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Abstract In this article, we propose a new method for solving Linear Fractional Programming (LFP) problems with
bounded variables. The proposed algorithm passes from a support feasible solution to a better one following the feasible
direction proposed in [K. Djeloud, M. Bentobache and M. O. Bibi, A new method with hybrid direction for linear
programming, Concurrency and Computation, Practice and Experience 33 (1), 2021]. Optimality and suboptimality criteria
which allow to stop the algorithm when an optimal or suboptimal solution is achieved were stated and proved. Then, a new
method called a Hybrid Direction Method (HDM) is described and a numerical example is given for illustration purpose.
In order to compare our method to the classical approaches, we develop an implementation with the Matlab programming
language. The obtained numerical results on solving 120 randomly generated LFP test problems show that HDM with long
step rule is competitive with the primal simplex method and the interior-points method implemented in Matlab.
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1. Introduction

Linear fractional programming is a very important subdiscipline of optimization. It consists in optimizing
(maximizing or minimizing) an objective function which is a ratio of two linear functions, subject to linear
constraints on the decision variables. These variables can be nonnegative, bounded, continuous, integer or
mixed-integer. Many practical problems which arise on several fields can be modeled as LFP problems. We
can cite resource allocation, machine learning, optimal cutting stock problems, blending problems, minimum-
risk problems in stochastic programming, production efficiency problems, data envelopment analysis (DEA)
[40, 49, 3, 19, 50, 41, 21].

The theoretical and practical importance of LFP lead many researchers to develop a variety of numerical methods
for solving the problem. Among the existing approaches, we can cite the method of Charnes and Cooper (1962)
[18]. These authors have shown that the original LFP problem can be transformed to a Linear Programming (LP)
problem by introducing additional variables and constraints. This approach allows to exploit all the LP theoretical
and numerical results, in particular the obtained problem can be solved by the simplex method [20], interior-points
methods [52], the support or adaptive method, the hybrid direction methods [25, 28, 12, 13, 7, 22], etc.

The simplex algorithm was initially developed by Dantzig in 1947 [20] for solving LP problems. Due to
its practical efficiency, it was generalized for solving many optimization problems, such as convex quadratic
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programming problems [53] and concave quadratic minimization problems [8]. In the sixties, the simplex method
was generalized by Martos for solving LFP problems written in their original form [39, 40, 4]. Later, many methods
were developed for LFP, such as the dual simplex method [4], the parametric approach of Dinkelbach [23], which
consists in reducing the resolution of an LFP problem to the resolution of a sequence of LP problems, the interior-
points method called “method of analytic centers” [42], the criss-cross method [33]. There exist also other methods
for solving LFP problems, see [43, 48, 51].

In 1977, Gabasov and Kirillova developed the support method for solving LP problems [25]. Contrarily to the
simplex method, this latter can use basic or nonbasic feasible solutions which correspond to extreme, boundary or
interior points. Later, Gabasov and Kirillova developed the adaptive method which uses an improvement direction
depending on the current solution. This method is then applied for the resolution of a variety of optimization
problems: convex and nonconvex quadratic programming [1, 17, 27, 36, 45, 32], multiobjective programming
[46, 35], optimal control [2, 10, 11, 28, 29, 34], integer and mixed-integer programming [15, 16, 47], etc.

Recently, several algorithms based on the concept of hybrid direction were proposed for solving LP problems
[7, 9, 13, 22, 30], linear optimal control problems [54], convex quadratic problems [14, 38]. In this article,
we generalize the hybrid direction method proposed in [22], for the resolution of LFP problems with bounded
variables. We state and prove optimality and suboptimality criteria, then we describe a complete algorithm which
handles LFP problems as they are presented in their original form without transforming them into LP problems
and we illustrate it with a numerical example. In order to compare our method to the primal simplex method and
the interior-points method implemented in Matlab, we develop an implementation with the Matlab programming
language and finally we present some numerical results on 120 randomly generated LFP test problems with n
constraints and 2n bounded variables, where n is varying from 100 to 1400. The numerical study carried out shows
the efficiency of our method and its superiority over the primal simplex algorithm and the interior-points method
of Matlab, particularly when it uses the long step rule for changing the current support (basis).

