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Abstract This paper studies the optimal excess-of-loss reinsurance contract between an insurer and a reinsurer in a dynamic
risk model. The risk process is assumed to be a diffusion approximation process of the classical Cramer-Lundberg model
which is perturbed by a Brownian motion. In addition to reinsurance, we assume that the insurer is allowed to invest his/her
surplus into a financial market containing one risk-free rate of return and determines the reinsurance strategy by a self-
reinsurance function. Our aim is to obtain the simultaneous equilibrium strategy in this reinsurance dynamic risk setting
using the objective functions of insurer and reinsurance. By employing the dynamic programming approach, we derive the
minimization of insurer’s ruin probability and maximization of reinsurance’s expected aggregate discounted net profits to
have the optimal portfolio for the two parties treaties in a fixed term insurance contract. In order to provide a more explicit
reinsurance contract and to facilitate our quantitative analysis, we study the cases when the reinsurance premium function
is based on the standard-deviation principle and expected value principle from the integro-differential equations. Numerical
examples are given to investigate the effects of model parameters on the equilibrium strategy.
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1. Introduction

The most recent step in the evolution of an insurance portfolio has been a shift from an asset allocation-centered
process to a more comprehensive risk allocation-based process. Development of risk models and increasing the
reserve process is a current and important challenge for researchers. Nowadays, reinsurance is an important tool
for financial risks management. Reinsurance contracts usually run for long time periods (at least for longer than
the typical maturity of financial contracts) and are exposed to high frictional costs. This subject is an effective way
to spread risk in the insurance business and as a result, reinsurance negotiations are costly, lengthy, and can be
thought of as irreversible. Any insurance company, not withstanding its size, has to use reinsurance (risk transfer
to other insurer) for stable performance.
Reinsurance is usually used to transfer and control risk because it allows insurance companies to provide more
secure coverage with higher limits. Over the past two decades, the studies devoted to the search of an optimal
reinsurance strategy have registered considerable advancements and relevance in the actuarial literature. The
optimal problem under the Cramér-Lundberg model was first solved by [1] who showed that a band-type dividend
strategy is optimal. [2] suggested a reinsurance contract under which whenever the surplus is negative, the reinsurer
makes the required payment to bring the surplus back to zero. A great attention has been given to the classical
proportional reinsurance and excess-of-loss reinsurance which are two popular types of reinsurance strategies
(see [3]; [4]; [5] and references therein), which have been addressed under different optimization criteria. [6]
considered an insurance company whose insurance business follows a diffusion perturbated classical risk process
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to find the controls that maximize expected utility of assets at a terminal time. [7] studied the reserve process of the
insurance company is described by a stochastic differential equation driven by a Brownian motion and a Poisson
random measure, representing the randomness from the financial market and the insurance claims, respectively.
As a representative form of non-proportional reinsurance, many literatures proved that excess-of-loss reinsurance
is the optimal reinsurance form under the expected value premium principle and various objective functions (see,
[10] and [13], then this form of reinsurance has been received a great deal of attention of researchers.
The reinsurance contract with an excess-of-loss provision indicates that the reinsurer is responsible for losses over
a certain limit point. The majority of previous studies on optimal excess-of-loss reinsurance problem assumed that
the company takes reinsurance at initial time and aims to find the optimal limit point under different objectives
and assumptions. The popular objective for the optimization problem of reinsurance is minimizing the ruin
probability of insurance company. [8] studied a dynamic choice of excess-of-loss reinsurance retention level and
the dividend distribution policy which maximizes the expected present value of the dividends in a diffusion model.
[9] considered the problem of minimizing the probability of ruin by controlling the combinational quota-share and
excess-of-loss reinsurance strategy. [10] investigated optimal risk control for the excess-of-loss reinsurance policy
which minimizes the probability of ruin. [11] considered that the insurer purchases excess-of-loss reinsurance and
invests its wealth in the constant elasticity of variance (CEV) stock market and studied the optimization problem
of maximizing the exponential utility of terminal wealth under the controls of excess-of-loss reinsurance and
investment. [12] considered the optimal combining quota-share and excess-of-loss reinsurance to maximize the
expected exponential utility from terminal wealth and derived the closed form expressions of the optimal strategies
and value function not only for the diffusion approximation risk model but also for the jump-diffusion risk model.
[13] investigated the optimal excess-of-loss reinsurance with the surplus followed a Markov jump process with
state-dependent income.
[14] and [15] employed a principal-agent model to study the optimal reinsurance premium from the viewpoint of
the reinsurer, where proportional reinsurance and excess-of-loss reinsurance are discussed. [16] employed a new
continuous time framework to analyze optimal reinsurance, in which an insurer and a reinsurer are two players
in a stochastic Stackelberg differential game. [17] investigated a jump-diffusion risk process which the insurer is
allowed to purchase excess-of-loss reinsurance and derived the closed-form expressions for the optimal strategy
and the optimal value function. [18] studied the optimal excess-of-loss reinsurance problem when both the intensity
of the claims arrival process and the claim size distribution are influenced by an exogenous stochastic factor. [19]
discussed an optimal excess-of-loss reinsurance contract in a continuous time principal-agent framework where the
surplus of the insurer (agent/he) is described by a classical Cramér-Lundberg (C-L) model.
[20] considered the optimal excess-of-loss reinsurance for an insurance company facing a constant fixed cost
when reinsurance contract is signed. A reinsurance strategy which combines a proportional and an excess-of-
loss reinsurance in a risk model is studied by [21]. Other equilibrium concepts are possible; for example, [22]
investigated the Bowley equilibrium with risk sharing and optimal reinsurance formulations and focused on
the common traits of Bowley optimality and Pareto efficiency under fairly general preferences. [23] provided
estimators for the optimal excess of loss and stop-loss contracts and investigated their statistical properties under
many premium principle assumptions and simulated data and real-life data are used to illustrate the main theoretical
findings.
Although research on the optimal risk management strategy problem has been rapidly increasing in recent years,
none of these contributions deals with finding the optimization problem with consideration of the insurer’s strategy
together with reinsurer’s strategy simultaneously. We tend to believe that the insurer is primarily concerned about
risk mitigation in entering a reinsurance contract, whereas the reinsurer is mainly concerned about profitability.
In our formulation, the major contribution is considering optimization problem based on the objective functions
of insurer and reinsurer simultaneously. We obtain the optimal risk management strategy in a dynamic risk
model under the excess-of-loss reinsurance contract to minimize the insurer’s ruin probability and maximize the
reinsurer’s expected aggregate discounted net profits in the financial market to have the optimal portfolio for the
two parties treaties in a fixed term insurance contract.
The rest of this paper is organized as follows. In Section 2, we present the well-known compound Poisson
risk process and give reformulation of the surplus process in terms of risk-free rate of return and reinsurance
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arrangement. Furthermore, we present the simultaneous optimization problem based on the objective functions of
insurer and reinsurer. Section 3 derives the optimal reinsurance strategy for the controlled operator functions based
on the reinsurance premium function using the Hamilton-Jacobi-Bellman equations and performs some delicate
analyses on the equilibrium strategies. Sections 4 deals with finding the explicit solutions of the optimization
problem from the integro-differential equations when the reinsurance premium function is based on the standard-
deviation principle. In Section 5, we give the explicit reinsurance contract for expected value principle. In Section
6, we present a numerical example and offer detailed interpretations of model parameters effects on reinsurance.
Conclusions are provided in Section 7.

2. Risk model and preliminaries

In the sequel, we will always work on a probability space (Ω,F , P ), endowed with the information filtration
{Ft}t≥0 which carries all stochastic quantities to be defined in the following. An insurance company, having an
initial capital, cashes premiums continuously and pays claims of random sizes at random times. According to the
compound Poisson model, the surplus process Rt of a homogeneous insurance portfolio can be described by

Rt = u+ ct−
Nt∑
i=1

Xi, (1)

with an initial deterministic surplus R(0) = u is the initial surplus, the positive amount c corresponds to the
premium income rate,

{
Xi ; i = 1, 2, . . .

}
are a class of successive claim amounts which are represented by non-

negative independent identically distributed random variables, denoting claim amounts, with continuous density
function fX(x), St =

∑Nt

i=1 Xi is the total successive claim amount up to time t which is a compound Poisson risk
process.

{
N(t), t ≥ 0

}
is a Poisson process, with parameter λ > 0, which counts the claim occurrences until time

t. We assume that the successive claim amounts
{
Xi ; i = 1, 2, . . .

}
have finite first moment µ and second moment

σ2. Moreover, we assume that c fulfills the net-profit condition c > λE(X). The net-profit condition indicates that
the insurer is in profit. It is widely adopted in the literature of optimal reinsurance, see for example, [24], [25] and
[26].
Motivated by the references mentioned in Section 1, we will present the dynamic forms that describe the surplus
risk process (1) and give the objective functions of insurer and reinsurer. Moreover, we derive the optimal risk
management strategy in the dynamic risk model under the excess-of-loss reinsurance contract.
The structure of the insurance portfolio is planned as follows. We assume throughout that the insurer has the option
to purchase excess-of-loss reinsurance and is in a position to determine the price of reinsurance. In fact, we assume
that the insurer determines the reinsurance strategy by the self-reinsurance function aα(t) : [0,∞) → [0,∞), at time
t, where α ≥ 0 is the self-retention level parameter that uniquely identifies the function a such that 0 ≤ aα(X) ≤ X
and a0(X) ≡ 0. Thus, for the ith claim with the random value Xi the insurer pays the amount aα(Xi) and the rest,
which is the random value Xi − aα(Xi), is left to the reinsurer for payment. But in this contract, the reinsurer must
also make a profit. Therefore, the insurer pays him a part of the premium until the end of contract. In this article, we
show this part of premium as the reinsurance premium function and denoted by Wθ(.) : [0,∞) → [0,∞), where
θ ∈ [θ1, θ2] is the safety loading of the reinsurer that specifies the reinsurance premium rate, θ1 and θ2 satisfying
0 < θ1 < θ2. In addition, we assume that the reinsurance premium function Wθ(X) is strictly increasing in θ and
X with Wθ(0) = 0, and that the reinsurance contract is non-cheap, i.e. λWθ(X) > c for θ ∈ [θ1, θ2].
Now, we adapt the compound Poisson risk process in terms of reinsurance contract up to the time when the insurer
goes bankrupt. To spread risk in the portfolio, the insurer purchases reinsurance. In our diffusion approximation
process, both the reinsurer and the insurer can invest their idle assets in the financial market. Meanwhile, the insurer
can purchase the reinsurance contract from the reinsurer to diversify its claim risk. Considering that both the insurer
and reinsurer belong to the same large insurance company, they have a common interest goal, which is to achieve
the maximum expectation of the weighted sum of their wealth processes and minimum corresponding variance.
Therefore, the interests of both the insurer and the reinsurer should be considered when formulating reinsurance
strategy. We assume that the insurer is allowed to invest his/her surplus into a financial market containing one
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risk-free rate of return r ≥ 0. Therefore, the risk process can be written as the following dynamic risk process:

Rt = u+

∫ t

0

(
rRs + c− λWθ(X − aα(X))

)
ds−

Nt∑
i=1

aα(Xi), t ≥ 0.

