
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 14, July 2025, pp 77–104.
Published online in International Academic Press (www.IAPress.org)

The New Topp-Leone-Marshall-Olkin-Gompertz-G Family of Distributions:
Properties, Different Estimation Techniques and Applications on Censored

and Complete Data

Peter T. Chinofunga 1,2,*, Broderick Oluyede 2, Fastel Chipepa 2

1Department of Mathematics and Computer Science, Great Zimbabwe University, Zimbabwe
2 Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Botswana

Abstract A new family of distributions (FoD) called the Topp-Leone-Marshall-Olkin Gompertz-G is presented in this
paper. Derivations of some statistical properties were carried out. The model parameters were estimated using five methods,
including weighted least squares, maximum likelihood estimation, least squares, Cramér-von Mises, and Anderson Darling.
The simulation experiment assessed the precision of the model parameters through the utilization of five estimation methods.
To evaluate the adaptability and utility of this new FoD, three real-life datasets were analyzed using a special case
from the developed family of distributions, one of which contained censored data. Remarkably, the new model showed
exceptional performance when compared against six other non-nested models. This comparison highlighted its superiority
and effectiveness in modeling real-life datasets.
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1. Introduction

The past two decades have witnessed a substantial rise in the demand for generalized distributions due to their
ability to effectively handle skewness and kurtosis. While generalized distributions offer enhanced flexibility and
versatility, there are scenarios where classical distributions may outperform them. Some key situations where
classical distributions may be preferred are

• When the dataset is small, classical distributions with fewer parameters (e.g., exponential, Weibull, or normal
distributions) tend to perform better.

• In fields where distribution interpretability is critical (for example, healthcare, finance, or engineering),
classical distributions are often preferred.

• When computational resources are limited or when real-time analysis is required, classical distributions are
advantageous.

• When the underlying data exhibits simple patterns (e.g., constant hazard rates, symmetric distributions, or
light-tailed behaviour), classical distributions may suffice.

• In situations where the true data-generating process is unknown or partially known, classical distributions
may be more robust.
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• In applications where quick implementation is required, classical distributions are often preferred.
• When the analysis focuses on specific features of the data (e.g., mean, variance, or tail behaviour), classical

distributions tailored to those features may outperform generalized distributions.
• In regulated industries (e.g., pharmaceuticals, finance), classical distributions may be required to comply

with industry standards or regulatory guidelines.
• When the dataset contains noise or outliers, classical distributions may generalize better to new data.
• In teaching or introductory courses, classical distributions are often used to illustrate fundamental concepts.

However, the surge in demand for generalized distributions can be linked to the recognition of their efficacy
in addressing skewness and kurtosis traits in data analysis. The applications of generalized distributions span
diverse domains such as finance, economics, hydrology, physics, reliability, and engineering. Several authors,
including Cordeiro et al. [15], Zografos and Balakrishnan [40], Cleaton and Lynch [14], Alizadeh et al. [5], have
demonstrated the effectiveness of numerous generators in generalizing classical distributions. Also, Nasiru and
Abubakari [29], Opone and Osemwenkhae [32], Abdullah et al. [1], Alsultan [6], Ehiwario et al. [17], Osi et al.
[33], Atchadé et al. [7] and Nkomo et al. [30], among others, have contributed to the validation and exploration of
these generators, demonstrating their use in extending the scope of classical distributions.

One distribution whose application covers areas such as income, reliability, actuarial science and medical science is
the Gompertz distribution. Some of the available literature on the generalisation of this distribution includes work
by Oluyede et al. [31], Chipepa and Oluyede [13], El-Gohary et al. [18], Codeiro et al. [16], and Jafari et al. [21].
The cumulative distribution function (cdf) and the probability density function (pdf) of the Gompertz-G (Gom-G)
family of distributions (FoD) as given by Alizadeh et al. [5] are

FGom−G(z; θ, γ, Ψ) = 1− e
θ
γ

(
1−[Ḡ(z;Ψ)]

−γ
)

(1)

and

fGom−G(z; θ, γ, Ψ) = θg(z;Ψ)
[
Ḡ(z;Ψ)

]−γ−1
e

θ
γ

(
1−[Ḡ(z;Ψ)]

−γ
)

(2)

for γ, θ > 0, where Ḡ(z;Ψ) is the baseline distribution depending on parameter vector Ψ and Ḡ(z;Ψ) =
1−G(z;Ψ).

The primary purpose of this research is to generalise the Gom-G distribution, using the combined generator
Topp-Leone-Marshall-Olkin-G (TLMOG) FoD by Chipepa et al. [12], culminating in the new Topp-Leone-
Marshall-Olkin-Gompertz-G (TLMOGom-G) FoD. The TLMO-G FoD cdf is

FTLMO−G(z; b, δ, Ψ) =

[
1− δ2Ḡ2(z;Ψ)(

1− δ̄Ḡ(z;Ψ)
)2
]b

(3)

for δ, b > 0 and δ̄ = 1− δ. The hazard rate functions (hrf) of the TLMO-G distribution can exhibit both monotonic
and non-monotonic shapes, as demonstrated in the study on the Topp-Leone-Marshall-Olkin-loglogistic special
model by Chipepa et al. [12].

The motivations behind the development of the TLMOGom-G FoD are:

• Current distributions often lack the ability to simultaneously capture monotonic, non-monotonic, and heavy-
tailed hazard rate shapes. These properties are crucial for accurately modeling real-world phenomena, where
diverse failure rates and risk patterns are frequently observed. Enhancing the flexibility of hazard rate
functions is essential for improving the precision of statistical models in practical applications.
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• Some generalized distributions fail to adequately model heavy-tailed data, despite the importance of such
distributions in representing extreme events. This limitation hinders their applicability in scenarios where
extreme values or rare events are prevalent.

• Some existing distributions lack the versatility to model datasets exhibiting both skewed and symmetrical
characteristics. This restricts their utility across a wide range of real-world data, which often display varying
degrees of skewness and symmetry.

• There is a pressing need to develop new generalized distribution models that offer superior fit and flexibility
compared to existing ones. Such advancements would address the limitations of current models and provide
more robust tools for statistical analysis.

Thus, the primary objectives of this study are as follows:

• To introduce and derive the TLMOGom-G FoD.
• To derive and analyze the key mathematical and statistical properties of the TLMOGom-G FoD.
• To demonstrate the flexibility of the TLMOGom-G FoD in modeling diverse types of data.
• To look for the best estimation technique for parameter estimation of the TLMOGom-G FoD.
• To conduct simulation studies to evaluate the consistency and reliability of the parameter estimates derived

from the TLMOGom-G FoD.
• To compare the performance of the TLMOGom-G FoD with other competing equi-parameter models to

demonstrate its superiority in terms of fit and applicability.
• To compare the performance of the TLMOGom-G FoD with some nested models.

The outline of this paper is: Section 2 presents the model and the associated properties. Section 3 looks at estimation
of the parameters. Special cases of the new family are presented in Section 4. Section 5 looks at simulation studies.
Applications are dealt with in Section 6 and the summary is contained in Section 7.

2. The Model

The TLMOGom-G FoD and its statistical properties are developed under this section. Employing equations
(1.1) and (1.3), setting θ = 1 to avoid over-parameterization (see model identifiability) and letting h(z; γ, Ψ) =
1
γ

[
1−

(
Ḡ(z;Ψ)

)−γ
]
, the cdf, pdf and hrf, respectively, of the TLMOGom-G FoD are:

FTLMOGom−G(z; δ, b, γ, Ψ) =

[
1− δ2e2h(z;Ψ)(

1− (1− δ)eh(z;Ψ)
)2
]b

, (4)

fTLMOGom−G(z; δ, b, γ, Ψ) =
2bδ2g(z;Ψ)

(
Ḡ(z;Ψ)

)−γ−1
e2h(z;Ψ)(

1− (1− δ)eh(z;Ψ)
)3

×

[
1− δ2e2h(z;Ψ)(

1− (1− δ)eh(z;Ψ)
)2
]b−1

, (5)

and
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hTLMOGom−G(z; δ, b, γ, Ψ) =
2bδ2g(z;Ψ)

(
Ḡ(z;Ψ)

)−γ−1
e2h(z;Ψ)(

1− (1− δ)eh(z;Ψ)]
)3

×

[
1− δ2e2h(z;Ψ)(

1− (1− δ)eh(z;Ψ)
)2
]b−1

×

1−

[
1− δ2e2h(z;Ψ)(

1− (1− δ)eh(z;Ψ)]
)2
]b

−1

(6)

for δ, b, γ > 0, and a vector of parameters Ψ .