This paper is organized as follows: in Section 2, we give some notations and definitions. In Section 3, we state
and prove the optimality and suboptimality criteria for LFP, which will be used to stop the proposed algorithm,
then we present the primal support method for solving LFP problems with bounded variables written in standard
form. In the fourth section, we present the proposed hybrid direction method for solving the considered problem.
Section 5 is devoted to the presentation of some numerical results obtained for 120 randomly generated LFP test
problems. Finally, we conclude the paper and give some future works.

2. Statement of the problem and definitions

The Linear Fractional Programming problem with Bounded Variables (LFPBV) is presented in the following
standard form:

max F (x) =
P (x)

Q(x)
=

pTx+ p0
qTx+ q0

, (1)

subject to Ax = b, l ≤ x ≤ u, (2)
where p, q, x, l and u are n-vectors, with ∥l∥ < ∞, ∥u∥ < ∞; b is an m-vector; A is a matrix of dimension
(m× n), with rank(A) = m < n, p0 and q0 are two real numbers. We suppose that Q(x) > 0 for all x verifying
the constraints of the LFP problem (1)-(2).
• Let us define the following index sets:

I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, J = JB ∪ JN , JB ∩ JN = ∅, |JB | = m.

So we can partition the different vectors and the matrix A as follows:

l = l (J) = (lj , j ∈ J) , u = u (J) = (uj , j ∈ J) ,

x = x (J) = (xj , j ∈ J) =

(
xB

xN

)
, xB = x (JB) = (xj , j ∈ JB), xN = x (JN ) = (xj , j ∈ JN ),

p = (pj , j ∈ J) =

(
pB
pN

)
, q = (qj , j ∈ J) =

(
qB
qN

)
,
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A = A (I, J) = (aij , i ∈ I, j ∈ J) = (aj , j ∈ J), aj =

 a1j
...

amj

,

A = (AB , AN ) , AB = A (I, JB), AN = A (I, JN ).

• A vector x verifying the constraints (2) is called a feasible solution (FS) of the problem (1)-(2). We suppose in
the following that the feasible set S = {x ∈ Rn : Ax = b, l ≤ x ≤ u} is nonempty.
• Define the real number α > 0 as follows: α = min

x∈S
Q(x).

• A feasible solution x∗ is called optimal if F (x∗) ≥ F (x), ∀x ∈ S.
• A feasible solution xϵ is called ϵ-optimal or suboptimal if F (x∗)− F (xϵ) ≤ ϵ,
where x∗ is an optimal solution for the problem (1)-(2) and ϵ is a nonnegative number chosen in advance.
• The index set JB is called a support if detAB = detA(I, JB) ̸= 0.
• The pair {x, JB} formed with the FS x and the support JB is called a Support Feasible Solution (SFS) and it is
called nondegenerate if lj < xj < uj , j ∈ JB .
• Let us define the multipliers vectors πT

P and πT
Q:

πT
p = pTBA

−1
B , πT

Q = qTBA
−1
B , (3)

and the reduced costs vectors:

∆′ =

(
∆′

B

∆′
N

)
, ∆′′ =

(
∆′′

B

∆′′
N

)
, ∆(x) =

(
∆B(x)
∆N (x)

)
,

where
∆′

N = AT
NπP − pN , ∆′′

N = AT
NπQ − qN , ∆N (x) = ∆′

N − F (x)∆′′
N , (4)

and
∆′

B = AT
BπP − pB = AT

B(A
−1
B )T pB − pB = 0, ∆′′

B = 0, ∆T
B(x) = 0.