According to [27] this process can be approximated by the following diffusion process:

Rt = u+

∫ t

0

(
rRs + c− λE

(
aα(X)

)
− λWθ(X − aα(X))

)
ds

+

∫ t

0

√
λE

(
a2α(X)

)
dBs, (2)

where
{
Bt, t ≥ 0

}
is a standard Brownian motion.

2.1. Simultaneous optimization problem

To present the objective functions of insurer and reinsurance, we assume that the insurer and the reinsurer adjust
their strategies dynamically, and rewrite their strategies as α = {αt} and θ = {θt}, where αt and θt denote the
insurer’s strategy and reinsurance pricing strategy at time t, respectively.
Definition 1. The strategy (α, θ) is said to be admissible if
(i) {αt} and {θt} are {Ft}-progressively measurable.
(ii) The dynamic risk process (1.1) has a strong solution.
Let us denote the sets of admissible insurer’s strategy and reinsurance pricing strategy by ∆ and Θ, respectively.
Given the insurer’s strategy and reinsurer’s pricing strategy α ∈ ∆ and θ ∈ Θ, the insurer’s objective is to minimize
his/her ruin probability:

OI(u;α, θ) = P
(
τ0 < ∞|R0 = u

)
, (3)

where τ0 = inf{t > 0 : Rt ≤ 0} is the time to ruin of the insurer. In the meanwhile, the reinsurance’s objective is
to maximize his/her expected aggregate discounted net profits up to the time of the insurer’s bankruptcy:

OR(u;α, θ) = E
( ∫ τ0

0

e−ζtλg(αt, θt)dt|R0 = u
)
, (4)

where λg(αt, θt) denotes the reinsurer’s net profit rate at time t with g(α, θ) = Wθ

(
X − aα(X)

)
− E

(
X −

aα(X)
)
, and ζ > r is the discount rate of the reinsurer.

In our risk optimization problem, problems (3) and (4) lead to a stochastic differential problem between the insurer
and the reinsurer, as formulated below.

OI(u;α
∗, θ∗) ≤ OI(u;α, θ

∗), for all α ∈ ∆,

OR(u;α
∗, θ∗) ≤ OR(u;α

∗, θ), for all θ ∈ Θ, (5)

where α∗ and θ∗ are the optimal strategies which lead to have an equilibrium portfolio. If two estimators α∗ and
θ∗ exist to optimize the risk problem, we define OI(u) = OI(u, α

∗, θ∗), and OR(u) = OR(u, α
∗, θ∗) as the insurer

and the reinsurer’s equilibrium value functions, respectively.
In section 3, we will derive the optimal reinsurance strategies α∗ and θ∗ for the controlled operator functions based
on the reinsurance premium function using the Hamilton-Jacobi-Bellman equations.

2.2. Some conditions to have the equilibrium strategies

For notational convenience, we denote

u1 =
λWθ1(X)− c

r
, u2 =

λWθ2(X)− c

r
,

νi =
λg(0, θi)

ζ
, i = 1, 2. (6)
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Due to our assumptions on W and g, it is clear that 0 < u1 < u2 and 0 < ν1 < ν2. On the other hand, inspired by
[28] we have the following Lemma.

Lemma 1
According to the notations defined for the insurer and the reinsurer’s equilibrium value functions, we have
OI(u) = 0, OR(u) = u2, and (α∗, θ∗) = (0, θ2) for u ≥ u2.

Proof
We prove the lemma in two steps.
(i) Let (αt, θt) = (0, θ2) for any t ≥ 0. Then aα(X) ≡ 0 and the diffusion approximation process (2) becomes

dRt =
(
rRt −

(
λWθ2(X)− c

))
dt

= r
(
Rt − u2

)
dt, R0 = u. (7)

That is, Rt = (u− u2)e
rt + u2. When u ≥ u2, we have Rt ≥ 0, and hence τ0 = ∞ and OI(u; 0, θ2) = 0 ≤

OI(u;α, θ2) for α ∈ ∆.
(ii) On the other hand, since the function g(α, θ) is increasing in θ, when u ≥ u2, for any θ ∈ Θ, we have

OR(u; 0, θ2) = E
( ∫ ∞

0

e−ζtλg(0, θ2)dt|R0 = u
)
=

λg(0, θ2)

ζ

≥ E
( ∫ τ0

0

e−ζtλg(0, θt)dt|R0 = u
)
= OR(u; 0, θ).

Therefore, for u ≥ u2, from the optimization problem (5) we can see that (0, θ) is the equilibrium strategy,
OI(u) = OI(u, 0, θ2) = 0, and OR(u) = OR(u, 0, θ2) = u2, and this completes the proof.

Lemma 1 shows that, if the insurer has sufficient financial reserve in his/her insurance portfolio, at least u2,
he/she can transfer all the risks to the reinsurance to avoid bankruptcy. In this case, since reinsurance is in high
demand, the reinsurer will charge the maximum price for the contract to increase his profit. Therefore, u2 is a
critical value of the financial reserve of the insurer to have the optimal reinsurance contract. Thus, u2 is the insurer
safety level. In the sequel, we focus on the more interesting case when 0 < u < u2.

3. Stochastic differentiable equations

In this section, we consider the optimization problem (5) to solve it by employing the dynamic programming
approach. To do it, for h ∈ C2(0, u2), define the operator functions Lα,θ and Aα,θ as Lα,θh(u) = h′(u)

(
ru+ c− λWθ

(
X − aα(X)

)
− λE[aα(X)]

)
+ 1

2E[a2α(X)]h′′(u),

Aα,θh(u) = Lα,θh(u)− ζh(u) + λg(α, θ),

where h′ and h′′ are the first and second order derivatives of function h with respect to u, respectively. Following
standard dynamic programming techniques, if OI(u;α, θ), OR(u;α, θ) ∈ C2(0, u2) and the strategies (α∗, θ∗)
exist, the objective functions satisfy the following HJB equations:

inf
α∈∆

Lα,θ∗
OI(u;α

∗, θ∗) = 0, OI(0;α
∗, θ∗) = 1, OI(u2;α

∗, θ∗) = 0, (8)

and
sup
θ∈∆

Aα∗,θ∗
OR(u;α

∗, θ∗) = 0, OR(0;α
∗, θ∗) = 0, OR(u2;α

∗, θ∗) = ν2. (9)

In the following theorem the solutions to HJB equations (8) and (9) coincide with the value functions (OI , OR).
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Theorem 3.1
If (α∗, θ∗) ∈ ∆×Θ and OI(u;α

∗, θ∗), OR(u;α
∗, θ∗) ∈ C2(0, u2) satisfy the HJB equations (8) and (9), then

(α∗, θ∗) is a pair of simultaneous equilibrium strategy and given by

α∗(u) = arg inf
α

Lα,θ∗
OI(u;α

∗, θ∗), (10)

and

θ∗(u) = arg sup
θ∈[θ1,θ2]

Aα∗,θOR(u;α
∗, θ∗)

= arg sup
θ∈[θ1,θ2]

{
λ
(
1−O′

R(u;α
∗, θ∗)

)
Wθ

(
X − aα(X)

)}
(11)

Proof
The proof of this theorem is standard and convenient, and is therefore omitted for simplicity.

Theorem 3.1 states that to obtain an optimal strategy in the insurance portfolio, we need to obtain the values
(α∗, θ∗) such that the equations (8) and (9) hold. But solving these equations without having the reinsurance
premium function is impossible. In Sections 4, we provide the explicit solution of the optimization problem from
the integro-differential equations for special case of reinsurance premium function.
In the following, we perform some delicate analyses on the equilibrium strategies.
Remark 3.1. When the insurer purchases reinsurance, i.e. a∗α(X) < X , then Wθ

(
X − a∗α(X)

)
> 0 and the

equilibrium strategy for θ is given by

θ∗(u) =

 θ2, if O′
R(u;α

∗, θ∗) ≤ 1,

θ1, if O′
R(u;α

∗, θ∗) > 1.
(12)

It means that when the insurer purchases no reinsurance, i.e. a∗α(X) = X , then θ∗(u) = θ2.
Remark 3.2. From Lemma 1, we have θ∗(u2) = θ2 and from equation (12) we have O′

R(u2;α
∗, θ∗) ≤ 1.

Let uR = sup
{
u ∈ [0, u2] : O

′
R(u;α

∗, θ∗) = 1
}

, with the condition uR = 0 if O′
R(u;α

∗, θ∗) < 1, ∀u ∈ [0, u2]. If
O′

R(u;α
∗, θ∗) > 1 for u ∈ [0, u2], then from equation (12), we have

θ∗(u) =

 θ1, if u ∈ [0, uR),

θ2, if u ∈ [uR, u2].
(13)

In this case, u2 is called the switching-over point at which the price of the reinsurance contract is adjusted from a
minimal (maximal) level to a maximal (minimal) level. In addition, the equilibrium strategy for α is given by

α∗(u) =

 α∗
1(u), if u ∈ [0, uR),

α∗
2(u), if u ∈ [uR, u2),

where α∗
i (u) = arg infα Lα,θiOI(u;α, θi), i = 1, 2, is the insurer’s optimal strategy.

