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Abstract The probability distribution is of paramount importance in probability theory as it abounds in application
across most disciplines comprising science. It is reported to be used preferentially for actuarial studies on insurance and
finance, in the medical field, agriculture, demography and econometric analyses. The focus of the current research work is to
introduce a novel extension termed as the neutrosophic two-parameter XLindley distribution (NTPXL). Many mathematical
characteristics that model life survival have been developed and studied, involving survival and hazard functions, moment-
generating functions and other tests of average, variance, and standard deviation, skewness and kurtosis. Monte Carlo method
has been applied to investigate the effectiveness of the NTPXL distribution estimate. The results of the simulation conducted
for this study show that the task of estimating with satisfactory accuracy is possible if the sample size is large enough.
The actuality of premature infant staying time data has been used to explain the exact way through which the elaborated
NTPXL distribution should be applied. On the application aspects, it has been shown in the subsequent sections that the
NTPXL distribution is versatile because it can handle classical data as well as data that comprises uncertainties, ambiguity
or imprecision.
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1. Introduction

Neutrosophy, philosophical and mathematical formation, was created by Florentin Smarandache [1]. As for the
general themes, it refers to the interaction of opposites on the one hand and the issue of the study of indeterminacy
on the other hand. Consequently, there appears a new set of approaches, neoclassical logic and set theory, which
are the extensions of classical logic and set theory and aim at solving the problems of inconsistency, indeterminacy,
and imperfect information.

The basis of neutrosophic statistics is that often in the data, there is information, which is vague and cannot be
quantified in the classic sense and therefore cannot be properly processed in the framework of traditional statistical
methods. Neutrosophic statistics is used as a way to handle and do more comprehensive analysis on such data.
The use of fuzzy logic was expanded by [1] to create neutrosophy, which enables the depiction of uncertainty,
ambiguity, and contradiction.

Traditional analysis often suggests that the deeper the data, the clearer it is, hence very often each of the
observations gets a numerical value. However, as it has been observed, in most real life settings, information
can be ambiguous or about which there is limited detail given. To get around these constraints, neosophic statistics
offers ways of dealing with the unpredictable, scarce, and contradictory data [2, 3, 4].
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As already mentioned, neosophic statistics consider three measures that in some ways reflect the particularities of
the evaluated propositions: truth membership, indeterminacy membership, and falsity membership. They all depict
the extent of truth, openness, or falsehood that is correlated with a hypothesis or an observation. These degrees are
represented in a manner similar to a fuzzy set by the membership functions [2, 3].

Neutrophic statistics are used in many different fields, including image processing, data mining, pattern
recognition, and decision-making [4, 5, 6, 7]. It provides a flexible mathematical tool for the analysis and modeling
of complex systems with a high level of imprecision and uncertainty.

The survival statistics are among the essential aspects of neutrosophic information that have to be examined.
Basically, the idea of survival analysis, often termed as event-time analysis or time-to-event analysis, deals with
the assessment of time to certain event of interest. It is commonly applied in social science, engineering, medical
research and other fields where the time related results are issued. Most of the time when conducting research
where the temporal order is not certain or where subjects may not have the same subsequent follow-ups survival
analysis proves to be of great use. It could also be the case that occurrence of a particular event of interest; an event
say of failure, a relapse or even a death, or any other event of interest [8].

Many statistical distributions are widely used in survival analysis to work on time-to-event data. This means
that the features of the data and the assumptions made concerning the underlying survival process drives the
choice of the distribution. These distributions are used for the assessment of time-to-event data in engineering,
social sciences, and other medical disciplines. Different distributions may be chosen depending on the given
characteristics of the data by the researchers as well as the hypotheses appropriate to the study. The literature
review reveals that many articles address neutrosophic probability distribution [8, 20].

Applications for the two-parameter XLindley distribution can be found in many domains, including survival
analysis. In this work, we extended the applications of the two-parameter XLindley distribution to include
neutrosophical data in interval form with a degree of indeterminacy. Many qualities are investigated under the newly
proposed distribution and their applications are described with the help of simulated and real data application.