3. Optimality and suboptimality criteria

3.1. Increment formula of the objective function

Let {x, JB} be an SFS of the problem (1)-(2). We consider an other arbitrary FS x̄ = x (θ) = x+ θd, with θ ≥ 0
and d ∈ Rn. The increment of the objective function can be written as follows:

F (x̄)− F (x) =
pT x̄+ p0
qT x̄+ q0

− pTx+ p0
qTx+ q0

=
pT x̄qTx+ pT x̄q0 + p0q

Tx+ p0q0 − pTxqT x̄− pTxq0 − p0q
T x̄− p0q0

(qT x̄+ q0) (qTx+ q0)

=
q0
(
pT x̄− pTx

)
− p0

(
qT x̄− qTx

)
− pTxqT x̄+ pT x̄qTx

(qT x̄+ q0) (qTx+ q0)

=
q0
(
pT θd

)
− p0

(
qT θd

)
− pTxqT x̄+ pT x̄qTx+ pTxqTx− pTxqTx

(qT x̄+ q0) (qTx+ q0)

=
q0
(
pT θd

)
− p0

(
qT θd

)
− pTx

(
qT θd

)
+ qTx

(
pT θd

)
(qT x̄+ q0) (qTx+ q0)

=
−
(
pTx+ p0

) (
qT θd

)
+
(
qTx+ q0

) (
pT θd

)
(qT x̄+ q0) (qTx+ q0)

=

qT x+q0
qT x+q0

pT θd− pT x+p0

qT x+q0
qT θd

qT x̄+ q0
.
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Thus

F (x̄)− F (x) =

(
θpT d

)
− F (x)

(
θqT d

)
Q (x̄)

. (5)

In the other hand, we have  Ax = b

Ax̄ = b
⇒ θAd = 0.

By setting d =

(
dB
dN

)
, dB = d (JB) , dN = d (JN ), the equality Ad = 0 can also be written as follows:

ABdB +ANdN = 0 ⇔ dB = −A−1
B ANdN . (6)

The increment of the function P corresponding to the numerator is given by:

P (x̄)− P (x) = θpT d

= θ
(
pTBdB + pTN .dN

)
= −θ

(
pTBA

−1
B ANdN − pTNdN

)
= −θ

(
pTBA

−1
B AN − pTN

)
dN

= −θ
(
πT
PAN − pTN

)
dN .

Hence
P (x̄)− P (x) = θpT d = −θdTN∆′

N . (7)

Similarly, we calculate the increment of the denominator function Q and obtain:

Q (x̄)−Q (x) = θqT d = −θdTN∆′′
N . (8)

Hence, the increment (5) becomes

F (x̄)− F (x) =
−θdTN∆′

N − F (x)
(
−θdTN∆′′

N

)
Q (x̄)

=
−θdTN [∆′

N − F (x)∆′′
N ]

Q (x̄)
.

Therefore,

F (x̄)− F (x) =
−θ∆T

N (x) dN
Q (x̄)

=

−
∑

j∈JN

∆j (x) (x̄j − xj)

Q (x̄)
. (9)

3.2. Optimality criterion

We have the following theorem [24, 26, 31]:

Theorem 3.1
(Optimality criterion)
Let {x, JB} be an SFS of the problem (1)-(2). Then the relationships

∆j (x) ≥ 0, for xj = lj ;

∆j (x) ≤ 0, for xj = uj ;

∆j (x) = 0, for lj < xj < uj ;

j ∈ JN (10)

are sufficient for the optimality of the FS x. The same relationships are also necessary when the SFS {x, JB} is
nondegenerate.
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Proof
Sufficient condition.
Let {x, JB} be an SFS verifying the relationships (10). For any FS x̄ of the problem (1)-(2), the increment formula
(9) gives

F (x̄)− F (x) =

−
∑

∆j(x)>0,j∈JN

∆j (x) (x̄j − lj)−
∑

∆j(x)<0,j∈JN

∆j (x) (x̄j − uj)

Q (x̄)
.

Since we have Q (x̄) > 0 and

lj ≤ x̄j ≤ uj ⇒ x̄j − lj ≥ 0 and x̄j − uj ≤ 0,

then we deduce that
F (x̄)− F (x) ≤ 0 ⇒ F (x̄) ≤ F (x) .

Therefore, the vector x is an optimal solution of the problem (1)-(2).
Necessary condition.
Let {x, JB} be a nondegenerate optimal SFS for the problem (1)-(2) and suppose that the relationships (10) are not
satisfied: there exists at least an index j0 ∈ JN , such that

∆j0 (x) > 0 and xj0 > lj0 or ∆j0 (x) < 0 and xj0 < uj0 . (11)

Then, we construct an other FS x̄ = x+ θd, where θ is a real positive number and d = d (J) an n-vector verifying

dj0 = −sign∆j0 (x),

dj = 0, j ̸= j0, j ∈ JN ,

d (JB) = −A−1
B ANd (JN ) = −A−1

B aj0dj0 = A−1
B aj0sign∆j0 (x).