Equation (13) indicates that the reinsurer spends more (less) for the reinsurance contract when the insurer has a
sufficient (an insufficient) financial reserve. It is obvious that when the insurer has a sufficient financial reserve,
he/she can provide more reinsurance support. The large demand for reinsurance leads to a high reinsurance price
θ = θ2. Otherwise, when the insurer has an insufficient financial reserve and is faced with high bankruptcy risk,
he/she cannot afford to overpay for reinsurance.
In the following, we present two Corollaries to have some details on the estimations.
Corollary 3.1. For u ≥ u1, α∗

1(u) = 0 and for u ≥ u2, α∗
2(u) = 0, where u1 and u2 are defined in (6).
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Proof
The proof is similar to part (i) of Lemma 1, and is thus omitted.

Corollary 3.2. Assume that for u ∈ [0, uR), O′
R(u;α

∗, θ∗) > 1. Then uR ≤ u1, where u1 is defined in (6).

Proof
We prove this Corollary by contradiction. Assume that uR > u1, since for u ∈ [0, uR), O′

R(u;α
∗, θ) > 1, according

to Remark 3.2, for u ∈ [u1, uR) we have θ∗(u) = θ1. On the other hand, according to Remark 3.1 the insurer’s
optimal reinsurance strategy is given by α∗

1(u) with α∗
1(u) = 0 for u ∈ [u1, uR).

For u ∈ [u1, uR), similar to the part (i) of Lemma 1 for t < τR we have Rt = (u− u1)e
rt + u1, where τR = inf{t ≥

0 : Xt = uR} is the first time when the process Xt arrives uR, i.e. τR = 1
r ln

uR−u1

u−u1
. Thus

OR(u;α
∗, θ∗) = E

( ∫ τ0

0

e−ζtλg(α∗, θ∗)dt|R0 = u
)

= E
( ∫ τR

0

e−ζtλg(0, θ1)dt|R0 = u
)

+E
( ∫ τ0

τR

e−ζtλg(α∗
2, θ2)dt|R0 = u

)
.

On the other hand, let ũ = u1+u
2 ∈ (u1, u2). For θ ∈ (θ1, θ2), since

u1 =
λWθ1(X)− c

r
<

λWθ(X)− c

r
< u2 =

λWθ2(X)− c

r
, (14)

there exists θ̃ ∈ (θ1, θ2) such that λWθ̃(X)−c

r = ũ. Consider the following strategy:

(α̃(u), θ̃(u)) =


(α∗

1(u), θ1), if u ∈ [0, u1),

(0, θ̃), if u ∈ [u1, uR),

(α∗
2(u), θ2), if u ∈ [uR, u2).

Then similar to the part (i) of Lemma 1, we have X̃t = (u− ũ)ert + ũ for t < τ̃R, where where X̃ is a risk process
and τ̃R is the first time when the process X̃ arrives uR for the first time, i.e. τ̃R = 1

r ln
uR−ũ
u−ũ . It is clear that τ̃R > τR.

Since the two risk processes X and X̃ have the same path after arriving uR, under the two strategies the insurer has
the same ruin probability, (i.e. OI(u; α̃, θ̃) = OI(u;α

∗, θ∗)) and

E
( ∫ τ̃0

τ̃R

e−ζtλg(α∗
2, θ2)dt|R0 = u

)
= E

( ∫ τ0

τR

e−ζtλg(α∗
2, θ2)dt|R0 = u

)
,

where τ̃0 is the time to ruin with strategy (α̃, θ̃). On the other hand, since f(α, θ) is strictly increasing in θ and
τ̃R > τR, then we have

OR(u; α̃, θ̃) = E
( ∫ τ̃R

0

e−ζtλg(0, θ1)dt|R0 = u
)

+E
( ∫ τ̃0

τ̃R

e−ζtλg(α∗
2, θ2)dt|R0 = u

)
> E

( ∫ τR

0

e−ζtλg(0, θ1)dt|R0 = u
)

+E
( ∫ τ0

τR

e−ζtλg(α∗
2, θ2)dt|R0 = u

)
= OR(u;α

∗, θ∗),

which is a contradiction to the optimality of (α∗, θ∗), and this completes the proof.
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Thus, if O′
R(u;α

∗, θ∗) > 1 for u ∈ [0, uR), we have 0 ≤ uR ≤ u1, In this case, the equilibrium strategies are
given by

(α∗(u), θ∗(u)) =

 (α∗
1(u), θ1), if u ∈ [0, uR),

(α∗
2(u), θ2), if u ∈ [uR, u2),

(15)

and (α∗(u), θ∗(u)) = (α∗
2(u), θ2) if uR = 0.

From (15), if uR > 0, the HJB equations (8) and (9) can be rewritten as
P1:

Aα∗
1 ,θ1OI(u;α

∗, θ∗) = 0, u ∈ [0, uR), OI(0;α
∗, θ∗) = 1, (16)

Aα∗
2 ,θ2OI(u;α

∗, θ∗) = 0, u ∈ [uR, u2), OI(u2;α
∗, θ∗) = 0, (17)

O′
I(u

−
R;α

∗, θ∗) = O′
I(u

+
R;α

∗, θ∗), OI(u
−
R;α

∗, θ∗) = OI(u
+
R;α

∗, θ∗), (18)

Lα∗
1 ,θ1OR(u;α

∗, θ∗) = 0, u ∈ [0, uR), OR(0;α
∗, θ∗) = 0, O′

R(u
;
Rα

∗, θ∗−) = 1, (19)

Lα∗
2 ,θ2OR(u;α

∗, θ∗) = 0, u ∈ [uR, u2), O′
R(u

+
R;α

∗, θ∗) = 1, OR(u2;α
∗, θ∗) = ν2, (20)

and
OR(u

−
R;α

∗, θ∗) = OR(u
+
R;α

∗, θ∗). (21)

Otherwise, if uR = 0 the HJB equations (8) and (9) becomes
P2:

Lα∗
2 ,θ2OI(u;α

∗, θ∗) = 0, u ∈ [0, u2), OI(0;α
∗, θ∗) = 1, OI(u2;α

∗, θ∗) = 0, (22)

Aα∗
2 ,θ2OR(u;α

∗, θ∗) = 0, u ∈ [0, u2), OR(0;α
∗, θ∗) = 0, OR(u2;α

∗, θ∗) = ν2. (23)

where (22) is a ruin probability problem and is commonly observed in the literature of ruin probability optimization,
see e.g. [29] and [24].

4. Explicit reinsurance contract for standard-deviation principle

In this section, we assume that the reinsurance premium function is based on the standard-deviation principle and
show that under this specified function, the reinsurance strategy is a proportional reinsurance strategy. Consider
the standard-deviation principle for the reinsurance premium function as Wθ(X) = E(X) + θ

√
E(X2). Thus, the

insurer and the reinsurer’s premium rates are given by c = λ(µ+ βσ),

Wθ(X) = µ+ θσ,

where β ∈ (0, θ1) and θ ∈ (θ1, θ2) are the safety loadings of the insurer and the reinsurer. From (6) we have
u1 = λσ0(θ1−β)

r , u2 = λσ0(θ2−β)
r and νi = λ θiσ0

ζ for i = 1, 2.

Lemma 2
Assume that for u ∈ (0, u2), the value function O′′

I (u) satisfies O′′
I (u) ≥ 0. Then the function aα(X) is given by

aα(X) = αX , where 0 ≤ α ≤ 1 is the self-retention level parameter.

Proof
This lemma is a modified version of Proposition 1 given in [30] and thus the proof is omitted.
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This Lemma shows that under the standard-deviation principle, the reinsurance strategy is a proportional
reinsurance strategy. Therefore, given a proportional reinsurance strategy {α}t≥0 the dynamics of the insurer’s
cash reserve (2) can be rewritten as

Rt =
[
rRt +

(
θα− (θt − β)

)
λσ0

]
dt+

√
λαtσ0dBt,

with R0 = u and the operators Lα,θ and Aα,θ can be written as Lα,θh(u) = h′(u)
(
ru+

(
θα− (θ − β)

)
λσ0

)
+ λ

2α
2σ2

0h
′′(u),

Aα,θh(u) = Lα,θh(u)− ζh(u) + λσ0θ(1− α).

Lemma 3
Assume that O′

I(u;α
∗, θ) < 0 and O′′

I (u;α
∗, θ) > 0. Then for i = 1, 2, the insurer’s optimal strategy, α∗

i (u), is
given by

α∗
i (u) = min

{ 2r

λθiσ0

( (θi − β)λσ0

r
− u

)
, 1
}
. (24)

Proof
If O′′

I (u;α
∗, θ) > 0 and Lα,θiOI(u;α, θi), i = 1, 2, is convex in α. Then using the first order condition, we have

α∗
i (u) = min

{−θi
σ0

O′
I(u;α

∗, θ)

O′′
I (u;α

∗, θ)
, 1
}
. (25)

If α∗
i (u) < 1, then the HJB equation (8) can be rewritten as

− λ

2r
θ2i

(
O′

I(u;α
∗, θ)

)2
O′′

I (u;α
∗, θ)

+
(
u− (θi − β)λσ0

r

)
O′

I(u;α
∗, θ) = 0. (26)

Combining the equations (25) and (26) we have (24), and this completes the proof.

Note that α∗ is the decreasing function of β and u. Thus, with θ = θi, the insurer retains more claim risk and
purchases less reinsurance when she has a smaller amount of financial reserve or the insurance business is less
profitable with a smaller β. The reason is that with insufficient savings or financial reserve, the insurer can not
afford to pay too much reinsurance and as a result needs to pay more damages by himself/herself. On the other
hand, it is clear that α∗

2(u) ≥ α∗
1(u). That is, as the reinsurance contract becomes more expensive, the insurer tends

to retain more risk of damage and the demand for reinsurance decreases.
To simplify our results, we make further the assumption θ1 < 2β < θ2. Therefore, from (24), it is clear that 0 ≤
α∗
1(u) < 1 for u ∈ [0, u1], 0 ≤ α∗

2(u) < 1 for u ∈ (u0, u2], and α∗
2(u) = 1 for u ∈ [0, u0], where u0 = λσ0

r

(
θ2
2 − β

)
.

