfaction in this sector, including image, customer expectations, perceived value, and perceived quality.
This model will provide actionable insights for enhancing the user experience and improving the competitiveness
of mobile phone providers. Before computing the components, the dataset has been centered and standardized by
columns. The adjacency matrix C and the signless laplacian matrix D+C, associated with this model, are given
as follows

C =



0 1 0 0 1 0 1
1 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 0 1 0 0
1 1 1 1 0 1 1
0 0 0 0 1 0 1
1 0 0 0 1 1 0


, D+C =



3 1 0 0 1 0 1
1 4 1 1 1 0 0
0 1 3 1 1 0 0
0 1 1 3 1 0 0
1 1 1 1 6 1 1
0 0 0 0 1 2 1
1 0 0 0 1 1 3


.

Figures 2 and 3 present the results obtained from applying the SLM and Hanafi-Wold procedures to the mobile
dataset. These figures highlight the differences and similarities between the two algorithms, emphasizing the key
features of the results for each.
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Figure 2. Left: Evolution of the criterion ρ(s) as a function of the number of iterations for the SLM and Hanafi-Wold procedures using
mode B combined with the factorial scheme. Right: Evolution of the criterion ρ(s) as a function of the number of iterations for the SLM
and Hanafi-Wold procedures using mode B combined with the centroid scheme.
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10 5 ILLUSTRATION AND NUMERICAL COMPARISONS

Figure 2 illustrates the evolution of the criterion ρ(s) over the number of iterations for both the SLM and Hanafi-
Wold procedures, using mode B combined with either the centroid or factorial schemes. The process stops once the
fixed threshold of 10−7 is reached. Both procedures, SLM and Hanafi-Wold’s, lead to an increase in the criterion ,
as shown in the figure.

The monotone convergence of the criteria ρ(s), as shown in figure 2 , is one such result, rigorously proven in
theorem 1. Moreover, ρ(s) is a key criterion, reflecting the correlation between the estimated latent variables. As the
algorithm progresses, these correlations increase, indicating that the estimated scores are becoming more consistent
and aligned with each iteration. This improvement in correlation serves as an additional indicator of the model’s
accuracy and convergence, enhancing the robustness of the results.
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Figure 3. Left: Evolution of the error δ(s) as a function of the number of iterations for the SLM and Hanafi-Wold procedures using
mode B combined with the factorial scheme. Right: Evolution of the error δ(s) as a function of the number of iterations for the SLM and
Hanafi-Wold procedures using mode B combined with the centroid scheme.

Figure 3 shows the evolution of the error δ(s) as a function of the number of iterations for the SLM and Hanafi-
Wold procedures, using mode B combined with the centroid or factorial schemes, with the convergence tolerance
set at the same fixed threshold.

Figure 3 illustrates that both SLM and Hanafi-Wold’s procedures reduce the error over time, eventually
converging to zero. Notably, Hanafi-Wold’s procedure converges faster, requiring only 3 iterations compared to
the 10 iterations of SLM in the centroid scheme. Similarly, for the factorial scheme, Hanafi-Wold’s procedure
achieves convergence in just 3 iterations, while SLM takes 15 iterations. This faster convergence indicates that
Hanafi-Wold’s procedure is more efficient in achieving the desired accuracy.

Furthermore, as the complexity of models increases with more latent variables, the difference in the number of
iterations between the two algorithms becomes even more significant. This highlights the importance of choosing a
more efficient algorithm for large-scale models, minimizing computation time and enhancing overall performance.

Moreover to converging more quickly, Hanafi-Wold’s procedure also reduces its calculation error more
effectively than SLM procedure. The differences between successive values decrease more rapidly, indicating better
precision in the adjustments made at each iteration.

The superior performance of Hanafi-Wold’s procedure is explained by its effective use of the most recent results
from iteration (s+ 1), as well as calculations from iteration (s). By exploring optimized directions, it adjusts more
effectively and builds on updated information at each step.

In contrast, SLM procedure only uses the results from the previous iteration (s), making it less dynamic in its
adjustments. As a result, it needs to perform more calculations at each iteration to reach the same solution, which
slows down its convergence compared to Hanafi-Wold’s procedure.