2.1. Model Identifiability

It is a fundamental concept in statistical modelling and data analysis. Its purpose is to ensure that the parameters
of a model can be uniquely determined from the observed data. Also, identifiability encourages the use of
parsimonious models, which are simpler and more interpretable. We seek to demonstrate the identifiability of the
TLMOGom-G FoD model.

Let ∆1 = (δ1, b1, γ1, Ψ1) and ∆2 = (δ2, b2, γ2, Ψ2), then, the likelihood ratio is

f1(∆1)

f2(∆2)
=

[
2b1δ

2
1

2b2δ22

] [
g(z;Ψ1)

g(z;Ψ2)

][(
Ḡ(z;Ψ1)

)−γ1−1(
Ḡ(z;Ψ2)

)−γ2−1

][(
1− (1− δ2)e

h(z;Ψ2)
)3(

1− (1− δ1)eh(z;Ψ1)
)3
]

×


{
1− δ21e

2h(z;Ψ1)

[1−(1−δ1)eh(z;Ψ1)]
2

}b1−1

{
1− δ22e

2h(z;Ψ2)

[1−(1−δ2)eh(z;Ψ2)]
2

}b2−1

 eh(z;Ψ1)−h(z;Ψ2).

The log-likelihood ratio is

ln

[
f1(∆1)

f2(∆2)

]
= ln

[
2b1δ

2
1

2b2δ22

]
+ ln [g(z;Ψ1)]− ln [g(z;Ψ2)]− (γ1 + 1) ln

[
Ḡ(z;Ψ1)

]
+ (γ2 + 1) ln

[
Ḡ(z;Ψ2)

]
+ ln

[(
1− (1− δ2)e

h(z;Ψ2)
)3]

− ln

[(
1− (1− δ1)e

h(z;Ψ1)
)3]

+ (b1 − 1) ln

[
1− δ21e

2h(z;Ψ1)[
1− (1− δ1)eh(z;Ψ1)

]2
]

− (b2 − 1) ln

[
1− δ22e

2h(z;Ψ2)[
1− (1− δ2)eh(z;Ψ2)

]2
]
+ [h(z;Ψ1)− h(z;Ψ2)]. (7)
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Differentiating equation (7) gives

d ln
[
f1(∆1)
f2(∆2)

]
dz

=
g′(z;Ψ1)

g(z;Ψ1)
− g′(z;Ψ2)

g(z;Ψ2)
− (γ1 + 1)

g′(z;Ψ1)
g(z;Ψ1)

Ḡ(z;Ψ1)
+ (γ2 + 1)

g′(z;Ψ2)
g(z;Ψ2)

Ḡ(z;Ψ2)

− 3(1− δ1)e
h(z;Ψ1)h′(z;Ψ1)(

1− (1− δ1)eh(z;Ψ1)
)3 +

3(1− δ2)e
h(z;Ψ2)h′(z;Ψ2)(

1− (1− δ2)eh(z;Ψ2)
)3

+ (b1 − 1)
2δ21e

2h(z;Ψ1)h′(z;Ψ1)[
1− (1− δ1)eh(z;Ψ1)

]3 [
1− δ21e

2h(z;Ψ1)

[1−(1−δ1)eh(z;Ψ1)]
2

]
− (b2 − 1)

2δ22e
2h(z;Ψ2)h′(z;Ψ2)[

1− (1− δ2)eh(z;Ψ2)
]3 [

1− δ22e
2h(z;Ψ2)

[1−(1−δ2)eh(z;Ψ2)]
2

]
+ h′(z;Ψ1)− h′(z;Ψ2),

When the derivative of the natural logarithm of the ratio of two functions, ln
[
f1(∆1)
f2(∆2)

]
, with respect to z equals

zero, i.e.,

d ln
[
f1(∆1)
f2(∆2)

]
dz

= 0,

it implies ∆1 = ∆2. This equality signifies that the parameters of the TLMOGom-G FoD can be uniquely
determined from a given dataset, ensuring identifiability of the model. In other words, it guarantees that the
parameters of the model are uniquely identifiable, allowing for reliable estimation and interpretation of the model.

2.2. Quantile Function

The quantile function is obtained by computing the inverse of the cdf. Thus, the TLMOGom-G FoD’s quantile
values are obtained using solutions of the equation

Qz(w) = G−1

1−(1− γln

( √
1− w

1
b

δ + δ̄
√

1− w
1
b

))− 1
γ

 ,

for 0 < w < 1. Refer to the appendix for the derivation.

2.3. Linear Representation

Series expansion of the TLMOGom-G FoD, useful for further derivations of the associated and necessary statistical
properties is presented in this section (see web appendix). The linear representation is given by

fTLMOGom−G(z; δ, b, γ, Ψ) =

∞∑
n=0

Υn+1gn+1(z;Ψ), (8)

where

Υn+1 = 2b

∞∑
i,j,k,m=0

(−1)iδ2(i+1)δ̄j
(2i+ j + 2)k

(n+ 1)γkk!

×
(
b− 1

i

)(
2i+ j + 2

j

)(
γ +m− k

m

)(
mγ + n− 1

n

)
(9)
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and gn+1(z;Ψ) = (n+ 1)g(z;Ψ)Gn(z;Ψ). Consequently, the TLMOGom-G FoD can be represented as an infinite
linear combination of the Expon-G distributions, with power parameter (n+ 1) and linear component Υn+1. The
properties of this FoD are derived from the underlying Expon-G distribution.

2.4. Distribution of Order Statistics

Order statistics refer to the arrangement of sample values in ascending order. Consider Z(1) ≤ Z(2) ≤ . . . ≤ Z(m)

as the order statistics from the TLMOGom-G. The pdf of the ith order statistic from the TLMOGom-G FoD is

fTLMOGom−G(z; δ, b, γ, Ψ)) =

∞∑
q=0

ν∗q+1gq+1(z;Ψ), (10)

where gq+1(z;Ψ) = (q + 1)g(z;Ψ)Gq(z;Ψ) is the Expon-G distribution whose power parameter is (q + 1), and

ν∗q+1 = 2bδ2k+1δ̄l
∞∑

k,l,n,p=0

m−j∑
j=0

(−1)k+p (2k + l + 1)n

(q + 1)B(i;m− i+ 1)n!

(
1

γ

)n

×
(
m− i

j

)(
b(j + i)− 1

k

)(
2k + l + 2

l

)(
n

p

)(
γ(p+ 1) + q

q

)
(11)

is the linear component. Refer to the web appendix for details.

2.5. Entropy

An entropy quantifies the level of randomness or uncertainty within a system. Rényi entropy, introduced by Rényi
[34], extends the concept of Shannon entropy, first proposed by Shannon [37]. The TLMOGom-G FoD Rényi
entropy (refer to the appendix for its derivation) is given by

IR(a) = (1− a)−1 log

[ ∞∑
n=0

Kn exp[(1− a)IREG]

]
, (12)

where

Kn = (2b)a
∞∑

i,j,k,m=0

(−1)i+mδ2(a+i) (j + a)k

k!γk

(
a(b− 1)

i

)

×
(
2i+ 3a+ j − 1

j

)(
k

m

)(
γ(m+ a) + a+ n− 1

n

)(
1

n
a + 1

)a

and

IREG =

∫ ∞

0

[(n
a
+ 1
)
g(z;Ψ)G

n
a (z;Ψ)

]a
dz

is the Rényi entropy of the Expon-G density with power parameter
(
n
a + 1

)
. Details of the derivations are in the

web appendix.

2.6. Stochastic Ordering

Stochastic ordering provides a statistical framework to compare random variables and determine if one variable is
stochastically smaller than another. Simply put, a stochastic order is comparison of two random variables to see
if one is generally ”larger” or ”smaller” than the other. However, it may not be easy to pick it up with a naked
eye. Sometimes, two random variables can’t be clearly ranked as one being larger, smaller, or equal to the other.
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There are different types of these comparisons, each useful for specific situations. It is very useful in such areas as
hypothesis testing, simultaneous comparisons, multiple decisions problems and decisions under risk.