Depending on the values of u1 and u0, we consider two different cases:
Case (1): u0 < u1.
Case (2): u0 ≥ u1,
and in both cases we will obtain the explicit solutions to our optimization Problem.

4.1. Case (1)

In this case, θ1 > θ2
2 . On the other hand, since uR ≤ u1 (see Corollary 3.2), depending on the model parameters

there are three situations for the value of uR: (a) u0 ≤ uR ≤ u1; (b) 0 < uR < u0; and (c) uR = 0 (i.e. θ∗(u) = θ2).
Figure 1 illustrates the insurer and the reinsurer’s strategies for each situation.

Lemma 4
With uR ∈ (0, u1], the equations (19) and (20) have the solutions OR1

(.;uR) ∈ C2(0, u2) and OR2(.;uR) ∈
C2(uR, u2), respectively. Moreover,
(i) OR1(uR;uR) and OR2(uR;uR) are continuous in uR1 ∈ (0, u1].
(ii) OR2

(u1;u1) < ν1 and OR2
(0; 0) = d0, where d0 is defined in (36).
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Figure 1. Two types of ruin.

Proof
(i) First, we determine the solution to (16). Substituting the equation (24) into (19) leads to

r(u1 − u)O′
R(u;α

∗, θ∗) +
r

δ1
(u1 − u)2O′′

R(u;α
∗, θ∗)

+λθ1σ0 − 2r(u1 − u) = 0, u ∈ [0, uR], (27)

where δ1 =
λθ2

1

2r . The equation (27) has the solution:

OR1
(u, uR) = Q11(u1 − u)y1 +Q12(u2 − u)y2 + k(u1 − u) + ν1, u ∈ [0, uR], (28)

where k = − 2r
r+ζ ∈ (−1, 0), y1 > 1 and y2 < 0 are the roots of equation r

δ1
y2 −

(
1
δ1

+ 1
)
ry − ζ = 0. Q11 and Q12

are determined by OR1
(0, uR) = 0 and O′

R1
(uR, uR) = 1, i.e. Q11u
y1

1 +Q12u
y2

2 + ku1 + ν1 = 0,

−y1Q11(u1−R)
y1−1 − y2Q12(u1 − uR)

y2−1 − k = 1.

It is clear that OR1(.;uR) ∈ C2(0, uR), Q11 and Q12 are continuous in uR, Thus OR1(uR;uR) is also continuous
in uR.
(ii) Now, we determine the solution to the equation (20) for uR in two intervals [u0, u1] and [0, u0).
(a) If uR ∈ [u0, u1], then using the boundary condition O′

R(uR;uR) = 1 and OR(u2;uR) = ν2, inspired by (19),
we see that the solution to the equation (20) is

OR2
(u, uR) = A(u2 − u)m + k(u2 − u) + ν2, u ∈ [uR, u2], (29)

where m =
r
δ2

+1+
((

r
δ2

+1
)2

+4ζ r
δ2

) 1
2

2r
δ2

>
r
δ1

+1+
((

r
δ1

+1
)2

+4ζ r
δ1

) 1
2

2r
δ1

= y1 > 1, is the positive root of r
δ2
m2 −

(
1
δ2

+

1
)
rm− ζ = 0 with δ2 =

λθ2
2

2r , and

A = −1 + k

m
(u2 − uR)

1−m = −b(u2 − uR)
1−m < 0, (30)
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where b = 1+k
m . It is clear that OR2

(.;uR) ∈ C2(uR, u2) and

OR2
(uR;uR) = (k − b)(u2 − uR) + ν2, (31)

is continuous in uR. On the other hand, since O′′
R2

(u;uR) = Am(m− 1)(u2 − u)m−2 < 0, from
Aα∗

2 ,θ2OR2(u1, u1) = 0 and O′
R2

(u1+;u1) = 1, we have

OR2
(u1;u1) =

r
δ2
(u2 − u1)

2O′′
R2

(u1+;u1) + λσ0θ2 − r(u2 − u1)

ζ

<
λσ0θ2 − r(u2 − u1)

ζ
= ν1.

(b) If uR ∈ [0, u0], it is clear that α∗
2(u) = 1, ∀u ∈ [uR, u0], then the equation (20) can be written as

(ru+ λσ0β)O
′
R(u;α

∗, θ∗) +
λ

2
σ2
0O

′′
R(u;α

∗, θ∗)− ζOR(u;α
∗, θ∗) = 0, (32)

for u ∈ (uR, u0). Therefore, the solution to this equation is given by

OR(u;uR) = pg1(u) + qg2(u), (33)

where g1 and g2 are the two classical solutions to the equation (32) with the conditions g1(0) = 0, g′1(0) =
1, g2(0) = 1, g′2(0) = 0, p and q are constants to be determined. On the other hand, we can see from (a)
that, for u ∈ [u0, u2], the equation (20) has the solution (28). Thus, from OR2

(u0−;uR) = OR2
(u0+;uR) and

O′
R2

(u0−;uR) = O′
R2

(u0+;uR), we have pg1(u0) + qg2(u0) = B(u2 − u0)
m + k(u2 − uo) + ν2,

pg′1(u0) + qg′2(u0) = −mB(u2 − u0)
m−1 − k,

where

B = −pg′1(u0) + qg′2(u0) + k

m
(u2 − u0)

1−m. (34)

The above equation follows that

p
(
g1(u0) + g′1(u0)

u2 − u0

m

)
+ q

(
g2(u0) + g′2(u0)

u2 − u0

m

)
=

(
1− 1

m

)
k(u2 − u0) + ν2.

Combining this equation with pg′1(uR) + qg′2(uR) = 1, we have

(p, q)′ =

(
g′1(uR) g′2(uR)

g1(u0) +
u2−u0

m g′1(u0) g2(u0) +
u2−u0

m g′2(u0)

)−1

×
(

1(
1− 1

m

)
k(u2 − u0) + ν2

)
.

It is clear that p, q and B are continuous in uR, thus OR2
(uR;uR) is continuous in uR ∈ [0, u0].

(iii) Finally, when uR → u0−, we have pg′1(u0) + qg′2(u0) = 1, B = −b(u2 − u0)
1−m and

OR2
(u0−;u0−) = (k − b)(u2 − u0) + ν2 = OR2

(u0+;u0+), (35)

where the second equality is due to (31). Thus OR2
(uR;uR) is continuous at uR = u0 and hence continuous in

[0, u1]. Specially, when uR = 0, since g′1(0) = 1 and g′2(0) = 0, we have p = 1 and OR2
(0; 0) = q = q0, where

q0 =

(
1− 1

m

)
k(u2 − u0) + ν2 − g1(u0)−

(
u2−u0

m

)
g′1(u0)

g2(u0) +
(
u2−u0

m

)
g′2(u0)

, (36)

and this completes the proof.
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This Lemma shows that if there exists a point uR ∈ (0, u1], such that OR1
(uR;uR) = OR2

(uR;uR), then the
solution to (19)-(21) is given by

OR(u;α
∗, θ∗) =

 OR1(u;uR), if u ∈ [0, uR),

OR2
(u;uR), if u ∈ [uR, u2).

By substituting the insurer’s optimal strategies (24) into (16)-(18), OI(u;α
∗, θ∗) is also determined, and thus

problem P1 is solved. Otherwise, we consider problem P2.
The main results are presented in the following theorem.

Theorem 4.1
Assume that u1 > u0 and for any z ∈ [0, u1 − u0] define the function H(z) as

H(z) = (y2ω +m− y2)buR

( u1

uR

)y1

−(y1ω + (m− y1)buR

( u1

uR

)y2
+ (ku1 + ν1)(y2 − y1). (37)

(i) If q0 > 0, the problem P1 has a solution. Moreover,
(a) if H(u1 − u0) < 0, the equilibrium strategies are given by

(α∗(u), θ∗(u)) =


(

2r
λθ1σ0

( (θ1−β)λσ0

r − u
)
, θ1

)
, if u ∈ [0, uR),(

2r
λθ2σ0

( (θ2−β)λσ0

r − u
)
, θ2

)
, if u ∈ [uR, u2),

(38)

(b) otherwise, if H(u1 − u0) ≥ 0, the equilibrium strategies are given by

(α∗(u), θ∗(u)) =



(
2r

λθ1σ0

( (θ1−β)λσ0

r − u
)
, θ1

)
, if u ∈ [0, uR),

(1, θ2) if u ∈ [uR, u0),(
2r

λθ2σ0

( (θ2−β)λσ0

r − u
)
, θ2

)
, if u ∈ [u0, u2),

(39)

(ii) If q0 ≤ 0, the problem P2 has a solution and the equilibrium strategies are given by

(α∗(u), θ∗(u)) =


(1, θ2) if u ∈ [0, u0),(

2r
λθ2σ0

( (θ2−β)λσ0

r − u
)
, θ2

)
, if u ∈ [u0, u2).

(40)

Proof
First we consider that q0 > 0 and the case uR ∈ [u0, u1) to show that the problem P1 admits the solutions (OI , OR),
which are also the solutions to HJB equations (8) and (9).
(a) We construct an explicit solution to (19)-(21). In this case, from (28) and (29) a solution to (19) and (20) is
given by

OR(u;α
∗, θ∗) =

 Q11(u1 − u)y1 +Q12(u2 − u)y2 + k(u1 − u) + ν1, u ∈ [0, uR],

A(u2 − u)m + k(u2 − u) + ν2, u ∈ [uR, u2].
(41)

Applying the conditions O′
R(uR−;α∗, θ∗) = 1 and OR(uR−;α∗, θ∗) = OR(uR+;α∗, θ∗) yields −y1Q11(u1 − uR)

y1−1 − y2Q12(u2 − uR)
y2−1 − k = 1, u ∈ [0, uR],

Q11(u1 − uR)
y1 +Q12(u2 − uR)

y2 + k(u1 − uR) + ν1 = (k − b)(u2 − uR) + ν2. u ∈ [uR, u2].
(42)
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Let uR = u1 − uR ∈ (0, u1 − u0). Then (42) can be rewritten as −y1Q11u
y1

R + y2Q12u
y2

R = −mbyR, u ∈ [0, uR],

Q11u
y1

R +Q12u
y2

R = −myR + n, u ∈ [uR, u2],
(43)

where

n = (k − b)(u2 − u1) + ν2 − ν1

=
(
k − 1 + k

m

)
λσ0

1

r
(θ2 − θ1) +

1

ζ
λσ0(θ2 − θ1)

= λσ0(θ2 − θ1)
[(
k
(
1− 1

m

)
− 1

m

)1
r
+

1

ζ

]
= λσ0(θ2 − θ1)

[ r − ζ

ζ(r + ζ)
+

1

m

r − ζ

r(r + ζ)

]
< 0. (44)

Solving (43) leads to 
Q11 = − 1

y1−y2

[
y2(n− byR) +mbyR

]
y−y1

R ,

Q12 = 1
y1−y2

[
y1(n− byR) +mbyR

]
y−y2

R .