(12)

So we have
ABd (JB) +ANd (JN ) = Ad = 0 and Ax̄ = A (x+ θd) = Ax+ θAd = b.

The vector x̄ will be a feasible solution to the problem (1)-(2), if it verifies in addition the following inequality:

l ≤ x̄ ≤ u ⇔ l ≤ x+ θd ≤ u ⇔ l − x ≤ θd ≤ u− x. (13)

The previous inequality can also be written as follows:

lj − xj ≤ θdj ≤ uj − xj , j ∈ JB ⇒ θ ∈ [0, θj1 ] ,

where

θj1 = min
j∈JB

θj , with θj =


uj−xj

dj
, if dj > 0;

lj−xj

dj
, if dj < 0;

∞, if dj = 0

and
lj0 − xj0 ≤ −θsign∆j0 (x) ≤ uj0 − xj0 ⇒ θ ∈ [0, θj0 ] ,

where

θj0 =

{
xj0 − lj0 , if ∆j0 (x) > 0;

uj0 − xj0 , if ∆j0 (x) < 0.

Since the SFS {x, JB} is nondegenerate (lj < xj < uj , j ∈ JB , i.e., θj1 > 0) and also θj0 > 0 from (11), we can
choose a positive number θ in the interval ]0, θ0], where θ0 = min{θj1 , θj0}. Thus, the relationships (13) will be
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verified and the vector x̄ will be a feasible solution of the problem (1)-(2). So, the increment formula (9) becomes

F (x̄)− F (x) =

−θ
∑

j∈JN

∆j (x) dj

Q (x̄)

=
−θ∆j0 (x) dj0

Q (x̄)
=

θ∆j0 (x) sign∆j0 (x)

Q (x̄)
=

θ |∆j0 (x)|
Q (x̄)

> 0.

Thus, we have find an SFS x̄ ̸= x, such that F (x̄) > F (x). This contradicts the fact that x is an optimal FS. The
relationships (10) are therefore verified.

3.3. Suboptimality criterion

In order to estimate the gap existing between the optimal value F (x∗) and an other value F (x) at an arbitrary SFS
{x, JB}, we replace in the increment formula (9) the vector x̄ with x∗ and find an upper bound for the expression.
So

F (x∗)− F (x) =

−
∑

j∈JN

∆j (x)
(
x∗
j − xj

)
Q (x∗)

=

∑
∆j(x)>0,j∈JN

∆j (x)
(
xj − x∗

j

)
+

∑
∆j(x)<0,j∈JN

∆j (x)
(
xj − x∗

j

)
Q (x∗)

.

Since Q (x∗) ≥ α > 0 and the optimal solution x∗ verifies

lj ≤ x∗
j ≤ uj , j ∈ J,

we obtain

xj − x∗
j ≤ xj − lj and xj − x∗

j ≥ xj − uj .

Hence
∆j (x)

(
xj − x∗

j

)
≤ ∆j (x) (xj − lj) , if ∆j (x) > 0;

∆j (x)
(
xj − x∗

j

)
≤ ∆j (x) (xj − uj) , if ∆j (x) < 0.

Therefore, we obtain:

F (x∗)− F (x) ≤

∑
∆j(x)>0,j∈JN

∆j (x) (xj − lj) +
∑

∆j(x)<0,j∈JN

∆j (x) (xj − uj)

α
. (14)

We call the nonnegative quantity

β (x, JB) =
1

α

 ∑
∆j(x)>0,j∈JN

∆j (x) (xj − lj) +
∑

∆j(x)<0,j∈JN

∆j (x) (xj − uj)

 (15)

the suboptimality estimate.
So we have the following theorem [24, 26, 31]:

Theorem 3.2
(Suboptimality criterion)
Let {x, JB} be an SFS of the problem (1)-(2) and ϵ be a nonnegative arbitrary number. If

β (x, JB) ≤ ϵ, (16)

then the FS x is ϵ-optimal.
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Proof
By using (14) and (15), we can write

F (x∗)− F (x) ≤ β (x, JB) ≤ ϵ ⇒ F (x∗)− F (x) ≤ ϵ.