2. Neutrosophic two-parameter XLindley distribution

Probability distributions help in the portrayal of uncertainty that is prevalent in the data set through depiction of
the patterns of variation. In this regard distribution summaries, the observations into a mathematical form which
contain a few unknown parameters and is the best possible understanding of the basic data generating mechanism.
Survival time distribution which is the probability description of the behavior of length of life is to a certain extent
depends on mode of succusses of the event under consideration. From the given data set, the selection of the
right distribution depends with the extent of prior information regarding the physical characteristics of the process
underlying the observed data [21, 22, 23].

The two-parameter Xlindley distribution (TPXL), which was proposed by Ibrahim, Shah and Ahsan-ul-Haq [24],
is one of the survival time distributions. LetX be continuous random variable follows a XLindley distribution, then
its probability density function (pdf) is [25]:

f (x; γ) =
γ2 (2 + γ + x)

(1 + γ)
2 e−γx , γ > 0;x > 0. (1)

The pdf and the cumulative distribution function (cdf) of the TPXL distribution are, respectively, as [24]:

f (x) =
γ

1 + η
(η +

γ (1 + x)

1 + γ
)e−γx , γ > 0, η > 0 ;x > 0. (2)

F (x) = P (X ≤ x) = 1−
(
1 +

xγ

(η + 1) (1 + γ)

)
e−γx (3)

The concept of neutrosophic probability as a function NP :→ [0, 1]
3was originally presented by

[2], where V is a neutrosophic sample space and defined the probability mapping to take the form
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NP (Ω) = (ch (Ω) , ch (neut Ω) , ch (anti Ω)) = (ψ1, ψ2, ψ3 ) with0 ≤ ψ1, ψ2, ψ3 ≤ 1 and 0 ≤ ψ1 +
ψ2 + ψ3 ≤ 3. The term Θ represents the set of sample space,R represents the set of real numbers, and ξ denotes

a sample space event, XN and YN denote neutrosophic random variable.
Definition 1 Consider Xis the real-valued crisp random variable, which has the following definition: X : Θ →

R
where Θ is the event space and XN neutrosophic random variable as follows:
XN : Θ → R (I) and XN = X + I , where I represents indeterminacy.
Theorem 1 Let XN = X + I be the neutrosophic random variable and the CDF and pdf of XNare [13],

respectively
FXN

(x) = FX (x − I) , and fXN
(x) = fX (x − I) ,

Theorem 2 Let XN = X + I be the neutrosophic random variable, then the expected value and variance can
be derived as follows: E (XN ) = E (X) + Iand V (XN ) = V (X) [13].

By supposing the neutrosophic variable could be expressed as: xN = xL + xUINwhere IN ∈ {IL, IU} and xL
and xUIN denote the determined and indeterminate parts, respectively, the neutrosophic random variable xN ∈
{xL, xU} which follows the TPXL distribution has neutrosophic parameters as: γN ∈ {γL, γU} and ηN ∈ {ηL, ηU}
where the letters L and U are the lower values and the upper values, respectively.

Then, the neutrosophic CDF and pdf of neutrosophic TPXL (NTPXL) distribution is given by Eq. (4) and Eq.
(5), respectively

f (xN ) =
γN

1 + ηN
(ηN +

γN (1 + xN )

1 + γN
)e−γNxN , γN > 0, ηN > 0;xN > 0. (4)

F (xN ) = 1−
(
1 +

xNγN
(ηN + 1) (1 + γN )

)
e−γNxN (5)

Figures 1 and 2 show the NTPXL distribution for different values of its parameters. Relating to Eq. (4) and Eq.
(5), the neutrosophic survival and hazard functions of the NTPXL distribution are defined in Eq. (6) and Eq. (7),
respectively,

S (xN ) =

(
1 +

xNγN
(ηN + 1) (1 + γN )

)
e−γNxN , xN > 0. (6)

h (xN ) =
γN (ηN (1 + γN ) + γN (1 + xN ))

((ηN + 1) (1 + γN ) + xNγN )
, xN > 0. (7)

Figure 1. The pdf of NTPXL when γN ∈ [0.4, 0.6] and βN ∈ [0.5, 0.7]

Stat., Optim. Inf. Comput. Vol. x, Month 202x



F. AL-MUTAR AND Z. ALGAMAL 3

Figure 2. The pdf of NTPXL when γN ∈ [0.3, 0.5] and βN ∈ [0.3, 0.7]

3. Parameter Estimation of NTPXL Distribution

Five methods for estimating the NTPXL distribution parameters are described: (1) the maximum likelihood Method
(MLE), (2) Anderson Darling method (AD), (3) Cramér-von Mises method (CVM), (4) weighted least-squares
method (WLS), and (5) the maximum product spacing method (MPS).