Additionally to converging faster and providing identical solutions to the SLM procedure. Hanafi-Wold’s
procedure also demonstrates greater stability across various simulation scenarios. This reinforces its reliability,

Stat., Optim. Inf. Comput. Vol. x, Month 202x



5.2 Comparison between SLM and Hanafi-Wold’s procedures 11

even when the initial conditions change. Therefore, along with its speed, Hanafi-Wold’s procedure proves to be a
robust and adaptable solution.

The convergence of the error δ(s) towards 0, as shown in figure 3 , is one such result, which is rigorously proven
in theorem 2. The outcomes in figure 3 reveal that the difference between the latent variable scores calculated in two
successive iterations converges towards zero as the iterations progress. This indicates that both algorithms converge
to the same solutions with increasing precision. This phenomenon of errors converging to zero demonstrates not
only the stability of each algorithm but also their ability to refine the scores as the calculations proceed. In other
words, the gradual reduction of the difference between successive scores is a strong sign that the algorithms are
achieving increasingly precise and reliable results.

Furthermore, as we have theoretically shown, the differences between the scores across iterations converge to
zero, meaning that the scores become stationary after a certain point. This convergence ensures that the model
reaches an equilibrium where the estimated scores are sufficiently accurate and reliable. This process of monotone
convergence and error reduction between successive iterations demonstrates the stability of the model and the
continuous improvement of the estimated latent variable scores.

5.2. Comparison between SLM and Hanafi-Wold’s procedures

Following the establishment of the theoretical foundations in Section 4, this subsection focuses on the comparison
between the Hanafi-Wold and SLM procedures. The main objective is to assess their respective performance,
particularly in terms of convergence speed, while also considering other relevant factors such as robustness and
result stability. Although both algorithms exhibit similar convergence properties for mode B associated with the
centroid and factorial schemes, it is essential to compare their performance not only in terms of iterations but also
total computation time.

We will therefore highlight the general characteristics of these two approaches, aiming to shed light on their
strengths and weaknesses in a practical context. Such a comparison will help determine which algorithm is best
suited for specific needs, such as efficiency in speed or the complexity of the model or nature of the data being
analyzed. This criterion allows for quantifying the efficiency of each algorithm and can be decisive in making
one procedure the preferred solution over the other. Additionally, the comparison will also take into account
the implementation conditions in large-scale environments, where performance differences could have significant
consequences.

seven datasets from the literature, as shown in table 4, were used to conduct this analysis. For each dataset,
the corresponding adjacency matrix was provided either in the referenced software or in the original source.
Prior to calculating the components, each block from each dataset was centered and standardized by columns.
For each dataset and for each combination of mode B with the centroid and factorial schemes, 100 randomly
generated initializations were considered. Both procedures were initialized with the same starting point across all
100 attempts. The number of iterations required by each procedure to converge, using a threshold of 10−5 , was
recorded.

Table 4. Names, characteristics and availability of 7 datasets

Data set n K availability (package)
chickenk 351 5 ade4 [2]
rusett 47 3 RGCCA [13]
satisfaction 250 6 plspm [11]
simdata 400 3 plspm [11]
hanafi2007 10 3 semPLS [? ]
simulated 200 4 multiblock [12]
mobi 250 7 semPLS [? ]

Let κ represent the ratio defined as the average number of iterations required by Hanafi-Wold’s procedure divided
by the average number of iterations required by the SLM procedure. This ratio provides a simple yet effective
measure for comparing the efficiency of the two algorithms in terms of convergence speed. If κ ≤ 1, the iteration
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12 6 CONCLUSION AND PERSPECTIVE

gain is in favor of Hanafi-Wold’s procedure, and the relative improvement is expressed as a percentage using the
formula 100(1− κ)%. In this case, a lower κ indicates that Hanafi-Wold’s procedure requires fewer iterations to
reach convergence compared to SLM, thus demonstrating superior efficiency.

Conversely, if κ > 1, the iteration gain favors the SLM procedure. The gain in this scenario is calculated
as 100(1− κ−1)%, highlighting how much more efficient SLM is compared to Hanafi-Wold’s procedure. This
difference in iteration count offers insight into which algorithm may be preferable for certain datasets or
computational contexts, particularly when minimizing the number of iterations is critical for performance.

The results of the iteration and time gains between the two procedures, summarized respectively in tables 5 and
6, provide a detailed comparison and highlight the specific conditions under which each algorithm performs best.
Analyzing these gains allows for an evaluation of the relative strengths of both methods, enabling a well-informed
decision on the most suitable approach for practical applications.