The FS x is then ϵ-optimal.

3.4. Algorithm of the primal support method

Let {x, JB} be an initial SFS and ϵ be an arbitrary nonnegative number. The scheme of the algorithm of the primal
support method for solving LFPBV is presented in the following steps [24, 26, 31]:

Algorithm 1. (Primal Support Method for LFP)

1. Calculate F (x) and
πT
P = pTBA

−1
B , ∆′

j = πT
Paj − pj , j ∈ JN ,

πT
Q = qTBA

−1
B , ∆′′

j = πT
Qaj − qj , j ∈ JN ,

∆j (x) = ∆′
j − F (x)∆′′

j , j ∈ JN ;

2. Calculate the suboptimality estimate with (15);

3. If β (x, JB) = 0, then the algorithm stops with the optimal SFS {x, JB};

4. If β (x, JB) ≤ ϵ, then the algorithm stops with the ϵ-optimal SFS {x, JB};

5. Else, go to step 6;

6. Determine the set of indices which do not verify the optimality relationships (10):

JNNO = {j ∈ JN : [∆j (x) > 0 and xj > lj ] or [∆j (x) < 0 and xj < uj ]} ;

7. Choose the index j0, such that |∆j0 (x)| = max
j∈JNNO

|∆j (x)|;

8. Calculate the ascent direction d with the relationships:

dj0 = −sign∆j0 (x),

dj = 0, j ̸= j0, j ∈ JN ,

d (JB) = −A−1
B ANd (JN ) = A−1

B aj0sign∆j0 (x);

9. Calculate θj1 = min
j∈JB

θj , where θj is determined with the formula:

θj =


uj−xj

dj
, if dj > 0;

lj−xj

dj
, if dj < 0;

∞, if dj = 0;

10. Calculate θj0 using the formula:

θj0 =

 xj0 − lj0 , if ∆j0 (x) > 0;

uj0 − xj0 , if ∆j0 (x) < 0;
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11. Calculate θ0 = min {θj1 , θj0};

12. Calculate x̄ = x+ θ0d and F (x̄) = F (x) +
θ0|∆j0

(x)|
Q(x̄) ;

13. Calculate
∆N (x̄) = ∆′

N − F (x̄)∆′′
N ;

and

β(x̄, JB) =
1

α

 ∑
∆j(x̄)>0,j∈JN

∆j(x̄)(x̄j − lj) +
∑

∆j(x̄)<0,j∈JN

∆j(x̄)(x̄j − uj)

 ;

14. If β (x̄, JB) = 0, then the algorithm stops with the optimal SFS {x̄, JB};

15. If β (x̄, JB) ≤ ϵ, then the algorithm stops with the ϵ-optimal SFS {x̄, JB};

16. Else, go to step 17;

17. If θ0 = θj0 , then we put J̄B = JB;

18. If θ0 = θj1 , then we put J̄B = (JB\ {j1}) ∪ {j0};

19. Put x := x̄, JB := J̄B and go to step 1;

Remark 1. The primal support method for solving LFP problems with nonnegative variables and those with
bounded variables [24, 26, 31] uses the simplex direction defined by relationships (12) in order to improve the
current SFS. When we start with an initial basic feasible solution {x, JB}, i.e., xj = lj ∨ uj , j ∈ JN , the primal
support method will pass from one extreme point to a better adjacent one and the path followed by the support
method algorithm will be exactly the same one as that of the simplex algorithm.

4. The hybrid direction method

In [22], a new hybrid direction method is proposed for solving LP problems. In this section, we generalize this
method in order to solve LFP problems with bounded variables.