Now, consider two random variables, Z and W . The cdf of Z is denoted by FZ(t) and that of W by FW (t).
Similarly, the survival functions are denoted by F̄Z(t) = 1− FZ(t) and F̄W (t) = 1− FW (t), respectively. Z is
stochastically smaller than W if either FZ(t) ≥ FW (t) or F̄Z(t) ≤ F̄W (t) for all values of t in the real number
space. This relationship is represented as Z <so W . To establish that Z and W are stochastically ordered, we
utilize other stochastic orders, such as the hazard rate order (hro) and the likelihood ratio order (lro). Based on the
work by Shaked and Shanthikumar [35], it is known that if Z <lro W , indicating that Z is stochastically smaller
than W according to the likelihood ratio order, then it follows that Z <hro W , signifying the hazard rate order,
and consequently Z <so W .

Theorem: Let Z ∼ TLMOGom−G(z; b1, δ, γ, Ψ) and W ∼ TLMOGom−G(z; b2, δ, γ, Ψ), with the following
pdfs:

f1(z; b1, δ, γ, Ψ) =
2b1δ

2g(z;Ψ)
(
Ḡ(z;Ψ)

)−γ−1
e2h(z;Ψ)(

1− δ̄eh(z;Ψ)
)3

×

[
1− δ2e2h(z;Ψ)(

1− δ̄eh(z;Ψ)
)2
]b1−1

and

f2(z; b2, δ, γ, Ψ) =
2b2δ

2g(z;Ψ)
(
Ḡ(z;Ψ)

)−γ−1
e2h(z;Ψ)](

1− δ̄eh(z;Ψ)
)3

×

[
1− δ2e2h(z;Ψ)(

1− δ̄eh(z;Ψ)
)2
]b2−1

.

If b1 ≤ b2, then fTLMOGom−G(z;b1,δ,γ,Ψ)
fTLMOGom−G(z;b2,δ,γ,Ψ) is decreasing in z.

Proof: Now considering the above pdfs, the ratio

f1(z; b1, δ, γ, Ψ)

f2(z; b2, δ, γ, Ψ)
=

f1(z)

f2(z)
=

b1
b2

[
1− δ2e2h(z;Ψ)(

1− δ̄eh(z;Ψ)
)2
]b1−b2

. (13)

Differentiating equation (2.9) with respect to z, the resulting expression is as follows:

d

dz

(
f1(z)

f2(z)

)
=

2δ2b1
b2

(b1 − b2)

[
1− δ2e2h(z;Ψ)(

1− δ̄eh(z;Ψ)
)2
]b1−b2−1

× e2h(z;Ψ)(
1− δ̄eh(z;Ψ)

)3 g(z;Ψ) (Ḡ(z;Ψ)
)−γ−1

.

Hence, if b2 ≥ b1, then d
dz

(
f1(z)
f2(z)

)
will be negative. Consequently. we conclude that Z <lro W , which implies

Z <hro W , and Z <so W , indicating that Z and W are stochastically ordered.
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2.7. Moments and Moment Generating Function

We present the rth moment and moment generating function (mgf) of the TLMOGom−G FoD. Suppose
Y ∼ Expon−G(n+ 1) and Z ∼ TLMOGom−G(b, δ, γ, Ψ), then from equation (2.4), the rth moment of the
TLMOGom−G FoD is

µ′
r = E(Zr) =

∫ ∞

0

zrfTLMOGom−G(z; b, δ, γ, Ψ)dz =

∞∑
n=0

Υn+1E(Y r),

with E(Y r) being the rth moment of the Expon-G distribution with power parameter (n+1), and Υn+1 as in
equation (2.5).

The Moment generating function (mgf) is

Mt(Z) = E(etZ) =

∞∑
r=0

tr

r!
E(Zr) =

∞∑
n=0

Υn+1MY (t),

where MY (t) is the mgf of the Expon-G distribution.

3. Special cases

Three special cases were considered where the baseline distributions are Pareto (P), Weibull (W) and log-logistic
(LLo), respectively.

3.1. Topp-Leone-Marshall-Olkin-Gompertz-Pareto (TLMOGom-P) Distribution

Suppose the Pareto distribution is the baseline distribution with pdf and cdf g(z;ω) = ω(1 + z)−(ω+1) and
G(z;ω) = 1− (1 + z)−ω, for ω > 0, then the cdf, pdf and hrf of the TLMOGom-P distribution are

FTLMOGom−P (z; δ, b, γ, ω) =

1− δ2e
2
γ (h(z;γ,ω))(

1− δ̄e
1
γ (h(z;γ,ω))

)2

b

,

fTLMOGom−P (z; δ, b, γ, ω) =
2bδ2ω (1 + z)

ωγ+1
e

2
γ (h(z;γ,ω))(

1− δ̄e
1
γ (h(z;γ,ω))

)3
×

1− δ2e
2
γ (h(z;γ,ω))(

1− δ̄e
1
γ (h(z;γ,ω))

)2

b−1

and
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hTLMOGom−P (z; δ, b, γ, ω) =
2bδ2ω (1 + z)

ωγ+1
e

2
γ (h(z;γ,ω))(

1− δ̄e
1
γ (h(z;γ,ω))

)3
×

1− δ2e
2
γ (h(z;γ,ω))(

1− δ̄e
1
γ h(z;γ,ω)

)2

b−1

×

1−

1− δ2e
2
γ (h(z;γ,ω))(

1− δ̄e
1
γ (h(z;γ,ω))

)2

b


−1

,

respectively, for δ, b, γ, ω > 0, where h(z; γ, ω) = 1− [1 + z]
ωγ and δ̄ = 1− δ.

Figure 1. TLMOGom-P pdf and hrf plots

We can deduce from Figure [1] that this new distribution handles almost symmetric, skewed to the left and skewed
to the right data. The distribution can fit data sets with hrf that are bathtub followed by upside bathtub, bathtub and
increasing shapes.

Figure [2] illustrates the spread and peakedness behaviours of the TLMOGom-P as follows:

• When the values of b and ω are set, kurtosis and skewness vary as we adjust γ and δ.
• When we fix the values of δ and γ, kurtosis and skewness increase as b and ω increase.
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(a) (b)

(c) (d)

Figure 2. TLMOGom-P kurtosis and skewness plots

3.2. Topp-Leone-Marshall-Olkin-Gompertz-Weibull (TLMOGom-W) Distribution

Consider the Weibull distribution with cdf and pdf G(z;λ) = 1− e−zλ

and g(z;λ) = λzλ−1e−zλ

, for λ > 0,
repectively. The cdf, pdf and hrf of the TLMOGom-W distribution are:

FTLMOGom−W (z; δ, b, γ, λ) =

1− δ2e
2
γ (h(z;γ,λ))(

1− δ̄e
1
γ (h(z;γ,λ))

)2

b

,
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fTLMOGom−W (z; δ, b, γ, λ) =
2bδ2λzλ−1eγz

λ

e
2
γ (h(z;γ,λ))(

1− δ̄e
1
γ (h(z;γ,λ))

)3
×

1− δ2e
2
γ (h(z;γ,λ))(

1− δ̄e
1
γ (h(z;γ,λ))

)2

b−1

,

and

hTLMOGom−W (z; δ, b, γ, λ) =
2bδ2λzλ−1eγz

λ

e
2
γ (h(z;γ,λ))(

1− δ̄e
1
γ (h(z;γ,λ))

)3
×

1− δ2e
2
γ (h(z;γ,λ))(

1− δ̄e
1
γ (h(z;γ,λ))

)2

b−1

×

1−

1− δ2e
2
γ (h(z;γ,λ))(

1− δ̄e
1
γ (h(z;γ,λ))

)2

b


−1

,

respectively, for δ, b, λ, γ > 0, where h(z; γ, λ) = 1− eγz
λ

, and δ̄ = 1− δ.

Figure 3. TLMOGom-W pdf and hrf plots

This model can handle almost symmetric data, peaked, reverse-J, skewed to the right and reverse-J. The hrf can
take bathtub, upside down bathtub, decreasing and increasing shapes.
Figure [4] illustrates the spread and peakedness behaviors of the TLMOGomW as follows:

• When we fix the values of λ and b, kurtosis decreases as δ increases and increases as γ increases. Skewness
decreases as γ and δ increase.