Since m > y1 > 1, it is clear that Q11 < 0. With boundary condition OR(0;α
∗, θ∗) = 0, we see that yR satisfies

H(yR) = 0. On the other hand, the direct calculation shows that limz→0+ H(z) = ∞ and

H ′(z) = −y1y2nu
y1

R z−y1−1 + (1− y1)(m− y2)bu
y1

R z−y1

+y1y2nu
y2

R z−y2−1 − (m− y1)(1− y2)bu
y2

R z−y2

= y1y2n
1

u1

(( u1

uR

)y1+1 −
( u1

uR

)y1+1)
+(1− y1)(m− y2)bu

y1

R z−y1 − (m− y1)(1− y2)bu
y2

R z−y2 < 0,

i.e. the function H is strictly decreasing. Therefore, H(u1 − u0) ≤ 0 if and only if the function given in (37) has a
unique solution uR ∈ (0, u1 − u0], with which uR ∈ [u0, u1) and Q11 and Q12 are also uniquely determined.
(b) Once uR is determined, we construct a solution to the equations (16)-(18). For u ∈ (0, uR), with θ∗(u) = θ,
(16) has the solution

OI(u;α
∗, θ∗) = e1 − e2(u1 − u)δ1+1, (45)

where e1 and e2 are constants. Note that, OI(0;α
∗, θ∗) = 1 indicates that e1 = 1 + e2u

δ1+1
1 .

For u ∈ (uR, u2), with boundary condition OI(u2;α
∗, θ∗) = 0, the equation (17) has the solution

OI(u;α
∗, θ∗) = −a0(u2 − u)δ2+1, (46)

where a0 is a constant to be determined. Combining (45) and (46), we have

OI(u;α
∗, θ∗) =

 1 + e2u
δ1+1
1 − e2(u1 − u)δ1+1, u ∈ [0, uR],

−a0(u2 − u)δ2+1, u ∈ [uR, u2].

The value-matching at point uR implies that 1 + e2u
δ1+1
1 − e2(u1 − uR)

δ1+1 = −a0(u2 − uR)
δ2+1,

(δ1 + 1)e1(u1 − uR)
δ1 = a0(δ2 + 1)(u2 − uR)

δ2 .
(47)
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By solving the equations, e2 is uniquely characterized as

e2 = −
[
uδ1+1
1 − (u1 − uR)

δ1+1 + (u1 − uR)
δ1(u2 − uR)

δ1 + 1

δ2 + 1

]−1
< 0. (48)

After computing e2, from the first equation (47), a0 will be uniquely characterized. Moreover, from the second
equation (47), e1 will be uniquely characterized.
(c) Finally, we prove the optimality of (α∗, θ∗). It is clear that (α∗, θ∗) are admissible, by verification Theorem
3.1. we just need to show that (OI , OR) are the solutions to (8) and (9). On the other hand, since OI(u;α

∗, θ∗)
is convex, and hence for α ∈ [0, 1], 0 = Lα∗,θ∗

OI(u;α
∗, θ∗) ≤ Lα,θ∗

OI(u;α
∗, θ∗). Since OR(u;α

∗, θ∗) is concave
on (uR, u2), O′

R(u;α
∗, θ∗) < O′

R(uR;α
∗, θ∗) < 1 for all u ∈ (uR, u2). Once we prove that O′

R(u;α
∗, θ∗) > 1 for

u ∈ (0, uR), then 0 = Aα∗,θ∗
OR(u;α

∗, θ∗) ≤ Aα,θ∗
OR(u;α

∗, θ∗), for θ ∈ [θ1, θ2], and thus prove our argument.
(ii) If H(u1 − u0) > 0, we are left with uR ∈ (0, uR).
(a) We construct an explicit solution to (19)-(21). In this case,

OR(u;α
∗, θ∗) =


Q11(u1 − u)y1 +Q12(u2 − u)y2 + k(u1 − u) + ν1, u ∈ [0, uR),

H(u;uR) = pg1(u) + qg2(u), u ∈ [uR, u0),

B(u2 − u)m + k(u2 − u) + ν2, u ∈ [u0, u2],

(49)

where B is given in (34) and Q11, Q12 and uR are determined by

Q11u
y1

1 +Q12u
y2

1 + ku1 + ν1 = 0, (50)

Q11y1(u1 − uR)
y1−1 +Q12y2(u1 − uR)

y2−1 + k = −1, (51)

Q11(u1 − uR)
y1 +Q12(u1 − uR)

y2 + k(u1 − uR) + ν1 = H(uR;uR). (52)

Let yR = u1 − uR ∈ (u1 − u0, u1). Then (51) and (52) become Q11y1y
y1

R +Q12y2y
y2

R = −mbyR,

Q11y
y1

R +Q12y
y2

R = H(uR;uR)− kyR − ν1.
(53)

Solving the equations, we have
Q11 = − 1

y1−y2

[
mbyR + y2

(
H(uR;uR)− kyR − ν1

)]
y−y1

R ,

Q12 = 1
y1−y2

[
mbyR + y1

(
H(uR;uR)− kyR − ν1

)]
y−y2

R .

(54)

Let us denote H1(u) = H(u;u) for u ∈ [0, u0). Thus, (50) becomes H2(yR) = 0 with uR = u1 − yR, where

H2(z) =
[
mbz + y2

(
H1(u1 − z)− kz − ν1

)](u1

z

)y1

−
[
mbz + y1

(
H1(u1 − z)− kz − ν1

)](u1

z

)y2

+(ku1 + ν1)(y2 − y1). (55)

We proceed to show that (55) admits a solution uR ∈ (u1 − u0, u1). From (35), H1(u0) = (k − s)(u2 − u0) + ν2
and

H1(u0)− k(u1 − u0)− ν1 = n− s(u1 − u0).
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Thus, we have

H2(u1 − u0) =
[
ny2 + (m− y2)b(u1 − u0)

]( u1

u1 − u0

)y1

−
[
ny1 + (m− y1)b(u1 − u0)

]( u1

u1 − u0

)y2

+(ku1 + ν1)(y2 − y1) = H(u1 − u0) > 0. (56)

On the other hand

H2(u1) =
[
mbu1 + y2

(
H1(0)− ku1 − ν1

)]
−
[
mbu1 + y1

(
H1(0)− ku1 − ν1

)]
+(ku1 + ν1)(y2 − y1)

= (y2 − y1)H1(0) = (y2 − y1)q0 < 0. (57)

Therefore, we may determine zR and hence uR by solving the equation H2(z) = 0. Substituting the value of uR

into (34) and (54), we obtain p, q, A, Q11 and Q12.
(b) We construct a solution to (16)- (18). For u in(uR, u0), with θ∗(u) = θ2 and α∗(u) = 1, the equation (8)
becomes

(ru+ λσ0β)O
′
I(u, α

∗, θ∗) +
1

2
λσ2

0O
′′
I (u, α

∗, θ∗) = 0,

which admits solution

OI(u, α
∗, θ∗) = OI(uR, α

∗, θ∗) + a1

∫ u

uR

e
− r

λσ2
0

(
z+

λσ0β
r

)2

dz. (58)

Combining (45), (46) and (58), a solution to (16)-(18) is given by

OI(u;α
∗, θ∗) =



1 + e3u
δ1+1
1 − e3(u1 − u)δ1+1, u ∈ [0, uR),

OI(uR;α
∗, θ∗) + a1

∫ u

uR
e
− r

λσ2
0

(
z+

λσ0β
r

)2

dz, u ∈ [uR, u0),

−a2(u2 − u)δ2+1, u ∈ [u0, u2],

(59)

where e3, a1 and a2 are determined by the conditions O′
I(uR−;α∗, θ∗) = O′

I(uR+;α∗, θ∗), O′
I(u0+;α∗, θ∗) =

O′
I(u0−;α∗, θ∗) and OI(u0+;α∗, θ∗) = OI(u0−;α∗, θ∗). That is

e3 = a1(δ1 + 1)−1(u1 − uR)
−δ1e

− r

λσ2
0

(
z+

λσ0β
r

)2

= a1Ω1,

a2 = a0(δ2 + 1)−1(u2 − u0)
−δ2e

− r

λσ2
0

(
z+

λσ0β
r

)2

= a1Ω2,

a1 = −
[
Ω1

(
uδ1+1
1 − (u1 − uR)

δ1+1
)
+
∫ u0

uR
e
− r

λσ2
0

(
z+

λσ0β
r

)2

dz +Ω2(u2 − uu0)
δ2+1

]−1
.