Let {x, JB} be an SFS for problem (1)-(2) and η > 0. Define the following index sets:

J+
NE = {j ∈ JN : ∆j(x) > η(xj − lj) and xj > lj} ,

J−
NE = {j ∈ JN : ∆j(x) < η(xj − uj) and xj < uj} ,

J+
NI = {j ∈ JN : 0 < ∆j(x) ≤ η(xj − lj)} ,

J−
NI = {j ∈ JN : η(xj − uj) ≤ ∆j(x) < 0} ,

J+
NR = {j ∈ JN : ∆j(x) > 0 and xj = lj} ,

J−
NR = {j ∈ JN : ∆j(x) < 0 and xj = uj} ,

J+
N = {j ∈ JN : ∆j(x) > 0}, J−

N = {j ∈ JN : ∆j(x) < 0},

JN0 = {j ∈ JN : ∆j(x) = 0}, JNI = J+
NI ∪ J−

NI ,

JNE = J+
NE ∪ J−

NE , JNR = JN0 ∪ J+
NR ∪ J−

NR.

(17)

Then
JN = JNE ∪ JNI ∪ JNR, J

+
N = J+

NE ∪ J+
NI ∪ J+

NR, J
−
N = J−

NE ∪ J−
NI ∪ J−

NR.

Lemma 4.1
If {x, JB} is nonoptimal, then JNI ∪ JNE ̸= ∅.
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Proof
We suppose that there exists an index j∗ ∈ JN which does not verify the optimality conditions (10), so two cases
can occur:
Case 1: If ∆j∗(x) < 0 and xj∗ < uj∗ , then j∗ ∈ J−

NI ∪ J−
NE . Hence JNI ∪ JNE ̸= ∅.

Case 2: If ∆j∗(x) > 0 and xj∗ > lj∗ , then j∗ ∈ J+
NI ∪ J+

NE . Hence JNI ∪ JNE ̸= ∅.

For η > 0, we define the quantities γ and µ as follows:

γ =
1

α

 ∑
j∈J+

NI

∆j(x)(xj − lj) +
∑

j∈J−
NI

∆j(x)(xj − uj) +
1

η

∑
j∈J+

NE∪J−
NE

∆2
j (x)

 , (18)

µ =
1

α

−
∑

j∈J+
NE

∆j(x)(xj − lj)−
∑

j∈J−
NE

∆j(x)(xj − uj) +
1

η

∑
j∈J+

NE∪J−
NE

∆2
j (x)

 . (19)

We recall that the suboptimality estimate β(x, JB) is given by:

β = β(x, JB) =
1

α

∑
j∈J+

N

∆j(x)(xj − lj) +
∑
j∈J−

N

∆j(x)(xj − uj)

 . (20)

Remark 2. In the adaptive method for LP, the suboptimality estimate is equal to the difference between the value of
the objective function of the primal problem at the current primal solution and that of the dual problem at the current
dual solution which is judiciously constructed. As a consequence of duality theory, this estimate decreases when
we pass from x to x̄ and from JB to J̄B . However in this work, the passage from x to x̄ ensures that F (x̄) ≥ F (x),
or F (x̄) > F (x) in the case of primal nondegeneracy, but the suboptimality estimate can increase when we move
from x to x̄. Hence, the suboptimality estimate is only used here as an upper bound for the difference between
the maximum and the value of F at the current solution, which allows us to stop the proposed algorithm when a
suboptimal or optimal solution is reached.

Lemma 4.2
For η > 0, the following inequalities hold:

β = γ − µ ≤ γ, γ ≥ 0, µ ≥ 0.

Proof
First, remark that

β = β(x, JB) = 1
α

( ∑
j∈J+

N

∆j(x)(xj − lj) +
∑

j∈J−
N

∆j(x)(xj − uj)

)

= 1
α

( ∑
j∈J+

NE∪J+
NI

∆j(x)(xj − lj) +
∑

j∈J−
NE∪J−

NI

∆j(x)(xj − uj)

)
.

Thus,

β + µ =
1

α

 ∑
j∈J+

NI

∆j(x)(xj − lj) +
∑

j∈J−
NI

∆j(x)(xj − uj) +
1

η

∑
j∈J+

NE∪J−
NE

∆2
j (x)

 = γ,

that implies β = γ − µ.
Furthermore, for η > 0, we have
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β = β(x, JB) = 1
α

( ∑
j∈J+

NI

∆j(x)(xj − lj) +
∑

j∈J−
NI

∆j(x)(xj − uj)

+
∑

j∈J+
NE

∆j(x)(xj − lj) +
∑

j∈J−
NE

∆j(x)(xj − uj)

)

≤ 1
α

( ∑
j∈J+

NI

∆j(x)(xj − lj) +
∑

j∈J−
NI

∆j(x)(xj − uj)

+ 1
η

∑
j∈J+

NE

∆2
j (x) +

1
η

∑
j∈J−

NE

∆2
j (x)

)
.