3.1. MLE method

Assuming each of the random samples x1 , x2 , . . . , xn follows NTPXL distribution, the log-likelihood function is
given by

ℓ (γN , ηN ) = n log γN +

n∑
iN=1

log

(
ηN +

γN (1 + xiN )

1 + γN

)
− γN

n∑
i=1

xiN − n log (1 + γN ) . (8)

The MLE of the parameters γNand ηN are the solutions of the following simultaneous equations:

∂ℓ

∂γN
= 0,

∂ℓ

∂ηN
= 0

∂ℓ (γN , ηN )

∂γN
=

n

γN
+

n∑
iN=1

(1 + xiN )

(1 + γN )
2

(
ηN +

γN(1+xiN )
1+γN

) −
n∑

iN=1

xiN (9)

∂ℓ (γN , ηN )

∂ηN
=

n∑
iN=1

1(
ηN +

γN(1+xiN )
1+γN

) − n

1 + ηN
= 0 (10)

3.2. AD method

The AD estimates of the parameters γNand ηN are attained by minimizing the following equation with respect to
the unknown parameters:

AD (γN , ηN ) = −n−
n∑

iN=1

(2iN − 1)

n

[
log (F (Xi:nN ; γN , ηN ))

+ log (1− F (Xi:nN ; γN , ηN ))

]
(11)
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3.3. CVM method

The CVM estimates
⌢
γN and

⌢
ηN are derived by minimizing the following expression with respect to NTPXL

parameters as:

CVM (γN , ηN ) =
1

12n
+

n∑
iN=1

(
F (Xi:nN ; γN , ηN )− 2iN − 1

2n

)2

(12)

3.4. WLS method

The WLS estimates
⌢
γN and

⌢
ηN are derived by minimizing Eq. (13) with respect to NTPXL parameters as:

WLS (γN , ηN ) =

n∑
iN=1

(1 + n)
2
(2 + n)

iN (n− iN + 1)

[
F (Xi:nN ; γN , ηN )− iN

n+ 1

]2
. (13)

3.5. MPS method

The estimation of NTPXL parameters using MPS method can be obtained by maximizing Eq. (14) as:

MPS (γN , ηN ) =
1

n+ 1

n+1∑
iN=1

log (F (Xi:nN ; γN , ηN )− F (Xi−1:nN ; γN , ηN )) , (14)

4. Simulation results

To investigate the efficacy of the NTPXL of the neutrosophic parameters γNand ηN of the suggested TPXL,
simulation research is conducted in this section. A random sample of sizes, n = 30, 50, 150 and 250, is created from
NTPXL using different amalgams of neutrosophic parameters for the simulation. Estimated MLEs, AD, CVM,
WLS, and MPS of the neutrosophic parameters for 1000 replications at different sample sizes using simulated
data. Thus, for all sample sizes, the neutrosophic mean square error (NMSE) and the neutrosophic average bias
(NAB) are derived. The superior neutrosophic estimator’s properties are evaluated using the estimations of NAB
and NMSE [26, 27, 28].

Three cases of the NTPXL neutrosophic parameters are determined: Case 1: γN ∈ [0.5, 0.8], ηN ∈ [0.6, 1], Case
2: γN ∈ [0.8, 1], ηN ∈ [1, 1.2], and Case 3: γN ∈ [1.2, 1.6], ηN ∈ [1.2, 1.7]. The results are given in Tables 1 – 6.

From Tables 1, 3, and 5, in terms of NAB, it is seen that, as predicted, the NAB for γ̂N and η̂N decrease as sample
sizes rise. It can also be deduced from Tables 1, 3, and 5 that the NAB values of the five estimators are varying as
expected. The NAB values of γ̂N and η̂N for MPS, WLS, and CVM are higher than MLE and AD estimators. For
example, from Table 1 when n=30, the NAB values of γ̂N for MPS, WLS, and CVM is higher than MLE estimator
by 71.27%, 65.05%, and 55.37% for the lower bound of γ̂N . While NAB values were higher than MLE by 71.01%,
65.21%, and 55.15% for the upper bound of γ̂N .