• When we fix the values of δ and λ, kurtosis increases as b increases and skewness decreases as γ increases.
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(a) (b)

(c) (d)

Figure 4. TLMOGom-W kurtosis and skewness plots

3.3. Topp-Leone-Marshall-Olkin-Gompertz-Log-logistic (TLMOGom-LLo) Distribution

Consider the log-logistic distribution with the pdf g(z; c) = czc−1(1 + zc)−2 and cdf G(z; c) = 1− (1 + zc)−1, for
c > 0. Let h(z; γ, c) = 1

γ [1− (1 + zc)
γ
]. The cdf, pdf and hrf of the TLMOGom-LLo distribution are:

FTLMOGom−LLo(z; δ, b, γ, c) =

[
1− δ2e2h(z;γ,c)(

1− δ̄eh(z;γ,c)
)2
]b

,
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fTLMOGom−LLo(z; δ, b, γ, c) =
2bδ2cz−1 (1 + zc)

γ−1
e2h(z;γ,c)(

1− δ̄eh(z;γ,c)
)3

×

[
1− δ2e2h(z;γ,c)(

1− δ̄eh(z;γ,c)
)2
]b−1

and

hTLMOGom−LLo(z; δ, b, γ, c) =
2bδ2cz−1 (1 + zc)

γ−1
e2h(z;γ,c)(

1− δ̄eh(z;γ,c)
)3

×

[
1− δ2e2h(z;γ,c)(

1− δ̄eh(z;γ,c)
)2
]b−1

×

1−

[
1− δ2e2h(z;γ,c)(

1− δ̄eh(z;γ,c)
)2
]b

−1

,

for δ, b, γ, c > 0, and δ̄ = 1− δ.

Figure 5. TLMOGom-LLo pdf and hrf plots

Fig [3.5] shows that the model works well with data that are left and right-skewed, and reverse-J. It fits to many
hrfs that include the uni-modal, increasing, decreasing, bathtub followed by upside down bathtub.
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(a) (b)

(c) (d)

Figure 6. TLMOGom-LLo kurtosis and skewness plots

In Figure [6], the skewness and kurtosis behaviors of the TLMO-LLo are depicted as follows:

• When we fix the values of δ and γ, kurtosis and skewness levels of the TLMO-LLo decrease as both b and c
increase.

• As the values of δ and γ increase, various levels of kurtosis are observed for the TLMO-LLo distribution are
observed when the values of b and c are held constant.

4. Estimation Methods

In this section, our primary objective is to estimate the unknown parameters of the TLMOGom−W using
multiple estimation techniques, including maximum likelihood estimation (MLE), least squares (LS), weighted
least squares (WLS), Cramér-von Mises (CVM) and Anderson-Darling (AD). The optimization process for
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parameter estimation followed an iterative approach, beginning with an initial set of parameter estimates informed
by domain knowledge and preliminary data analysis. To enhance robustness, multiple random initializations were
tested, and the one yielding the best objective function value (negative log-likelihood for MLE, sum of squared
errors for LS and WLS, Cramér-von Mises statistic for CVM or Anderson-Darling statistic for AD) was selected.
During each iteration, parameter estimates were updated according to the respective estimation algorithm, and
convergence was assessed by monitoring the stabilization of the objective function. The iterations continued until
the objective function reached a stable value, indicating that the parameters had converged to an optimal solution.
This combination of iterative refinement, informed initialization, and convergence monitoring ensures that the
final parameter estimates are reliable and accurate. By incorporating multiple estimation methods, the approach
provides a comprehensive and robust framework for parameter estimation, reducing sensitivity to initial parameter
choices and improving the overall reliability of the fitted distribution.

Below we look at the derivation of the parameter estimates for the five different techniques. Let △ = (δ, b, γ, λ)
T

denote the parameters vector. Also let X(1), X(2),......,X(m) be the ordered statistics from the TLMOGom−
W (δ, b, γ, λ) distribution with sample size m and x(1), x(2),.....,x(m) be the ordered observed values.

4.1. MLE Approach

This method is one of the most used techniques for parameter estimation. In practice, the MLEs are often reliable,
and large sample theory provides convenient estimates to the parameters that yield good results even with limited
data. Now, if Zi ∼ TLMOGom−W (δ, b, γ, λ), then the log-likelihood function l = l(△), based on a random
sample of size m, is

l = mln(2) +mln(b) +mln(λ) + 2ln(δ) + (λ− 1)

m∑
i=1

ln(zi) + γ

m∑
i=1

zλi

+
2

γ

m∑
i=1

(
1− eγ

∑m
i=1 zλ

i

)
− 3

m∑
i=1

ln

(
1− (1− δ)e

1
γ

(
1−eγ

∑m
i=1 zλi

))

+ (b− 1)

m∑
i=1

ln

1− δ2e
2
γ

(
1−eγ

∑m
i=1 zλi

)

1− (1− δ)e
1
γ

(
1−eγ

∑m
i=1

zλ
i

)
 .

Parameter estimates are obtained by solving the non-linear equations ∂l
∂δ = 0, ∂l

∂b = 0, ∂l
∂γ = 0 and ∂l

∂λ = 0. See
Appendix for the derivation of the partial derivatives.

4.2. LS Approach

According to Swain et al. [38], unknown parameters are determined via minimization of the function:

LS(△) =

m∑
i=1

(
FTLMOGom−W (z(i); δ, b, γ, λ)−

1

m+ 1

)2

=

m∑
i=1


[
1− δ2e2h(z(i);γ,λ)(

1− δ̄eh(z(i);γ,λ)
)2
]b

− 1

m+ 1


2

.

Parameter estimates are obtained by taking partial derivatives with respect to the parameters and equate to zero.
The resulting non-linear equations are numerically solved to get the parameter estimates.

4.3. WLS Approach

The parameter estimates for the WLS approach are obtained through minimization of the following function:
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WLS(△) =

m∑
i=1

(1 +m)2(2 +m)

(m− i+ 1)i

(
FTLMOGom−W (z(i); δ, b, γ, λ)−

i

1 +m

)2

=

m∑
i=1

(1 +m)2(2 +m)

(m− i+ 1)i

[1− δ2e2h(z(i);γ,λ)(
1− δ̄eh(z(i);γ,λ)

)2
]b

− i

1 +m

2

.

4.4. CVM Approach

The parameter estimates are found by minimising C(△) with respect to the unknown parameters in the CVM
function

C(△) =
1

12
+

m∑
i=1

(
FTLMOGom−W (z(i); δ, b, γ, λ)−

2i− 1

2m

)2

=
1

12
+

m∑
i=1

[1− δ2e2h(z(i);γ,λ)(
1− δ̄eh(z(i);γ,λ)

)2
]b

− 2i− 1

2m

2

.

4.5. AD Approach

The AD test is employed to assess whether a given sample of data is derived from a population that follows a
specific distribution. Deducing from a paper by Lewis [26], the function containing the model parameters is given
by

AD(△) = −m− 1

m

m∑
i=1

(2i− 1) ln
[
F (z(i); δ, b, γ, λ)

]
+ ln

[
S(z(m+1−i); δ, b, γ, λ)

]
= −m− 1

m

m∑
i=1

(2i− 1) ln

(1− δ2e2h(z(i);γ,λ)(
1− δ̄eh(z(i);γ,λ)

)2
)b


− 1

m

m∑
i=1

(2i− 1) ln

1−(1− δ2e2h(z(i);γ,λ)(
1− δ̄eh(z(i);γ,λ)

)2
)b
 ,

and the estimates emanate from minimising the function with respect to the parameters.

5. Simulations

In this section, we examine the performance of the TLMOGom-W distribution through a simulation study
conducted to make comparisons of the different estimation methods for varying sample sizes (m = 25, 50, 100,
200, 400, and 800) using the R software program. To achieve this, we shall employ:

• Average Bias (Abias) which is the average of the biases calculated across multiple estimation samples.
It provides an overall measure of the tendency of the estimation method to consistently overestimate or
underestimate the true parameter.

• Root Mean Square Error (RMSE), which is a measure of the average magnitude of the errors between
predicted values and observed values. It combines both bias and variability in the predictions.

It should be noted that there are several computational issues in R which include:
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• Slowness with operations on large datasets especially with complex calculations or iterative simulations. Use
of the packages like ff or bigmemory is recommended.

• Convergence issues may arise when fitting complex models. Apart from adjusting starting values and
increasing the number of iterations it is also advisable to choose different optimization algorithms such
as aptim and nlminb.

• Results obtained from complex models may be difficult to interpret or communicate effectively. Utilizing
visualization tools such as ggplot2 may help with communicating the results.

• Some algorithms may be computationally intensive, resulting in long run times. Code profiling using profvis
package may cut down the run times via bottlenecks identification and optimization of the slowest parts.

Tables [1] and [2] provide values of the parameter estimates, as well as the associated rank in relation to the
predetermined value, for each estimation method as we vary the sample sizes.