Indeed,

for j ∈ J+
NE : η(xj − lj) < ∆j(x) ⇒ xj − lj <

∆j(x)
η ⇒ ∆j(x)(xj − lj) <

∆2
j (x)

η ;

for j ∈ J−
NE : ∆j(x) < η(xj − uj) ⇒ xj − uj >

∆j(x)
η ⇒ ∆j(x)(xj − uj) <

∆2
j (x)

η .

Hence,

β ≤ 1

α

 ∑
j∈J+

NI

∆j(x)(xj − lj) +
∑

j∈J−
NI

∆j(x)(xj − uj) +
1

η

∑
j∈J+

NE∪J−
NE

∆2
j (x)

 = γ,

that implies γ ≥ β ≥ 0. Since β = γ − µ, we conclude that µ = γ − β ≥ 0.

4.1. An iteration of the algorithm

4.1.1. Change of the feasible solution Let {x, JB} be an SFS for problem (1)-(2) and η > 0. We define the
direction d as follows: 

dj = lj − xj , if j ∈ J+
NI ;

dj = uj − xj , if j ∈ J−
NI ;

dj =
−∆j(x)

η , if j ∈ J+
NE ∪ J−

NE ;

dj = 0, if j ∈ JNR;

dB = −A−1
B ANdN .

(21)

This direction is called a hybrid direction [22], and it is clear that Ad = 0.
In order to improve the value of the objective function while remaining in the feasible region, we calculate the
steplength θ0 along the direction d. This steplength must satisfy the following inequality:

l ≤ x+ θ0d ≤ u ⇔

{
lj − xj ≤ θ0dj ≤ uj − xj , for j ∈ JB ;

lj − xj ≤ θ0dj ≤ uj − xj , for j ∈ JN .

Therefore, we calculate the steplength θ0 as follows:

θ0 = min {θj1 , θj2 , 1} , θj1 = min
j∈JB

θj , θj2 =

 min
j∈JNE

θj , if JNE ̸= ∅;

∞, otherwise,
(22)
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where

θj =


uj−xj

dj
, if dj > 0;

lj−xj

dj
, if dj < 0;

∞, if dj = 0.

(23)

The value of the steplength is equal to 1 for the indices of JNI .
Then the new improved feasible solution is given by

x̄ = x+ θ0d, (24)

where d and θ0 are defined by relationships (21)-(23).
Moreover, the increment of the objective function is:

F (x̄)− F (x) =
−θ0 ∑

j∈JN

∆j(x)dj

Q(x̄)

= 1
Q(x̄)

(
−θ0

∑
j∈J+

NI

∆j(x)dj − θ0
∑

j∈J−
NI

∆j(x)dj − θ0
∑

j∈J+
NE∪J−

NE

∆j(x)dj

)

= θ0

Q(x̄)

( ∑
j∈J+

NI

∆j(x)(xj − lj) +
∑

j∈J−
NI

∆j(x)(xj − uj) +
∑

j∈J+
NE∪J−

NE

∆2
j (x)

η

)

= αθ0

Q(x̄)γ = αθ0

Q(x̄) (β + µ) ≥ 0.

Let us define the following index sets:

J̃+
N = {j ∈ JN : ∆j(x̄) > 0}, J̃−

N = {j ∈ JN : ∆j(x̄) < 0}.

The other corresponding sets are J̃+
NI , J̃

−
NI , J̃

+
NE , J̃

−
NE and J̃NR.

We compute the suboptimality estimate corresponding to the new SFS {x̄, JB}:

β̄ = β(x̄, JB) =
1

α

∑
j∈J̃+

N

∆j(x̄)(x̄j − lj) +
∑
j∈J̃−

N

∆j(x̄)(x̄j − uj)

 . (25)

If β̄ ≤ ϵ, then the FS x̄ is ϵ-optimal. If β̄ > ϵ and θ0 = θj2 ∨ 1, then we put x := x̄ and we start a new iteration with
the SFS {x, JB}. If β̄ > ϵ and θ0 = θj1 , then we change the support JB .