Concerning the NMSE values, and for all sample sizes, the MLE estimator of γ̂Nand η̂N has the smallest values
comparing with AD, CVM, WLS, and MPS estimators. Further, it is noticed from Tables 2, 4, and 6 that when the
γ̂N and η̂N increase regardless the values of the n, the NMSE are decreasing.

5. Real Application

From our study, we have used premature infant staying time data that we gathered from Kirkuk hospital, Iraq for
about six months to apply our proposed NTPXL distribution. The time corresponds to the number of days that the
premature infant is alive after discharge from the hospital. The subject population in the study is 120 premature
infants. However, premature infant times are not recorded accurately, the member countries need to develop clear
and accurate time definitions. Therefore, defining the number of days from the birth of a premature infant with
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Table 1. Average values of NAB for case 1

n 30 50 150 250
MLE γ̂N [0.1146,0.1161] [0.1122,0.1137] [0.1098,0.1113] [0.1074,0.1089]

η̂N [0.1247,0.1273] [0.1223,0.1249] [0.1199,0.1225] [0.1175,0.1201]
AD γ̂N [0.18547,0.1872] [0.1833,0.1848] [0.1809,0.1824] [0.1785,0.1801]

η̂N [0.1958,0.1984] [0.1934,0.196] [0.191,0.1936] [0.1886,0.1912]
CVM γ̂N [0.2568,0.2583] [0.2544,0.2559] [0.252,0.2535] [0.2496,0.2511]

η̂N [0.2669,0.2695] [0.2645,0.2671] [0.2621,0.2647] [0.2597,0.2623]
WLS γ̂N [0.3279,0.3294] [0.3255,0.3271] [0.3231,0.3246] [0.3207,0.3222]

η̂N [0.338,0.3406] [03356,0.3382] [0.3332,0.3355] [0.3308,0.3334]
MPS γ̂N [0.399,0.4005] [0.3966,0.3981] [0.3942,0.3957] [0.3918,0.3933]

η̂N [0.4091,0.4117] [0.4067,0.4093] [0.4043,0.4069] [0.4019,0.4045]

Table 2. Average values of NMSE for case 1

n 30 50 150 250
MLE γ̂N [0.3203,0.3218] [0.3179,0.3194] [0.3155,0.317] [0.3131,0.3146]

η̂N [0.3304,0.333] [0.328,0.3306] [0.3256,0.3282] [0.3232,0.3258]
AD γ̂N [0.3914,0.3929] [0.389,0.3905] [0.3866,0.3881] [0.3842,0.3857]

η̂N [0.4015,0.4041] [0.3991,0.4017] [0.3967,0.3993] [0.3943,0.3969]
CVM γ̂N [0.4625,0.464] [0.4601,0.4616] [0.4577,0.4592] [0.4553,0.4568]

η̂N [0.4726,0.4752] [0.4702,0.4728] [0.4678,0.4704] [0.4654,0.468]
WLS γ̂N [0.5336,0.5351] [0.5312,0.5327] [0.5288,0.5303] [0.5264,0.5279]

η̂N [0.5437,0.5463] [0.5413,0.5439] [0.5389,0.5415] [0.5365,0.5391]
MPS γ̂N [0.6047,0.6062] [0.6023,0.6038] [0.5999,0.6014] [0.5975,0.599]

η̂N [0.6148,0.6174] [0.6124,0.615] [0.61,0.6126] [0.6076,0.6102]

Table 3. Average values of NAB for case 2

n 30 50 150 250
MLE γ̂N [0.1099,0.1114] [0.1075,0.109] [0.1051,0.1066] [0.1027,0.1042]

η̂N [0.12,0.1226] [0.1176,0.1202] [0.1152,0.1178] [0.1128,0.1154]
AD γ̂N [0.181,0.1825] [0.1786,0.1801] [0.1762,0.1777] [0.1738,0.1753]

η̂N [0.1911,0.1937] [0.1887,0.1913] [0.1863,0.1889] [0.1839,0.1865]
CVM γ̂N [0.2521,0.2536] [0.2497,0.2512] [0.2473,0.2488] [0.2449,0.2464]