Table 1. Simulation results for δ = 0.01, b = 0.8, γ = 0.6, λ = 1.04

RMSE Abias
m Parameter MLE WLS LS CVM AD MLE WLS LS CVM AD

δ 0.0308 (1) 6.0032 (2) 6.1656 (3) 6.1719 (4) 6.2466 (5) 0.0075 (1) 0.9348 (2) 0.9682 (3) 0.9702 (4) 0.9872 (5)

25 b 15.7956 (5) 4.0280 (1) 4.1226 (2) 4.1302 (3) 4.1870 (4) 3.7842 (5) -0.6177 (1) -0.6420 (2) -0.6443 (4) -0.6423 (3)

γ 0.5763 (1) 2.7893 (2) 3.0749 (4) 3.0404 (3) 3.7782 (5) 0.1371 (3) 0.1614 (4) -0.0278 (2) -0.0101 (1) -0.5970 (5)

λ 0.2981 (1) 0.8394 (4) 0.6972 (3) 0.6488 (2) 1.0428 (5) -0.0929 (5) -0.0632 (3) -0.0550 (2) -0.0527 (1) -0.0686 (4)∑
ranks 8 9 12 12 19 14 10 9 10 17
δ 0.0230 (1) 4.2645 (2) 4.4207 (5) 4.4144 (4) 4.3878 (3) 0.0052 (1) 0.9403 (2) 0.9882 (5) 0.9861 (4) 0.9792 (3)

50 b 7.9445 (5) 2.8690 (1) 2.9419 (2) 2.9447 (3) 2.9571 (4) 1.3918 (5) -0.6265 (1) -0.6548 (3) -0.6561 (4) -0.6454 (2)

γ 0.4427 (1) 2.0070 (2) 2.2096 (3) 2.2207 (4) 2.6696 (5) 0.0724 (2) 0.1632 (4) -0.0537 (1) -0.0766 (3) -0.5964 (5)

λ 0.2318 (1) 0.5635 (4) 0.3435(3) 0.3057 (2) 0.6659 (5) -0.0724 (5) -0.0605 (3) -0.0454 (2) -0.0442 (1) -0.0629 (4)∑
ranks 8 9 13 13 17 13 10 11 12 14
δ 0.0104 (1) 3.0660 (3) 3.1305 (5) 3.1294 (4) 3.0548 (2) 0.0025 (1) 0.9615 (3) 0.9899 (5) 0.9895 (4) 0.9614 (2)

100 b 2.8459 (5) 2.0390 (1) 2.0880 (2) 2.0855 (3) 2.0871 (4) 0.4879 (1) -0.6312 (2) -0.6586 (5) -0.6561 (4) -0.6498 (3)

γ 0.2788 (1) 1.4359 (2) 1.7050 (3) 1.7333 (4) 1.8830 (5) 0.0291 (1) 0.1314 (2) -0.2862 (3) -0.3269 (4) -0.5952 (5)

λ 0.1690 (1) 0.4108 (5) 0.1976 (2) 0.2471(3) 0.3860 (4) -0.0553 (4) -0.0593 (5) -0.0425 (1) -0.0451 (2) -0.0550(3)∑
ranks 8 11 12 14 15 7 12 14 14 13
δ 0.0153 (1) 2.1924 (3) 2.2128 (5) 2.2112 (4) 2.0870(2) 0.0023 (1) 0.9767 (3) 0.9894 (5) 0.9886 (4) 0.9227 (2)

200 b 2.6620 (5) 1.4512 (1) 1.4736 (3) 1.4699 (2) 1.4742 (4) 0.4791 (1) -0.6419 (2) -0.6528 (4) -0.6484 (3) -0.6565 (5)

γ 0.2400 (1) 1.0225 (2) 1.3292 (4) 1.3275 (3) 1.3310 (5) 0.0234 (1) 0.1177 (2) -0.5811 (4) -0.5780 (3) -0.5942 (5)

λ 0.1497 (1) 0.2300 (4) 0.2210 (3) 0.2598 (5) 0.1630 (2) -0.0413 (1) -0.0512 (4) -0.0490 (3) -0.0532 (5) -0.0442 (2)∑
ranks 8 10 15 14 13 4 11 16 15 14
δ 0.0033 (1) 1.5566 (3) 1.5743 (4) 1.8537 (5) 1.4560 (2) 4.6562×10−4 (1) 0.9828 (3) 0.9893 (5) 0.9890 (4) 0.9073 (2)

400 b 0.2345 (1) 1.0294 (3) 1.0083 (2) 1.4743 (5) 1.0434 (4) 0.1306 (1) -0.6464 (3) -0.6430 (2) -0.6586 (4) -0.6599 (5)

γ 0.0139 (1) 0.7223 (2) 0.9230 (4) 0.8971 (3) 0.9422 (5) -0.0041 (1) 0.1234 (2) -0.1365 (4) -0.1266 (3) -0.5956 (5)

λ 0.0890 (3) 0.1346 (5) 0.0878 (2) 0.0896 (4) 0.0654 (1) -0.0246 (1) -0.0469 (5) -0.0439 (3) -0.0443 (4) -0.0405 (2)∑
ranks 6 13 12 17 12 4 13 14 15 14
δ 3.1903×10−5 (1) 1.1040 (5) 0.9990 (3) 1.0367 (4) 1.0098 (2) -3.1903×10−5 (1) 0.9863 (4) 0.8900 (3) 0.9945 (5) 0.8869 (2)

800 b 0.0195 (1) 0.7293 (2) 0.7335 (4) 0.0.8010 (5) 0.7370 (3) 0.0195 (1) -0.6503 (2) -0.6511 (3) -0.6672 (5) -0.6592 (4)

γ 7.3051×10−5 (1) 0.5073 (2) 0.5082 (3) 0.5962 (4) 0.6658 (5) 7.3051×10−5 (1) 0.1389 (2) -0.1400 (3) -0.1574 (4) -0.5952 (5)

λ 0.0115 (1) 0.0720 (3) 0.0737 (4) 0.0804 (4) 0.0450 (2) 0.0115 (1) -0.0430 (3) -0.0556 (4) -0.0571 (5) -0.0402 (2)∑
ranks 4 12 14 17 12 4 11 13 19 13

Table [5.1] shows that the average bias (Abias) decreases with increasing sample size. Additionally, the RMSE
decreased as the sample size increased for all estimation methods. The stability of the TLMOGom-W distribution
is evident from the results as indicated by the modest ABIAS and RMSE values for all four model parameters.
Based on the results in Table [5.2], the MLE and WLS methods yielded comparable results in estimating the
TLMOGom-W parameters. The MLE method achieved the best performance, followed by WLS, with the LS
method coming next. Conversely, the CVM method demonstrated the least favourable performance among the
estimation methods.
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Table 2. Rankings of Estimation Techniques for the TLMOGom-W Distribution: Partial and Overall Ranks

Parameters m MLE WLS LS CVM AD
25 22 (3.5) 19 (1) 21 (2) 22 (3.5) 36 (5)

50 21 (2) 19 (1) 24 (3) 27 (4) 31 (5)

δ = 0.01, b = 0.8, γ = 0.6, λ = 1.04 100 15 (1) 23 (2) 26 (3) 28 (4.5) 28 (4.5)

200 12 (1) 21 (2) 27 (3) 31 (5) 28 (4)

400 10 (1) 26 (3.5) 26 (3.5) 32 (5) 25 (2)

800 8 (1) 23 (3) 27 (4) 36 (5) 15 (2)∑
ranks 9.5 12.5 18.5 27 22.5

Overall rank 1 2 3 5 4

Figure 7. TLMOGom-W RMSE Plots
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Table 3. Simulation results for δ = 0.7, b = 0.7, γ = 0.9, λ = 0.9

RMSE Abias
m Parameter MLE WLS LS CVM AD MLE WLS LS CVM AD

δ 1.4247 (1) 1.8800 (2) 1.8965 (3.5) 1.8965 (3.5) 1.8974 (5) 0.1396 (1) 0.2893 (2) 0.2998 (3.5) 0.2998 (3.5) 0.2999 (5)

25 b 2.0122 (5) 1.3315 (1) 1.8870 (2) 1.8871 (3) 1.8974 (4) 2.2432 (5) 0.0020 (1) 0.2751 (3) 0.2747 (2) 0.2973 (4)

γ 3.4705 (1) 3.6213 (2) 5.6053 (3) 5.6066 (4) 5.6276 (5) 0.8746 (2) -0.4260 (1) -0.8782 (3) -0.8784 (4) -0.8897 (5)