Table 5. Gains on iterations of Hanafi World’s procedure compared to SLM procedure

Dataset Mode B
Name factorial (%) centroid (%)
chickenk 95 87
rusett 83 78
satisfaction 82 77
simdata 87 80
hanafi2007 84 75
simulated 77 75
mobi 81 76

Table 6. Gains on time of Hanafi-Wold’s procedure compared to the SLM procedure

Dataset Mode B
Name factorial (%) centroid (%)
chickenk 94 85
rusett 82 79
satisfaction 76 71
simdata 86 74
hanafi2007 82 74
simulated 74 73
mobi 76 68

As summarized in tables 5 and 6, the Hanafi-Wold procedure is generally faster than the SLM procedure. This is
due to the fact that, at each iteration, the Hanafi-Wold procedure performs K optimizations to enhance the criterion
ρ [3], whereas the SLM procedure only performs one. Consequently, in practical terms, the Hanafi-Wold procedure
produces results more quickly, making it a more efficient option when computation time is a critical factor. This
performance difference highlights the robustness of the Hanafi-Wold’s algorithm, particularly in situations where
numerous iterations would be required with the SLM procedure.

6. Conclusion and perspective

The paper addresses a critical issue in Partial Least Squares Path Modeling: the convergence of the error in the
Hanafi-Wold procedure. We have provided a rigorous mathematical proof demonstrating that the error in Hanafi-
Wold’s procedure converges to zero when mode B is used in combination with centroid or factorial schemes.

Currently, the proof of error convergence is limited to mode B for all blocks combined with centroid or factorial
schemes. While extending this proof to mode A, combined with the three schemes (centroid, factorial, and path
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withing scheme), as well as for mode B with the path withing scheme, would be beneficial, this presents additional
challenges. The complexity arises from the fact that monotonicity results for these alternative configurations,
particularly for mode A and certain weighting schemes, have not yet been established.

It is important to note that the restriction of our proof to these specific configurations stems from the current lack
of monotonicity results for other modes and schemes. The error convergence proof we present relies on monotonic
convergence properties, which, in the context of the procedures we analyzed, have only been demonstrated for
mode B in combination with the centroid and factorial schemes. Therefore, establishing convergence within these
configurations already marks a significant advancement.

The decision to highlight these specific options is directly tied to the availability of robust monotonic convergence
results for mode B. These results have allowed us to prove error convergence within this specific framework.
However, similar results are not yet available for other modes or configurations. Extending the proof to these
additional cases would thus require further advancements in understanding the monotonic convergence properties
of these alternative configurations.

This opens up important avenues for future research. Exploring the possibility of monotonic convergence for
modes like mode A, as well as for other weighting schemes, represents a promising direction for deepening the
understanding of convergence properties in PLS-PM models. These future studies will help reinforce and generalize
the current results to more varied configurations, expanding the practical applications of these methods.

Appendix A

Proof of lemma 1.

The proof is carried out through recurrence on the iteration s, where zk(s) represents the sequence of components
generated by Hanafi-Wold’s procedure applied to (X1, ...,XK) , initialized by the weights

(
w̃(0)

1 , ..., w̃(0)
K

)
. yk

(s)

represents the sequence of components generated by Hanafi-Wold’s procedure applied to (P1, ...,PK), initialized
by the weights

(
ũ(0)
1 , ..., ũ(0)

K

)
such that zk(0) = yk

(0) for each k = 1, 2, · · · ,K.

Suppose zk(s) = yk
(s) for all s = 0, 1, 2, . . . , s0. We have z1(s0+1) = y1

(s0+1). Suppose zl(s0+1) = yl
(s0+1) for

all l < k. Let us show that zk(s0+1) = yk
(s0+1). For each block k at iteration s0 + 1 we have :

z(s0+1)
k = Xkw(s0+1)

k =
√
N

Xkw̃(s0+1)
k∥∥∥Xkw̃(s0+1)
k

∥∥∥
=

√
N

Xk(Xk
⊤Xk)