η̂N [0.2622,0.2648] [0.2598,0.2624] [0.2574,0.26] [0.255,0.2576]
WLS γ̂N [0.3232,0.3247] [0.3208,0.3223] [0.3184,0.3199] [0.316,0.3175]

η̂N [0.3333,0.3359] [0.3309,0.3335] [0.3258,0.3311] [0.3261,0.3287]
MPS γ̂N [0.3943,0.3958] [0.3919,0.3934] [0.3895,0.391] [0.3871,0.3886]

η̂N [0.4044,0.407] [0.402,0.4046] [0.3996,0.4022] [0.3972,0.3998]

alive discharge without having explicit information is always problematic supervising unpredictable, insufficient,
and incongruent data. The data related to exploratory factor analysis is given in Table 7.
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Table 4. Average values of NMSE for case 2

n 30 50 150 250
MLE γ̂N [0.2837,0.2852] [0.2813,0.2828] [0.2789,0.2804] [0.2765,0.278]

η̂N [0.2938,0.2964] [0.2914,0.294] [0.289,0.2916] [0.2866,0.2892]
AD γ̂N [0.3548,0.3563] [0.3524,0.3539] [0.35,0.3515] [0.3476,0.3491]

η̂N [0.3649,0.3675] [0.3625,0.3651] [0.3601,0.3627] [0.3577,0.3603]
CVM γ̂N [0.4259,0.4274] [0.4235,0.425] [0.4211,0.4226] [0.4187,0.4202]

η̂N [0.436,0.4386] [0.4336,0.4362] [0.4312,0.4338] [0.4288,0.4314]
WLS γ̂N [0.497,0.4985] [0.4946,0.4961] [0.4922,0.4937] [0.4898,0.4913]

η̂N [0.5071,0.5097] [0.5047,0.5073] [0.5023,0.5049] [0.4999,0.5025]
MPS γ̂N [0.5681,0.5696] [0.5657,0.5672] [0.5633,0.5648] [0.5609,0.5624]

η̂N [0.5782,0.5808] [0.5758,0.5784] [0.5734,0.576] [0.571,0.5736]

Table 5. Average values of NAB for case 3

n 30 50 150 250
MLE γ̂N [0.0788,0.0803] [0.0764,0.0779] [0.074,0.0755] [0.0716,0.0731]

η̂N [0.0889,0.0915] [0.0865,0.0891] [0.0841,0.0867] [0.0817,0.0843]
AD γ̂N [0.1499,0.1514] [0.1475,0.149] [0.1451,0.1466] [0.1427,0.1442]

η̂N [0.16,0.1626] [0.1576,0.1602] [0.1552,0.1578] [0.1528,0.1554]
CVM γ̂N [0.221,0.2225] [0.2186,0.2201] [0.2162,0.2177] [0.2138,0.2153]

η̂N [0.2311,0.2337] [0.2287,0.2313] [0.2263,0.2289] [0.2239,0.2265]
WLS γ̂N [0.2921,0.2936] [0.2897,0.2912] [0.2873,0.2888] [0.2849,0.2864]

η̂N [0.3022,0.3048] [0.2998,0.3024] [0.2974,0.3] [0.295,0.2976]
MPS γ̂N [0.3632,0.3647] [0.3608,0.3623] [0.3584,0.3599] [0.356,0.3575]

η̂N [0.3733,0.3759] [0.3709,0.3735] [0.3685,0.3711] [0.3661,0.3687]

Table 6. Average values of NMSE for case 3

n 30 50 150 250
MLE γ̂N [0.2616,0.2631] [0.2592,0.2607] [0.2568,0.2583] [0.2544,0.2559]

η̂N [0.2717,0.2743] [0.2693,0.2719] [0.2669,0.2695] [0.2645,0.2671]
AD γ̂N [0.3327,0.3342] [0.3303,0.3318] [0.3279,0.3294] [0.3255,0.327]

η̂N [0.3428,0.3454] [0.3404,0.343] [0.338,0.3406] [0.3356,0.3382]
CVM γ̂N [0.4038,0.4053] [0.4014,0.4029] [0.399,0.4005] [0.3966,0.3981]

η̂N [0.4139,0.4165] [0.4115,0.4141] [0.4091,0.4117] [0.4067,0.4093]
WLS γ̂N [0.4749,0.4764] [0.4725,0.474] [0.4701,0.4716] [0.4677,0.4692]