λ 0.8780 (1) 1.4495 (2) 3.3798 (3) 3.3964 (4) 3.4918 (5) 0.2260 (2) -0.0037 (1) -0.5093 (3) -0.5117 (4) -0.5483 (5)∑
ranks 8 7 11.5 14.5 19 10 5 12.5 13.5 19
δ 0.5273 (1) 1.3368 (2) 1.3416 (3) 1.3417 (4) 1.3418 (5) 0.0437 (1) 0.2943 (2) 0.2958 (3) 0.2988 (4) 0.3000 (5)

50 b 1.1400 (2) 0.9894 (1) 1.3421 (5) 1.3416 (4) 1.3412 (3) 0.2830 (2) 0.0575 (1) 0.2993 (4.5) 0.2993 (4.5) 0.2992 (3)

γ 0.9613 (1) 3.0143 (2) 4.0244 (4) 4.0246 (5) 3.9731 (3) 0.3008 (1) -0.5594 (2) -0.8999 (4) -0.9000 (5) -0.8883 (3)

λ 0.6107 (1) 1.4651 (2) 2.4852(3) 2.4864 (4) 2.4923 (5) 0.1480 (1) -0.1202 (2) 2.486 (3) -0.5531 (4) -0.5555 (5)∑
ranks 5 7 15 17 16 5 7 14.5 14.5 16
δ 0.3714 (1) 0.9477 (2) 0.9487 (3) 0.9490 (5) 0.9488 (4) 0.0553 (1) 0.2990 (2) 0.2995 (3) 0.2997 (5) 0.2996 (4)

100 b 0.4519 (1) 0.8163 (2) 0.9487 (4) 0.9487 (4) 0.9487 (4) 0.1274 (1) 0.1688 (2) 0.2999 (4) 0.2999 (4) 0.2999 (4)

γ 0.5165 (1) 2.5256 (2) 2.8460 (4) 2.8462 (5) 2.8036 (3) 0.1524 (1) -0.7459 (2) -0.8965 (4) -0.8997 (5) -0.8865 (3)

λ 0.4316 (1) 1.4039 (2) 1.7483 (3) 1.7601(4) 1.7726 (5) 0.0764 (1) -0.3197 (2) -0.5514 (3) -0.5552 (4) -0.5596 (5)∑
ranks 4 8 14 18 16 4 8 14 18 16
δ 0.2512 (1) 0.6708 (2) 0.6718 (3) 0.6737 (5) 0.6722(4) 0.0344 (1) 0.2989 (2) 0.2991 (3) 0.2999 (5) 0.2998 (4)

200 b 0.3482 (1) 0.6547 (2) 0.6669 (3) 0.6778 (5) 0.6771 (4) 0.1279 (1) 0.2773 (2) 0.2881 (3) 0.2993 (4) 0.2998 (5)

γ 0.3711 (1) 1.9821 (2) 2.0125 (3.5) 2.0125 (3.5) 1.9818 (5) 0.0911 (1) -0.8814 (2) -0.8999 (4.5) -0.8999 (4.5) -0.8862 (3)

λ 0.3001 (1) 1.1754 (2) 1.2384 (3) 1.2442 (4) 1.2544 (5) -0.0008 (1) -0.4967 (2) -0.5531 (3) 0.5557 (4) -0.5605 (5)∑
ranks 4 8 12.5 17.5 18 4 8 13.5 13.5 17
δ 0.2178 (1) 0.4743 (4) 0.4743 (4) 0.4743 (4) 0.4741 (2) 0.0597 (1) 0.2997 (2) 0.2999 (3) 0.3000 (4.5) 0.3000 (4.5)

400 b 0.3159 (1) 0.4740 (2) 0.4783 (5) 0.4743 (3.5) 0.4743 (3.5) 0.1538 (1) 0.2995 (2) 0.2996 (3) 0.2999 (5) 0.2998 (4)

γ 0.3449 (1) 1.4198 (3) 1.4230 (4.5) 1.4230 (4.5) 1.4006 (2) 0.1108 (1) -0.8979 (3) -0.8998 (4) -0.8999 (5) -0.8857 (2)

λ 0.2593 (1) 0.8610 (2) 0.8781 (4) 0.8756 (3) 0.8847 (5) -0.0558 (1) -0.5382 (2) -0.5549 (4) -0.5533 (3) -0.5592 (5)∑
ranks 4 11 17.5 15 12.5 4 9 14 17.5 15.5
δ 0.1661 (1) 0.3354 (3.5) 0.3354 (3.5) 0.3354 (3.5) 0.3354 (3.5) 0.0546 (1) 0.3000 (3.5) 0.3000 (3.5) 0.3000 (3.5) 0.3000 (3.5)

800 b 0.2644 (1) 0.3354 (3.5) 0.3354 (3.5) 0.3354 (3.5) 0.3354 (3.5) 0.1404 (1) 0.3000 (3.5) 0.3000 (3.5) 0.3000 (3.5) 0.3000 (3.5)

γ 0.3155 (1) 1.0050 (3) 1.0062 (4.5) 1.0062 (4.5) 0.9881 (2) 0.0996 (1) -0.8989 (3) -0.9000 (4.5) -0.9000 (4.5) -0.8836 (2)

λ 0.2402 (1) 0.6168 (2) 0.6217 (4) 0.6204 (3) 0.6246 (5) -0.0646 (1) -0.5474 (2) -.05557 (4) -0.5546 (3) -0.5585 (5)∑
ranks 4 12 15.5 14.5 14 4 12 15.5 14.5 14

Tables [5.3] and [5.4] illustrate that the Abias exhibits a decline with increase in sample size. Furthermore, for all
estimation methods, increasing the sample size leads to a reduction in RMSE. The results underscore the robustness
of the TLMOGom-W distribution, evident in the values of RMSE across model parameters.

Table 4. Rankings of Estimation Techniques for the TLMOGom-W FoD: Partial and Overall Ranks

Parameters m MLE WLS LS CVM AD
25 18 (2) 12 (1) 24 (3) 28 (4) 38 (5)

50 10 (1) 14 (2) 29.5 (3) 31.5 (4) 32 (5)

δ = 0.7, b = 0.7, γ = 0.9, λ = 0.9 100 8 (1) 16 (2) 28 (3) 36 (5) 32 (4)

200 8 (1) 16 (2) 26 (3) 31 (4) 35 (5)

400 8 (1) 20 (2) 35 (5) 32.5 (4) 28 (3)

800 8 (1) 24 (2) 31 (5) 29 (4) 28 (3)∑
ranks 7 11 22 25 25

Overall rank 1 2 3 4.5 4.5

Figures [5.1] and [5.2] illustrate the reduction in RMSE of the parameters as the sample size increases for each
estimation method. For larger sample sizes, all the methods of estimation yielded good estimates.
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Figure 8. TLMOGom-W RMSE Plots

6. Applications

The TLMOGom-W distribution, a special case of the TLMOGom-G is applied to real-life datasets to examine
the utility and applicability of the proposed FoD. The analysis incorporates both complete and censored datasets,
all of which are presented in the Appendix section. To assess the model appropriateness we employ several
goodness-of-fit test statistics including: -2LogLikelihood (−2ln(L)), Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), Cramer-von-Mises
(CVM), Anderson-Darling (AD), Kolmogorov-Smirnov (K-S) and its p-value. The model that consistently ranks
lowest across test statistics is considered the best. If some models have fewer parameters than the TLMOGom-W
model, BIC is often prioritized. A higher p-value (typically greater than 0.05) suggests the model is an acceptable
fit. Thus the model with the highest p-value is considered the best. Their associated mathematical definitions can
be accessed in the web appendix.
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Several different equi-parameter models were included in the comparisons. The models are: The Topp-Leone
odd Burr III log-logistic (TLOBIIILLo) by Moakofi et al. [28], the exponential Lindley odd log-logistic Weibull
(ELOLLW) by Korkmaz et al. [23], exponentiated Weibull exponential (EWE) by Elgarhy et al. [19], Marshall-
Olkin extended Weibull (MOEW) by Ahmad et al. [3], Marshall-Olkin Gompertz-Weibull (MOGomW) by Chipepa
and Oluyede [13], and odd exponentiated half logistic Burr XII (OEHLBXII) by Aldahlan and Afify [4]. The pdfs
of these distributions are given in the appendix. A comparison of the TLMOGom−W and its nested models was
also conducted via the likelihood ratio tests.