(60)

(c) We show that OR and OI given in (49) and (59) are the solutions to (8) and (9). It is clear that a1 < 0 and
hence a2 < 0. On the other hand, since OI is convex, therefore, 0 = Lα∗,θ∗

OI(u;α
∗, θ∗) ≤ Lα,θ∗

OI(u;α
∗, θ∗),

∀α ∈ [0, 1]. We just need to show that Aα∗,θ∗
OR(u;α

∗, θ∗) ≥ Aα∗,θOR(u;α
∗, θ∗), which is proved in the following

steps:
Step 1: We claim that O′

R(u0;α
∗, θ∗) < 1. Otherwise, if O′

R(u0;α
∗, θ∗)ge1, from (34) it is clear that B < 0
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and O′′
R(u0;α

∗, θ∗) < 0, u ∈ (u0, u2). Since the function OR is twice continuously differentiable at u0 (see
Remark 4.1 (ii)), we also have O′′

R(u0−;α∗, θ∗) = O′′
R(u0+;α∗, θ∗) < 0 and O′

R(u;α
∗, θ∗) > 1, u ∈ (u0 − ϵ, u0)

with ϵ > 0 begin small. Moreover, O′
R(uR;α

∗, θ∗) = 1, there exists ū ∈ (uR, u0) such that O′
R(ū;α

∗, θ∗) > 1,
O′′

R(ū;α
∗, θ∗) = 0, and O′′′

R (ū;α∗, θ∗) ≤ 0. On the other hand, by taking derivative on (32) and letting u = ū, we
have

(r − ζ)O′
R(ū;α

∗, θ∗) = −λ

2
σ2
0O

′′′
R (ū;α∗, θ∗) < 0, (61)

which is a contradiction.
Step 2: We show that O′

R(u;α
∗, θ∗) < 1, for u ∈ (uR, u2). If B < 0, then OR is strictly concave in (u0, u2)

and, for u ∈ (u0, u2), O′
R(u;α

∗, θ∗) ≤ O′
R(u0;α

∗, θ∗) ≤ 1; if B ≥ 0, OR is convex and hence O′
R(u;α

∗, θ∗) ≤
O′

R(u2;α
∗, θ∗)− k < 1 for u ∈ (u0, u2). On the other hand, by performing exactly the same procedure as above,

we are able to show that O′
R(u;α

∗, θ∗) < 1, for u ∈ (uR, u0).
Step 3: We show that O′

R(u;α
∗, θ∗) > 1, for u ∈ (0, uR). Since O′

R(u;α
∗, θ∗) < 1, for u ∈ (uR, u2) and

O′
R(uR;α

∗, θ∗) = 1, we have O′′
R(uR+;α∗, θ∗) ≤ 0. If O′′

R(uR+;α∗, θ∗) = 0, similar to (61) we have
O′′′

R (uR+;α∗, θ∗) > 0, and hence O′′
R(u;α

∗, θ∗) > 0, and O′
R(u;α

∗, θ∗) > 1 for u ∈ (uR, uR + ϵ) with ϵ > 0 begin
small, which contradicts argument (ii). Thus, we have O′′

R(uR+;α∗, θ∗) < 0. According to Remark 4.1 (i), we have
O′′

R(uR−;α∗, θ∗) < 0. By a similar proof as in (c) in part (i), we see that O′′
R(u;α

∗, θ∗) < 0 for u ∈ (0, uR) and
hence O′

R(u;α
∗, θ∗) > 1.

With the above observations, we have

Aα∗,θ∗
OR(u;α

∗, θ∗) ≥ Aα∗,θOR(u;α
∗, θ∗),

for u ∈ [0, uR) ∪ [u0, u2].
Moreover, when u ∈ (uR, u0), with α∗(u) = 1 we have

Aα∗,θOR(u;α
∗, θ∗) = (ru+ βλσ0)O

′
R(u;α

∗, θ∗) +
λ

2
σ2
0O

′′
R(u;α

∗, θ∗)− ζOR(u;α
∗, θ∗)

= Aα∗,θ2OR(u;α
∗, θ∗),

for θ ∈ [θ1, θ2], and this completes the proof of part (i).
Now we prove the part (ii) with q0 ≤ 0. From (46), (58) and and boundary condition OI(0;α

∗, θ∗) = 1, a solution
to the (22) is given by

OI(u;α
∗, θ∗) =

 1 + a1
∫ u

0
e
− r

λσ2
0

(
uR+

λσ0β
r

)2

duR, u ∈ [0, u0),

−a2(u2 − u)δ2+1, u ∈ [u0, u2],

(62)

where a1 and a2 are determined by the conditions OI(u0−;α∗, θ∗) = OI(u0+;α∗, θ∗) and O′
I(u0−;α∗, θ∗) =

O′
I(u0+;α∗, θ∗), i.e.

a2 = − 1

e
− r

λσ2
0

(
u0 +

λσ0β
r

)2
(δ2 + 1)(u2 − u0)δ2

∫ u0

0
e
− r

λσ2
0

(
uR+

λσ0β
r

)2

duR + (u2 − u0)δ2+1

< 0,

and

a1 = a2e
r

λσ2
0

(
u0+

λσ0β
r

)2

(δ2 + 1)(u2 − u0)
δ2 < 0.

From the equation (23), similar to our analyses in the previous proof, we have

OR(u;α
∗, θ∗) =

 pg1(u) + qg2(u), u ∈ [0, u0),

B(u2 − u)m + k(u1 − u) + ν2, u ∈ [u0, u2].
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4.2. Case (2):

When u1 ≤ u0, similar to the analyses in Section 4.1, we are able to construct the solutions (OI , OR) to the
problems P1 and P2 along with the equilibrium strategies (α∗, θ∗), and and then verify their optimality. An
illustration of the equilibrium strategies is provided in Figure 2. The results are presented in the following theorem.

Figure 2. Optimal equilibrium strategies (α∗, θ∗) for (a) 0 < uR < u1 and (b) u0 > u1.

Theorem 4.2
Assume that u1 ≤ u0 and q0 > 0. The equilibrium strategy is given by (39); otherwise, if q0 ≤ 0, the equilibrium
strategy is given by (40).

Proof
Since the proof of this theorem is very similar to that of Theorem 4.1 (ii), therefore, we omit it.

As compared to the case u1 > u0, in this case the reinsurance contract has a larger upper bound θ2 for the safety
loading, indicating that the reinsurance contract becomes more costly. Thus, with other model parameters being
fixed, there is always a noreinsurance zone [uR, u0] in which the insurer will not purchase reinsurance.
Consider the model parameters as given in Table 1. Let β = 0.28, 0.2 and 0.225, we uR = 0.325, 0.24 and 0,
respectively. Figure 3 plots the equilibrium value functions

(
OI(u), OR(u)

)
. As expected, the function OI(u) is

strictly decreasing and convex, and the function OR(u) is strictly increasing. When the insurance safety loading
increases (i.e., the insurance business is more profitable), the insurer has a smaller ruin probability and the
reinsurance contract becomes more valuable. These results are consistent with our common sense.

Table 1. Model parameters for the standard-deviation principle

Parameters β θ1 θ2 µ σ0 r ζ λ
Values 0.2 0.3 0.6 1.0 0.5 0.08 0.2 0.1

5. Explicit reinsurance contract for expected value principle

In this section, we assume that the reinsurance premium function is based on the expected value principle
Wθ(X) = (1 + θ)E(X). Thus, the insurer and the reinsurer’s premium rates are given by c = λµ(1 + β),

Wθ(X) = λµ(1 + θ),

where β ∈ (0, θ1) and θ ∈ (θ1, θ2) are the safety loadings of the insurer and the reinsurer, respectively. From (6)
we have u1 = λµ0(θ1−β)

r , u2 = λµ0(θ2−β)
r and νi = λ θiµ0

ζ for i = 1, 2.
Similar to Lemma 4, we present the following result without proof.
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Figure 3. The equilibrium value functions OI(u) and OR(u) for β = 0.28, 0.2 and 0.225.

Lemma 5
Assume that for u ∈ (0, u2), the value function O′′

I (u) satisfies O′′
I (u) ≥ 0. Then the function aα(X) is given by

aα(X) = min{X,α0X + α}, where α0 ∈ [0, 1] and α > 0 are constants.

In particular, when α0 = 0, the insurer’s strategy is an excess-of-loss reinsurance strategy that is uniquely
specified by the retention level α. In this case, for each claim Xi, the insurer pays the amount min{Xi, α} and
the reinsurer covers the rest Xi −min{Xi, α}. With a larger α, the insurer pays a larger proportion for each claim
and takes more risk by herself. The excess-of-loss reinsurance is well adopted in practice and theoretical research.
Thus, in this section we consider the excess-of-loss reinsurance and call α as the insurer’s reinsurance strategy.
Given a dynamic strategy {αt}t≥0, the equation (2) becomes

dXt =
(
rXt + λ

(
θµαt

+ (β − θ)µ
))
dt+

√
λσαt

dBt, X0 = u, (63)

where 
µα = E

(
X ∧ α

)
=

∫ α

0
F̄Z(y)dy,

σα =

√
E
(
X ∧ α

)2
=

√∫ α

0
2yF̄Z(y)dy,

and F̄Z(x) = 1− FZ(y). For any test function, we follow the standard dynamic programming techniques. If
h ∈ C2(0, u2) and the strategies (α∗, θ∗) exist, the objective functions satisfy the following HJB equations:

Lα,θg(u) =
(
ru+ λ

(
θµ(α)− (θ − β)µ

))
g′(u) +

λ

2
σ2(α)g′′(u), (64)

and
Aα,θg(u) = Lα,θg(u)− ζg(u) + λθ(µ− µα), (65)

To construct solutions OI(u;α
∗, θ∗) and OR(u;α

∗, θ∗), to P1-P2, we first characterize the insurer’s reinsurance
strategy α∗

i (u), i = 1, 2.

Lemma 6
Assume that for u ∈ (0, u2), the value function O′′

I (u) satisfies O′′
I (u) < 0. Then α∗

i (u) ∈ [0, α0∗
i ] is uniquely

determined by the following non-linear equation:

ki(α) = − α

θi

(
ru+ λ

(
θiµα + (η − θi)µ

))
+

λ

2
σ2
α = 0, (66)

where α0∗
i is the solution of equation (66) when r = 0. It is clear that α∗

1(u) = 0 if and only if u ≥ u1 and α∗
2(u) = 0

if and only if u ≥ u2. Moreover, when α∗
i (u) > 0, α∗

i (u) is strictly decreasing in u, η and r, and α∗
1(u) < α∗

2(u).

Stat., Optim. Inf. Comput. Vol. 13, April 2025



1498 OPTIMAL EXCESS-OF-LOSS REINSURANCE CONTRACT IN A DYNAMIC RISK MODEL

Proof
By the first order condition, d

dαL
α,θiOI(u)|α=α∗

i
, we have

λθiF̄ (α∗
i )O

′
I(u) + λα∗

i F̄ (α∗
i )O

′′
I (u) = 0,

which gives that O′
I(u)

O′′
I (u) = −α∗

i

θi
. Combining the above equation with Lα∗

i ,θiOI(u) = 0, we have ki(αi∗) = 0. We
now proceed to show that (66) has unique solution. Direct calculation shows ki(0) = 0,

lim
α→∞

ki(α) = lim
α→∞

(
− α

θi

(
ru+ λβµ

)
+

1

2
λσ2

0

)
= −∞,

and

k′i(0) = − r

θi

(
u− λµ

r
(θi − η)

)
, k′′i (α) = −λF̄X(α) < 0.