η̂N [0.485,0.4876] [0.4826,0.4852] [0.4802,0.4828] [0.4778,0.4804]
MPS γ̂N [0.546,0.5475] [0.5436,0.5451] [0.5412,0.5427] [0.5388,0.5403]

η̂N [0.5561,0.5587] [0.5537,0.5563] [0.5513,0.5539] [0.5489,0.5515]

An informal graphical technique has been utilized to show that the TPXL distribution is one of the plausible
models for explaining the premature infant staying time data. Figure 3 displays a visual fit of the TPXL distribution.
Further, the χ2 test for the goodness of fit shows that the premature infant staying time data follows TPXL
distribution with p-value=0.671. A descriptive assessment of the premature infant staying time data using NTPXL
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Table 7. The staying time data

1.24,1.22, 1.23, 1.56, 1.54, 1.67, 1.49, [1.14,1.21], 1.11, 1.29, 2.03, 1.33, 1.65, 1.66,
2.81, 1.26, [1.85,2.01], 1.31,1.38, 1.13, 3.05, 1.48, 3.07, 1.27, 1.19, 1.31, [1.75,1.81],
1.62, 1.46, 1.81, [1.62,1.75], 1.62, 1.64, 1.29,1.19, 1.82, [1.66,1.74], 2.37,2.42, 1.84,
1.48,1.25, 1.48, 1.86, 2.22, [2.18,2.22], 1.96, 1.27, 1.14, 1.52, 1.64, 1.18, 2.37, 1.24,
2.23, 1.21, 1.72,1.90, 1.87, 1.74, 1.20, 2.03, 1.67, 2.03, 1.24, 1.11, 1.38, [1.33,1.41],
1.98, 2.28,1.21,2.21,1.65,1.45,1.73,1.87,1.57,1.44,2.46,1.14,1.23,1.77,1.81,1.19,1.51,1.70,1.44,
2.77,1.74,1.37,1.23,1.36,1.18,1.12,1.37, [1.83,1.91], 2.42, 1.46, 1.57,1.16,1.68,1.41, 1.47,2.45,
[1.75,1.83], 1.80,1.24, [1.27,1.31],2.09, 2.01, 1.8, 1.34, 1.28,1.54, 1.56, 1.29,1.87, 1.12, 1.79,2.01.

is shown in Table 8. Table 8 makes it abundantly evident that uncertainties taken into account in the observed sample
are the cause of discrepancies in a number of the critical numerical statistics of the failure times data. Further, it is
more clearly shown from Table 8 that there are high varies among the estimation methods in estimating the NTPXL
distribution parameters γ̂Nand η̂N .

In terms of survival probability, Figure 4 displays the survival curve for the five estimation methods. It can be
observed that the neutrosophic survival curve using MLE methods shows higher probability than the others. This
suggests that the neutrosophic MLE is better than the other four methods. Based on this observation, Figure 5
depicts the margin of the survival function between lower and upper the premature infant staying time data.

Figure 3. Fitting of TPXL distribution of staying time data

6. Conclusion

This paper presents an interesting extension known as the neutrosophic two-parameter Xlindley distribution. The
concepts of neutrosophic calculus serve as the foundation for this new extension. The neutrosophic paradigm has
been used to investigate a number of estimation methods. The study’s numerical examples showed that NTPXL
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Table 8. The estimated parameters of NTPXL distribution

Method Estimated values
γ̂N η̂N

MLE [0.114,0.123] [0.104,0.111]
AD [0.128,0.134] [0.113,0.117]
CVM [0.133,0.141] [0.120,0.129]
WLS [0.144,0.152] [0.131,0.135]
MPS [0.151,0.160] [0.134,0.138]

Figure 4. The survival curve plot for the NTPXL distribution under several estimation methods

Figure 5. The survival curve plot for the NTPXL distribution under MLE method

distribution’s theoretical conclusions are flexible and applicable to a wide range of data. The simulation study’s
findings suggest that a large sample size can yield accurate estimations. The premature infant staying time data have
been employed to explicate the practical implementation of the suggested NTPXL distribution. The application
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section has demonstrated that the NTPXL distribution is capable of analyzing both classical datasets and real-
world data that contains uncertainties, ambiguity, or imprecision.
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