−1Xk
⊤Zk

(s0)∥∥∥Xk(Xk
⊤Xk)−1Xk

⊤Zk
(s0)
∥∥∥

=
√
N

Xk

(
Xk

⊤Xk

N

)−1

Xk
⊤

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)
∥∥∥∥∥∥Xk

(
Xk

⊤Xk

N

)−1

Xk
⊤

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)∥∥∥∥∥∥

=
√
N

Xk

(
Xk

⊤Xk

N

)−1/2(
Xk

⊤Xk

N

)−1/2

Xk
⊤

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)
∥∥∥∥∥∥Xk

(
Xk

⊤Xk

N

)−1/2(
Xk

⊤Xk

N

)−1/2

Xk
⊤

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)∥∥∥∥∥∥
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Substituting Pk = Xk

(
Xk

⊤Xk

N

)−1/2

, it follows

z(s0+1)
k =

√
N

PkP⊤
k

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)
∥∥∥∥∥∥PkP⊤

k

 K∑
l ̸=k,l=1

cklθ
(s0)
kl z(s0)l

∥∥∥∥∥∥
=

√
N

Pk

(
P⊤
k Pk

)−1

P⊤
k

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)
∥∥∥∥∥Pk

(
P⊤
k Pk

)−1

P⊤
k

(
k−1∑
l=1

cklθ
(s0)
kl z(s0+1)

l +

K∑
l=k+1

cklθ
(s0)
kl z(s0)l

)∥∥∥∥∥
= Pku

(s0+1)
k

= y(s0+1)
k .

Proof of lemma 2.

For any x, y ∈ Rpk , (1 ≤ k ≤ K), we have max
x∈Rpk ,∥x∥=1

x⊤y = ∥y∥.

The Cauchy-Schwarz inequality implies that x⊤y ≤ ∥x∥∥y∥ ≤ ∥y∥. To demonstrate that the value is attained (i.e.,
it is equal to its upper bound), we observe that if x = y/∥y∥, then x⊤y = y⊤y

∥y∥ = ∥y∥.
Then the optimal x given by x∗ = y/∥y∥ if y is non-zero.
For x = vk and y =

∑K

l=1,l ̸=k

cklθklP
⊤
k Plul, we prove lemma 2.

Proof of lemma 3.

(i) Evaluating the function φk defined in (13) respectively in v̄k and uk as follows :

φk (v̄k) =

K∑
l=1,l ̸=k

cklθklv̄
⊤
k P

⊤
k Plul = v̄⊤

k P
⊤
k Pk

 K∑
l=1,l ̸=k

cklθklP
⊤
k Plul


= αkv̄

⊤
k P

⊤
k Pkv̄k

= Nαkcor (Pkv̄k,Pkv̄k)

= Nαk

and

φk (uk) =

K∑
l=1,l ̸=k

cklθklu
⊤
k P

⊤
k Plul = u⊤

k P
⊤
k Pk

 K∑
l=1,l ̸=k

cklθklP
⊤
k Plul


= αku

⊤
k P

⊤
k Pkv̄k

= Nαkcor (Pkuk,Pkv̄k)

it follows that

2 [φk (v̄k)− φk (uk)] = Nαk [2− 2cor (Pkuk,Pkv̄k)] = αk ∥Pkv̄k −Pkuk∥2 (16)
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Considering the following equalities :

ρ (v̄1,u2, . . . ,uK)− ρ (u1,u2, . . . ,uK) = 2 [φ1 (v̄1)− φ1 (u1)]

ρ (v̄1, v̄2, . . . ,uK)− ρ (v̄1,u2, . . . ,uK) = 2 [φ2 (v̄2)− φ2 (u2)]

. . .

ρ (v̄1, v̄2, . . . , v̄K)− ρ (v̄1, v̄2, . . . , v̄K−1,uK) = 2 [φK (v̄K)− φK (uK)] ,

and summing over k, it follows

ρ (v̄1, v̄2, . . . , v̄K)− ρ (u1,u2, . . . ,uK) = 2

K∑
k=1

[φk (v̄k)− φk (uk)] (17)

Substitution (16) in the right of the equality (17) gives :

ρ
(
v̄1, v̄2, · · · , v̄K

)
− ρ
(
u1,u2, · · · ,uK

)
= 2

( K∑
k=1

(
φk

(
v̄k

)
− φk

(
uk

))
=

K∑
k=1

αk ∥Pkv̄k −Pkuk∥2 .
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