Thus, k1(α) = 0 is a unique solution for α∗
1(u) ∈ (0,∞) if u < u1 and the solution α∗

1(u) = 0 if u ≥ u1; k2(α) = 0
is a unique solution for α∗

2(u) ∈ (0,∞) if u < u1 and the solution α∗
2(u) = 0 if u ≥ u2. In addition, when r = 0,

we see that ki(α) = 0 admits a unique solution α0
i > 0. Finally, we observe that ki(α) is strictly decreasing in r,

u and β, thus if α∗
i (u) > 0, it is strictly decreasing in r, u and β with α∗

i (u) ≤ α0
i . Similarly, we see that α∗

i (u) is
strictly increasing in θ and hence α∗

1(u) < α∗
2(u).

Lemma 7
For uR ∈ (0, u2), the equation (19) admits a solution OR1(.;uR) ∈ C2(0, uR) and the equation (20) admits a
solution OR2

(.;uR) ∈ C2(0, u2). Moreover, the two functions OR1
(uR;uR) and OR2

(uR;uR) are continuous in
uR ∈ [0, u1] with O′′

R2
(uR+;uR) < 0 and limuR→u1

OR2
(uR;uR) < ν1.

Proof
We prove this lemma in three steps:
(i) First, we show that equations (19) and (20) admit solutions. To this end, given uR ∈ (0, u2), consider two
stochastic processes {R̂t}t≥0 and {Rt}t≥0. The former has initial state R̂0 = r̂ ∈ (0, uR), and is absorbed at 0 and
reflected at uR; whereas the latter has initial state R̄0 = r̄ ∈ (0, u1), and is reflected at uR and absorbed at u2. The
dynamics of {R̂t} and {Rt} are defined by

dR̂t =
(
rR̂t + λ

(
θ1µ

(
α∗
1R̂t

)
+ (β − θ1)µ

))
dt+

√
λσ

(
α∗
1R̂t

)
dBt − dB̂t,

dR̄t =
(
rR̄t + λ

(
θ1µ

(
α∗
1R̄t

)
+ (β − θ1)µ

))
dt+

√
λσ

(
α∗
1R̂t

)
dBt − dB̄t,

R̂0 = r̂ ∈ [0, uR], R̄0 = r̄ ∈ [0, uR],

where B̂t and B̄t are F-adapted, nondecreasing, left continuous processes with B̂0 = B̄0 = 0. Define OR1
(r̂;uR) = E

( ∫ τ̂0
0

e−ζtλθ1
(
µ− µ

(
α∗
1R̂t

)
dt+

∫ τ̂0
0

e−ζtdB̂t

)
,

OR2
(r̄;uR) = E

(
e−ζtν2 +

∫ τ̄0
0

e−ζtλθ2
(
µ− µ

(
α∗
2R̄t

)
dt+

∫ τ̄0
0

e−ζtdB̄t

)
,

where τ̂0 = inf{t ≥ 0 : R̂t = 0} and τ̄0 = inf{t ≥ 0 : R̄t = u2} are F-stopping times. According to Lemma 6, the
volatilities

√
λσ

(
α∗
1(u)

)
and

√
λσ

(
α∗
2(u)

)
are bounded away from 0 in (0, uR) and (uR, u2), respectively. Also,

since OR1
(.;uR) and OR2

(.;uR) are continuously dependent on uR, we see that OR1
(.;uR) and OR2

(.;uR) are
continuous in [0, u1].
(ii) We prove that O′′

R2
(uR+;uR) < 0, uR ∈ (0, u1), by contradiction. Assume that O′′

R2
(uR+;uR) > 0. Since

O′
R2

(uR+;uR) = 1, either of the following two cases hold:
(a) O′

R2
(u;uR) has a local maximum at uh ∈ (u1, u2) such that O′

R2
(uh;uR) > 1, O′′

R2
(uh;uR) = 0 and
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O′′′
R2

(uh;uR) ≤ 0.
(b) O′

R2
(u;uR) has a global maximum at u2 such that O′

R2
(u2−;uR) > 1 and O′′′

R2
(u2−;uR) ≥ 0.

For case (a), by evaluating d
duL

α∗
2 ,θ2OR2

(u, uR)|u=uh
= 0, and the fact that α∗

2(uh)
du < 0 (see Lemma 6), we have

(
r + λθ2µ

(
α∗
2(uh)

)α∗
2(uh)

du
− ζ

)
O′

R2
(uh;uR)− λθ2µ

(
α∗
2(uh)

)α∗
2(uh)

du
≥ 0,

on the other hand

(r − ζ)O′
R2

(uh;uR) +
(
O′

R2
(uh;uR)− 1

)
λθ2µ

(
α∗
2(uh)

)α∗
2(uh)

du
< 0,

which is a contradiction. For case (b), we have O′
R2

(u, uR) > 1, u ∈ (uR, u2]. However,

0 = Lα∗
2 ,θ2OR2

(uR, uR) >
(
ruR + λ

(
θ2µ

(
α∗
2(uR)

)
+ (β − θ2)µ

))
−ζOR2

(uR, uR) + λθ2
(
µ− µ

(
α∗
2(uR)

))
.

Thus, OR2
(u2, uR)−OR2

(uR, uR) >
λθ2µ
ζ − ruR+λβµ

ζ = r
ζ (u2 − uR) < u2 − uR, which is a contradiction.

On the other hand, assume that O′′
R2

(uR+, uR) = 0. With O′
R2

(uR+, uR) = 1, direct calculation shows

0 = λ
σ2

(
α∗
2(uR)

)
2

O′′′
R2

(uR+, uR)

+
(
r + λθ2µ

(
α∗
2(uR)

)
(α∗

2)
′(uR)− ζ

)
O′

R2
(uR+, uR)

−λθ2µ
(
α∗
2(uR)

)
(α∗

2)
′(uR)

= λ
σ2

(
α∗
2(uR)

)
2

O′′′
R2

(uR+, uR) + r − ζ,

which gives that O′′′
R2

(uR+, uR) > 0. Thus, we have O′′
R2

(uR+, uR) > 0, u ∈ (uR, uR + ϵ) with ϵ > 0 being small.
By performing exactly the same procedure as above, we see that contradiction exists, and thus the assumption
O′′

R2
(uR+, uR) = 0 does not hold. Argument (ii) is proved.

(iii) From O′′
R2

(uR+, uR) = 1 and Lα∗
2 ,θ2OR2

(uR, uR) = 0, we have

OR2(uR, uR) =
ruR + λβµ+ λ

2σ
2
(
α∗
2(uR)

)
O′′

R2
(uR+, uR)

ζ

<
ru+ λβµ

ζ
= ν1.

Specially, by letting uR = u1, we have OR2(u1, u1) <
ru+λβµ

ζ = ν1. These arguments complete the proof.

Theorem 5.1
(i) If OR1

(0, 0) > 0, the equilibrium strategy is given by (15) where uR solves OR1
(uR, uR) = OR2

(uR, uR).
Moreover, the equilibrium value

OR(u) =

 OR1(u;uR), u ∈ [0, uR],

OR2
(u;uR), u ∈ [uR, u2],

(67)

and

OI(u) =


OI(uR)−O′

I(uR)
∫ uR

u
exp

(
−
∫ uR

y
θ1

α∗
1(z)

dz
)
dy, u ∈ [0, uR],

OI(uR) +O′
I(uR)

∫ uR

u
exp

(
−
∫ uR

y
θ1

α∗
2(z)

dz
)
dy, u ∈ [uR, u2],

(68)
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where 
O′

I(uR) = − 1∫ uR
0 exp

(
−
∫ uR
y

θ1
α∗
1
(z)

dz
)
dy+

∫ uR
u

exp
(
−
∫ uR
y

θ1
α∗
2
(z)

dz
)
dy
,

OI(uR) = 1 +O′
I(uR)

∫ uR

0
exp

(
−
∫ uR

y
θ1

α∗
1(z)

dz
)
dy.

(69)

(ii) If OR1(0, 0) ≤ 0, the equilibrium strategy is given by (15) with uR = 0. Moreover,
OR(u) = E

(
ν2e

−ζτ2I(τ2 < τ0) +
∫ τ2∧τ0
0

e−ζτ2λθ2
(
µ− µ

(
α∗
2(Rt)

))
dt
)
,

OI(u) =
1∫ u2

0 exp
(
−
∫ u2
y

θ2
α∗
2
(z)

dz
)
dy

∫ u2

u
exp

(
−
∫ u2

y
θ2

α∗
2(z)

dz
)
dy,

(70)

where τ2 = inf{t ≥ 0 : Rt ≥ u2}.

Proof
(i) For OR1

(0, 0) > 0, we prove this theorem in three steps:
(a)

(
OR(u), OI(u)

)
are the solutions to P1.

(b) Proving that O′
R(u) ≤ 1, u ∈ (uR, u2).

(c) Proving that O′
R(u) > 1, u ∈ (0, uR).