6.1. Bladder Cancer Data

The first dataset pertains to the remission times of 128 patients afflicted with bladder cancer and was analyzed by
Lee and Wang [25] and Klakattawi [22]. The remission times, measured in months, are given in the web appendix.

Table 5. Estimates and Statistics

Estimates Statistics
Distribution δ b γ λ −2ln(L) AIC CAIC BIC CVM AD K−S p−value

TLMOGom-W 5.5705×103 1.9777 3.0685 383.1700 819.2923 827.2925 827.6177 838.7006 0.0196 0.1261 0.0342 0.9983
(1.3446×10−5) (0.5829) (0.0914) (0.0060)

TLMOGomW(δ, 1, 1, λ) 58.7536 - - 0.1903 844.9552 848.9552 849.0512 854.6593 0.3433 2.0307 0.1036 0.1284
(9.5478) (-) (-) (0.0067)

TLMOGom-W(1, b, γ, λ) - 29.0874 0.3125 0.2242 830.1083 836.1083 836.3018 844.6644 0.1243 0.8363 0.0692 0.5715
(-) (10.3129) (0.2636) (0.0561)

TLMOGom-W(δ, 1, γ, λ) 11.1230 - 6.9433×10−9 0.4043 863.0305 869.0293 869.2228 877.5854 0.1201 0.7095 0.2502 2.1910×10−7

(1.2634) (-) (0.0243) (0.0202)
TLMOGomW(δ, b, 1, λ) 8.5671 5.1239 - 0.1566 827.0467 833.0467 833.2403 844.6028 0.0306 0.1975 0.0390 0.9199

(3.6520) (2.2260) (-) (0.0102)
TLMOGom-W(1, b, 1, λ) - 88.9219 - 0.1220 834.7284 838.7284 838.8244 844.4325 0.1727 1.1435 0.0791 0.4000

(-) (8.4528) (-) (0.0057)
α β b λ

TLOBIIILLo 11.3701 11.0852 0.4222 0.0763 838.1635 846.1635 846.4887 857.5716 0.2082 1.3743 0.0829 0.3426
(0.0181) (16.9920) (0.2289) (0.0466)

α β λ k
MOEW 1.0558 0.0031 0.1099 0.04235 828.6523 836.6523 836.9775 848.0605 0.1254 0.7510 0.0811 0.3685

(0.3217) (3.4925×10−10) (0.0199) (0.1599)
δ θ λ γ

MOGomW 0.3134 0.0313 1.1935 2.9347×10−10 825.7899 833.7899 834.1145 845.1974 0.0526 0.3415 0.0843 0.3236
(0.2689) (0.0301) (0.1489) (6.7012×10−3)

β λ θ γ
ELOLLW 124.7271 6.1802 0.1147 0.7257 822.7913 830.7913 831.1165 842.1994 0.0666 0.4118 0.0535 0.8568

(0.0271) (7.5861) (0.3219) (0.0076)
α λ β a

EWE 1.7511 0.0361 0.7008 1.1147 852.3037 860.3037 860.6289 871.7119 0.3207 1.9091 0.1283 0.0955
(0.3588) (0.0066) (0.0861) ( 0.2327)

a b α β
OEHLBXII 0.3925 0.0274 .6829 0.3660 881.8121 889.8121 890.1373 901.2202 0.3274 1.9125 0.1166 0.1116

(0.0649) (0.0187) (1.0211) (0.0976)

Analysis of the goodness-of-fit statistics shows that the TLMOGom-W performed better than all the six (6)
competing models. The profile plots in Figure 9 reveal that the TLMOGom-W model parameters on bladder cancer
data can be uniquely identified.

(a) (b) (c) (d)

Figure 9. Profile log-likelihood plots showing TLMOGOM-W parameters on bladder cancer data
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The estimated variance-covariance matrix is given as:
1.8079×10−10 7.8178×10−6 1.1288×10−6 -6.8882×10−8

7.8178×10−6 0.3398 0.0503 -3.0979×10−3

1.1288×10−6 0.0503 8.3530×10−3 -5.3333×10−4

-6.8882×10−8 -3.0979×10−3 -5.3333×10−4 3.6218×10−5

 .

The approximate 95% two-sided confidence intervals (CIs) are given as: δ ∈ [5.5705× 103 ± 2.6354× 10−5],
b ∈ [1.9777± 1.1425], γ ∈ [3.0685± 0.1791] and λ ∈ [383.1700± 0.0118], confirming statistical significance of
model parameters.

(a) (b)

Figure 10. Densities Plots and PP plots for bladder cancer

Analysis of Figure [6.1] shows that the TLMOGom-W model fits bladder cancer data better than the competing
models since it has a smaller value for the SS statistic.

(a) (b)

Figure 11. Fitted ECDF curve and K-M survival plots for bladder cancer data
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Figure [6.2] shows empirical cdf and fitted cdf and K-M survival curves for bladder cancer data. There is near
perfect coincidence between the observed and fitted suggesting that the TLMOGom-W model is very good fit to
bladder cancer data. Figure [6.3] depicts that the hrf has an upside down bathtub shape.

(a) (b)

Figure 12. Fitted TTT scaled and hrf plots for bladder cancer data

6.2. Censored Bladder Cancer Data

The second dataset, which is censored, consists of the remission times (in months) of a randomly selected sample
of 137 bladder cancer patients, as cited in the paper by Lee and Wang [25]. The censored data are provided in the
web appendix.

Table 6. Estimates and Statistics

Estimates Statistics
Distribution δ b γ λ −2ln(L) AIC CAIC BIC SS

TLMOGom-W 2.8637×103 2.1481 2.9470 4.0768 836.6893 844.6893 844.9923 847.3729 0.0731
(3.6165×10−5) (0.6438) (0.0989) (6.6029×10−3)

TLMOGom-W(δ, 1, 1, λ) 29.8242 - - 0.2188 847.1655 853.1655 853.3460 868.1059 0.1048
(10.7165) (-) (-) (0.0555)

TLMOGom-W(δ, 1, γ, λ) 1.2901×108 - 4.1728 0.0181 840.9228 846.9228 847.1033 855.6827 0.1035
(1.1880×10−11) (-) (0.0185) (1.8110×10−3)

TLMOGomW(1, b, γ, λ) - 21.3430 1.3305×10−8 0.4438 856.6610 862.6610 862.8415 871.4209 0.3178
(-) (3.1682) (0.0361) (0.0298)

TLMOGomW(δ, b, 1, λ) 57.3564 16.5841 - 0.0150 845.6701 851.6701 851.8426 856.9522 0.2651
(7.1030) (1.2284) (-) (0.0111)

TLMOGom-W(1, b, 1, λ) - 91.2669 - 0.1189 851.6309 855.6309 855.7802 861.4709 0.1480
(-) (8.4822) (-) (0.0056)
α β b λ

TLOBIIILLo 0.8180 11.0438 0.4343 1.0317 854.7989 862.7989 863.1019 874.4788 0.1800
(1.6787) (7.4087) (0.3243) (2.1173)

α β λ k
MOEW 2.7362×106 11.6540 0.0119 0.1105 837.2635 845.2635 845.6785 847.7654 0.0838

(9.8179×10−8) (0.2706) (0.0220) (0.0142)
δ θ λ γ

MOGomW 1.7830×103 9.5569×10−3 0.0261 8.3577 838.1669 846.1669 846.4699 848.8505 0.0905
(4.9862×10−5) (4.6283×10−3) (2.5299×10−3) (0.5500)

β λ θ γ
ELOLLW 9.7330×10−7 0.1321 0.7310 1.0536 844.8293 852.8293 853.1323 855.5129 0.1168

(0.1072) (0.0216) (3.7039×10−3) (0.0681)
α λ β a

EWE 1.1665 0.0429 0.7070 0.8983 881.9474 889.9474 890.2504 892.6310 0.0913
(0.2515) (0.0077) (0.0831) ( 0.1559)

α λ a b
OEHLBXII 0.3942 0.0223 3.6690 0.3782 897.0698 905.0698 905.3728 907.7534 0.7174

(0.0662) (0.0162) (1.0234) (0.1007)
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It is evident from Table [6.2], that the TLMOGom-W model out competes the selected models since it has the least
values for all the gof statistics.

The estimated covariance matrix is


1.3079×10−9 2.3242×10−5 3.3244×10−6 -2.0675×10−7

2.3242×10−5 0.4144 0.0604 -3.7861×10−3

3.3244×10−6 0.0604 9.7897×10−3 -6.3468×10−4

-2.0675×10−7 -3.7861×10−3 -6.3468×10−4 4.3598×10−5

 .

The confidence intervals for the parameters, presented at an approximate 95% confidence, are provided as follows:
δ ∈ [2.8637× 103 ± 7.0883× 10−5], b ∈ [2.1481± 1.2618], γ ∈ [2.9470± 0.1938] and λ ∈ [4.0768± 12.9417×
10−3], respectively.

6.3. Accelerated Life Test Data

The data are from research done by Adewara et al. [2] on accelerated life test of 59 conductors, see web appendix.
Electro-migration, which involves the movement of atoms in the conductors of microcircuits, can result in failures
within the circuit. These failures are measured in hours, and there are no instances of censored observations.

Table 7. Estimates and Statistics

Estimates Statistics
Distribution δ b γ λ −2ln(L) AIC CAIC BIC CVM AD K−S p−value

TLMOGom-W 105.6415 3.2768 0.4416 0.4968 222.4527 230.4527 231.1934 238.7628 0.02718 0.1578 0.0571 0.9848
(3.5408×10−3) (0.6538) (0.1606) (0.2154)

TLMOGom-W(δ, 1, 1, λ) 2255.1000 - - 0.3705 228.7159 232.7159 232.9302 238.8710 0.0963 0.5539 0.0813 0.7999
(5.2245×10−8) (-) (-) (4.8994×10−3)

TLMOGom-W(1, b, γ, λ) - 680.1100 0.3602 0.4244 232.9546 238.9546 239.391 245.1872 0.1418 0.8638 0.1185 0.3514
(-) (1.7210×10−4) (0.1761) (0.0134)

TLMOGom-W(δ, 1, γ, λ) 3.5344×108 - 2.8850 0.0648 302.5947 308.5944 308.9754 315.2085 0.1766 0.9163 0.1750 0.2496
(1.1601×10−10) (-) (0.1810) (0.0091)

TLMOGomW(δ, b, 1, λ) 301.7400 2.8752 - 0.12970 249.6793 255.6793 256.0323 262.5093 0.1743 0.6435 0.1270 0.3274
(2.4597×10−3) (0.4817) (-) (2.3320×10−3)

TLMOGom-W(1, b, 1, λ) - 33.2500 - 0.0915 432.5381 436.5381 436.7524 440.6932 0.0630 0.3866 0.6019 7.7720×10−16

(-) (0.0001) (-) (0.0097)
α β b λ

TLOBIIILLo 16.2510 366.0000 0.6968 0.1767 237.9898 245.9898 246.7306 254.3000 0.1951 1.1833 0.1288 0.2587
(9.0693×10−5) (2.8186×10−4) (0.2177) (8.3216×10−3)

α β λ k
MOEW 249.0700 0.0135 0.7330 1.9582 227.5762 235.5762 236.3169 243.8863 0.0340 0.1968 0.1162 0.3740

(9.5255×10−3) (0.0217) (0.1520) (1.0321)
δ θ λ γ

MOGomW 19.0390 0.0502 2.1096 1.7270×10−5 226.6815 234.6815 235.4223 242.9917 0.0812 0.4669 0.0811 0.8024
(5.8846×10−3) (0.0501) (0.6303) (8.1386×10−3)

β λ θ γ
ELOLLW 80.1189 0.4804 0.0343 3.2150 223.0490 231.0490 231.7897 239.3592 0.0490 0.2727 0.0778 0.8404

(9.6910)×10−5 (0.9210) (0.2111) (0.3074)
α λ β a

EWE 1.0741 1.4198 0.1304 33.0134 222.7285 230.7285 231.4693 239.0387 0.0339 0.1908 0.0752 0.8677
(0.1336) (7.9655) (0.7294) (0.2720)

α λ a b
EOHLBXII 0.7341 9.3150×10−4 11.5660 0.3029 271.6985 279.6989 280.4396 288.0090 0.0882 0.4955 0.1506 0.1242

(0.1413) (9.4777×10−4) (2.7633×10−3) (0.0392)

Analysis of goodness-of-fit statistics demonstrates that the TLMOGom-W model outperforms all six (6) competing
models. Additionally, the profile plots presented in Figure 13 indicate that the parameters of the TLMOGom-
W model, when applied to accelerated life test data, are uniquely identifiable. This confirms the robustness and
reliability of the model for parameter estimation.
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(a) (b) (c) (d)

Figure 13. Profile log-likelihood plots showing TLMOGOM-W parameters on accelerated life test data

The estimated covariance matrix is


1.2537×10−5 0.0023 -0.00047 0.00051

0.0023 0.4269 −0.0722 0.1021
-3.5336×10−4 −0.0722 0.0258 -0.0345

0.0005 0.1021 -0.0345 0.0464

 .

The approximate 95% CIs for the parameters are presented as follows: δ ∈ [105.6415± 6.9400× 10−3], b ∈
[3.2768± 1.2814], γ ∈ [0.4416± 0.3148] and λ ∈ [0.4968± 0.4222].

(a) (b)

Figure 14. Densities Plots and PP plots for accelerated life test data

Based on Figure [6.4], it can be concluded that the TLMOGom-W model demonstrates superior data fit compared
to the other competing models.
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(a) (b)

Figure 15. Fitted ECDF curve and K-M survival plots for accelerated life test Data

Figure 15 shows ECDF and K-M survival curves for accelerated life test data. The TLMOGom-W distribution
closely follows the ECDF and K-M survival curves.

(a) (b)

Figure 16. TTT scaled and hrf plots for Accelerated life test Data

The analysis of the TTT plot and hrf plot in Figure 16 indicates a increasing hazard shape.

6.4. Likelihood Ratio Test Results

Table [6.4] presents the results of the likelihood ratio test (LRT) which compares the likelihoods of full and
nested TLMOGom-W models: one obtained by maximizing the likelihood over the entire parameter space, and the
other obtained by imposing a constraint on the parameters. The LRT statistic, computed from [−2 log(Lnested)−
(−2 log(Lfullmodel)] follows a χ2

v, where v are the degrees of freedom (df) corresponding to the parameters
difference between the models in comparison. The findings from the LRT confirm that the TLMOGom-W model
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outperforms the sub-models. This conclusion is supported by the significant chi-square values obtained, indicating
that the improvements achieved by the TLMOGom-W model are statistically significant compared to the alternative
sub-models.

Table 8. LRT Results

df Bladder Cancer Censored Bladder Cancer Accelerated Life Test
Model v χ2(p− value) χ2(p− value) χ2(p− value)

TLMOGom-W(δ, 1, 1, λ) 2 25.6629(< 0.00001) 10.4762(0.0053) 6.2632( 0.0436)
TLMOGom-W(1, b, γ, λ) 1 10.8160(0.0010) 19.9717(< 0.00001) 10.5019(0.0012)
TLMOGom-W(δ, 1, γ, λ) 1 43.7382(< 0.00001) 4.2335(0.0396) 80.1420(< 0.00001)
TLMOGomW(δ, b, 1, λ) 2 9.7544(0.00218) 9.9808(0.0071) 27.1266(0.0001)
TLMOGom-W(1, b, 1, λ) 2 15.4361(0.0004) 14.9416(0.0006) 210.0854(< 0.00001)

7. Summary of the Research

In conclusion, a new FoD called the TLMOGom-G FoD was developed. Statistical properties including Rényi
entropy, order statistics, stochastic ordering, and moments, were derived. The MLE technique demonstrated
superior performance in the estimation of the TLMOGom-W parameters compared to alternative methods such
as AD, CVM, LS, and WLS. The consistency of the proposed distribution was confirmed via Monte Carlo
simulations. By applying the TLMOGom-W distribution, a special case of the FoD to real-world data sets
including bladder cancer, censored bladder cancer, and accelerated life test, it was evident that the TLMOGom-W
outperformed other competing models. This highlights the practical significance and improved goodness-of-fit
provided by the TLMOGom-W distribution in modelling these specific data sets.

Based on the findings regarding the TLMOGom-G FoD, it is recommended to explore Bayesian methods
to enhance parameter estimation and uncertainty quantification in future applications. Implementing Bayesian
frameworks could provide more robust inference, particularly in cases with limited data. Additionally, employing
bivariate extensions of the TLMOGom-G FoD may yield deeper insights into the relationships between multiple
variables in real-world datasets. This dual approach could further strengthen the model’s applicability and
performance across diverse statistical scenarios.

Appendix

https://drive.google.com/file/d/1AgGpCMVC8bW9CtDsjb8jB3_5bPMa-h3q/view?usp=
sharing
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