Then, since OI(u) given in (68) is strictly convex and that (α∗, θ∗) are admissible, similar to the proof of Theorem
4.1, we see that OI(u), OR(u) and (α∗, θ∗) are the equilibrium strategies.
Since OR1

(0, 0) = 0 < OR2
(0, 0) and OR1

(u1, u1) = ν1 > OR2
(u1, u1), by continuity there exists uR ∈ (0, u1)

such that OR1
(uR, uR) = OR2

(uR, uR). From Lemma 7, we see that OR(u) is the solution to equations (19)-(21).
Also, it is clear that OI(u) satisfies the equations (16)-(18).
(b) With some calculations, we get

λ
σ2

(
α∗
i (u)

)
2

O′′′
R (u) +

(
λα∗

i (u)µ
(
α∗
i (u)

)(
α∗
i (u)

)′
+ru+ λ

(
θiµ

(
α∗
i (u)

)
+ (β − θi)µ

))
O′′

R(u)

+
(
r + λθiµ

(
α∗
i (u)

)(
α∗
i

)′
(u)− ζ

)
O′

R(u)

−λθiµ
(
α∗
i (u)

)(
α∗
i

)′
(u) = 0. (71)

We prove by contradiction and assume that supu∈(uR,u2] O
′
R(u) > 1. Assume there exists local maximum

point um ∈ (uR, u2) such that O′
R(um) > 1, O′′

R(um) = 0 and O′′′
R (um) ≤ 0. Combining (71) and the fact that

d
duα

∗
2(u)|u=um

< 0 (see Lemma 6), we have

0 ≥ λ
σ2

(
α∗
2(u)

)
2

O′′′
R (um)

= λθ2µ
(
α∗
2(um)

d

du
α∗
2(um)(1−O′

R(um)) + (ζ − r)O′
R(um)

≥ (ζ − r)O′
R(um) > 0,

which is a contradiction. Otherwise, assume O′
R(u) has global maximum point at u2 such that O′

R(um) > 1. Let
ū = sup{u ∈ (uR, u2) : O

′
R(u) = 1}. Then O′

R(ū) = 1, O′′
R(ū) ≥ 0 and

0 = Aα∗
2 ,θ2OR(ū) ≥

(
ru+ λ

(
θ2µ

(
α∗
2(ū)

)
+ (β − θ2)µ

))
−ζOR(ū) + λ

(
µ−

(
α∗
2(ū)

))
θ2

= r(ū− u2) + ζOR(u2)− ζOR(ū),

which gives that OR(u2)−OR(ū)
u2−ū ≤ r

ζ < 1, and this contradicts the fact that O′
R(u) > 1, for u ∈ (ū, u2).

(c) Since O′
R(uR) = 1 and O′′

R(uR+) < 0 (see Lemma 7), we O′′
R(uR−) < 0 and hence O′

R(u) > 1, for u ∈
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(uR − ϵ, uR) with ϵ > 0 begin small. We claim that uR is strictly concave on (0, uR) and thus our argument holds.
Otherwise, let ¯̄u = sup{u ∈ (0, u2) : O

′′
R(u) = 0}. Then O′′′

R (¯̄u) ≤ 0, O′′
R(¯̄u) = 0 and O′

R(¯̄u) > 1. Therefore,

0 ≥ λ
σ2

(
α∗
2(¯̄u)

)
2

O′′′
R (¯̄u)

= λθ1µ
(
α∗
1(¯̄u)

d

du
α∗
2(¯̄u)(1−O′

R(¯̄u)) + (ζ − r)O′
R(¯̄u) > 0,

which is a contradiction.
(ii) For the case O′

R2
(0, 0) ≤ 0, since OI(u) given in (70) is strictly convex, we just need to show that O′

R(u) < 1,
for u ∈ (0, u2). First, we show that O′

R(0) ≤ 1. Otherwise, if O′
R(0) > 1, then the inequality

OR(u) = E
(
ν2e

−ζτ2I(τ2 < τ0) +

∫ τ2

0

e−ζtλθ2
(
µ− µ

(
α∗
2(R̄t)

))
dt
)

−O′
R(0)

∫ τ2

0

e−ζtdB̄t

)
< E

(
ν2e

−ζτ2I(τ2 < τ0) +

∫ τ2

0

e−ζtλθ2
(
µ− µ

(
α∗
2(R̄t)

))
dt
)

−
∫ τ2

0

e−ζtdB̄t

)
= OR2(u, 0).

Thus, 0 = OR(0) < OR2(u, 0) ≤ 0, which is a contradiction, and this completes our proof.

With Theorem 5.1 we may determine the solutions to our optimization problem numerically by using the Monte
Carlo simulation or finite difference method. As an example, we suppose that the claims {Xi}i∈N has the Pareto
distribution with density FX(y)

dy = 3(1 + y)−4, y ≥ 0. In this density, µ = 0.9706 and σ = 0.9853. The default
parameters are given in Table 2.

Table 2. Model parameters for the expected value principle

Parameters β θ1 θ2 r ζ λ
Values 0.17 0.2 0.3 0.05 0.13 0.3

When β = 0.17, we have OR1
(0, 0) = 0.0406 and uR = 0.070. According to Theorem 5.1, at equilibrium the

reinsurance is priced with θ∗ = 0.3 when insurer’s cash reserve is more than uR = 0.070, and is adjusted down
to θ∗ = 0.2 when the insurer’s cash reserve is less than uR = 0.070. When β = 0.10, we have OR1(0, 0) = −0.096
and uR = 0. Therefore, the reinsurance contract is provided at the peak price with θ∗ = 0.3. Figure 4 plots the
equilibrium strategy and the equilibrium value functions. In line with our findings in Section 4, we see that, with a
larger β the insurance business becomes more profitable, the insurer is able to afford for more insurance protection
to decrease her ruin probability. Correspondingly, the contract becomes more valuable.

6. Numerical example

In this section, we conduct a numerical study to investigate the effects of model parameters on the equilibrium
strategy. To simplify calculation, we assume that both the insurer and the reinsurer adopt the standard-deviation
principle, and set the default model parameters as given in Table 1. Since the insurer’s optimal reinsurance strategy
provided in Theorem 4.1 has a simple structure and is easy to understand, in this section we mainly focus on the
impact of model parameters on the reinsurance contract, which is uniquely characterized by the point uR. Figure 5
shows the impacts of parameters β, r, λ and ζ on uR. When the insurer’s capital reserve is more (or less) than uR, as
stated in Section 4, the reinsurance contract is in high (or low) price region. Figure 5(a) plots uR as the function of
the insurer’s safety loading β ∈ ( θ12 ,

θ2
2 ) = (0.16, 0.3). This figure clearly shows that the safety loading 0.2 where
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Figure 4. Equilibrium strategies and value functions when β = 0.17 and β = 0.10.

q0 = 0, is critical for the reinsurance contract. For β > 0.2, we have q0 > 0. Moreover, uR is an increasing function
of β, indicating that the reinsurance contract becomes cheaper as the insurance business becomes more profitable.
In fact, as β increases, the insurer becomes more profitable and is at a lower risk level, thus less risk premium is
imposed on the reinsurance and the reinsurance contract becomes cheaper. We can also see that, when β > 0.282,
since the price of reinsurance is low, therefore the insurer chooses to buy reinsurance to control the risk. When the
insurer is less profitable with β ∈ (0.2, 0.282), as the reinsurance becomes more expensive, the insurer buys some
reinsurance if the price is low (u < uR) or he/she has a sufficient initial reserve (u > u0). Finally, when β < 0,
q0 < 0, the insurance business is in a bad state such that reinsurance contract is offered at peak prices θ2. Paying
the reinsurance puts a heavy financial burden on the insurer, so he/she will buy reinsurance only if he/she has a
sufficient initial reserve (u > u0). Figure 5(b) that r has similar impacts on the point uR. That is, when the insurer
gets a higher return on its investment, the reinsurance contract becomes cheaper and the insurer has more demand
for it.
Figure 5(c) shows that, when λ < 1.01, q0 < 0 and hence uR = 0. when λ > 1.01, q0 > 0 and uR is positive and
slightly increases as λ increases. Since λ can be used to measure the insurer’s business, this result shows that the
insurer’s business scale has scale slight effect on the price of reinsurance. In addition, we see that, as λ increases, the
no reinsurance purchase region enlarges. That is with a larger business scale, the insurer is less inclined to search
reinsurance protection One possible reason is that with a larger business scale, the insurer becomes more stable and
has fewer assets willingness to buy reinsurance Figure 5(d) shows that, when ζ < 0.1, q0 > 0 and uR is positive and
a decreasing function of ζ. Moreover, as λ increases, the purchase area without reinsurance becomes large. Since ζ
represents capital cost of reinsurer, this result shows that with higher capital cost, reinsurer focuses more on short
term interest and tends to increase the price of reinsurance, which leads to less demand by insurers for reinsurance.
Figure 6 illustrates the impact of θ1 and θ2 on the reinsurance price. We can see that uR is increasing in θ1 and
decreasing in θ2. This can be explained as follows. When θ1 increases and gets closer to θ2, a reinsurance contract
with minimal price becomes more acceptable to the reinsurer and thus the low price region enlarges. Moreover,
as θ2 increases, the reinsurer naturally prefers to increase the high price area for more profit. We also note that
the slope of the line connecting uR is much steeper in panel (a) than it is in panel (b). This result shows that the
change in the peak price has less effect on the insurer when it has a small insurer amount of cash reserve (note that
the price in low price region remains unchanged). Otherwise, if uR decreases sharply in panel (b), insurer with an
insufficient cash reserve will probably give up the buy of reinsurance, which is not in the reinsurer’s interest.

7. Conclusions

In this work, we investigated an optimal excess-of-loss reinsurance contract between an insurer and a reinsurer in
a dynamic risk model which is assumed to be a diffusion approximation process of the classical Cramer-Lundberg
model. We assumed that the insurer is allowed to invest his/her surplus into a financial market containing one
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Figure 5. The impact of β, r, λ and ζ on uR and u0.

Figure 6. The impact of θ1 and θ2 on uR and u0.

risk-free rate of return and determines the reinsurance strategy by a self-reinsurance function. The simultaneous
equilibrium strategy is obtained using the objective functions of insurer and reinsurance. Lemma 1 showed that, if
the insurer has sufficient financial reserve in his/her insurance portfolio, at least u2, he/she can transfer all the risks
to the reinsurance to avoid bankruptcy. In this case, since reinsurance is in high demand, the reinsurer will charge
the maximum price for the contract to increase his profit. In Theorem 3.1, we derived an optimal strategy in the
insurance portfolio, which needs to obtain the values (α∗, θ∗) such that the equations (8) and (9) hold. In Sections
4 and 5, we provided the explicit solution of the optimization problem when the reinsurance premium function is
based on the standard-deviation principle and standard-deviation principle, respectively. In our numerical example,
the effects of model parameters on the equilibrium strategy for standard-deviation principle are studied.
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