4.1.2. Change of the support We define the n-vectors d̄ = (d̄j , j ∈ J), κ and t = (tj , j ∈ J), as follows:

d̄j = lj − x̄j , if j ∈ J̃+
NI ;

d̄j = uj − x̄j , if j ∈ J̃−
NI ;

d̄j =
−∆j(x̄)

η , if j ∈ J̃+
NE ∪ J̃−

NE ;

d̄j = 0, if j ∈ J̃NR;

d̄B = −A−1
B AN d̄N , with d̄N = (d̄j , j ∈ JN );

(26)

κ = x̄+ d̄; tj1 = −sign dj1 , tj = 0, j ̸= j1, j ∈ JB ; t
T
N = tTBA

−1
B AN .

Remark 3. The vectors t and d̄ are orthogonal. Indeed,

tT d̄ = tTN d̄N + tTB d̄B = (tTBA
−1
B AN )d̄N + tTB(−A−1

B AN d̄N ) = 0.
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The new support J̄B and the new reduced costs vectors ∆̄′, ∆̄′′ and ∆̄(x̄) are computed as follows:

J̄B = (JB \ {j1}) ∪ {j0} , J̄N = J \ J̄B ,

∆̄′ = ∆′ + σ′
0t, ∆̄

′′ = ∆′′ + σ′′
0 t and ∆̄(x̄) = ∆(x̄) + σ0t,

(27)

where

σ0 = σj0 = min
j∈JN

{σj}, with σj =



−∆j(x̄)
tj

, if ∆j(x̄)tj < 0;

0, if ∆j(x̄) = 0, tj < 0, κj ̸= uj ;

0, if ∆j(x̄) = 0, tj > 0, κj ̸= lj ;

+∞, otherwise;

(28)

σ′
0 =


−∆′

j0

tj0
, if (∆j0(x̄)tj0 < 0) or (∆j0(x̄) = 0, tj0 < 0, κj0 ̸= uj0) or (∆j0(x̄) = 0, tj0 > 0, κj0 ̸= lj0);

+∞, otherwise;
(29)

σ′′
0 =


−∆′′

j0

tj0
, if (∆j0(x̄)tj0 < 0) or (∆j0(x̄) = 0, tj0 < 0, κj0 ̸= uj0) or (∆j0(x̄) = 0, tj0 > 0, κj0 ̸= lj0);

s× (+∞), otherwise;
(30)

with s = −signF (x̄).

Proposition 1

We have σ′
0, σ

′′
0 ∈ R, σ0 ≥ 0, with

σ0 = σ′
0 − F (x̄)σ′′

0 , ∆̄(x̄) = ∆̄′ − F (x̄)∆̄′′ and ∆j(x̄)∆̄j(x̄) ≥ 0, j ∈ J.

Proof
First, we prove the equality σ0 = σ′

0 − F (x̄)σ′′
0 . Two cases can occur:

(i) (∆j0(x̄)tj0 < 0) or (∆j0(x̄) = 0, tj0 < 0, κj0 ̸= uj0) or (∆j0(x̄) = 0, tj0 > 0, κj0 ̸= lj0).
In this case, tj0 ̸= 0, so we get

σ0 =
−∆j0(x̄)

tj0
=

−∆′
j0
+ F (x̄)∆′′

j0

tj0
=

−∆′
j0

tj0
+ F (x̄)

∆′′
j0

tj0
= σ′

0 − F (x̄)σ′′
0 .

(ii) σ0 = +∞. In this case, we have

σ′
0 = +∞, σ′′

0 = −signF (x̄)× (+∞) ⇒ σ′
0 − F (x̄)σ′′

0 = +∞ = σ0.

Now, let us prove that ∆̄(x̄) = ∆̄′ − F (x̄)∆̄′′.
We have

∆̄(x̄) = ∆(x̄) + σ0t = ∆′ − F (x̄)∆′′ + (σ′
0 − F (x̄)σ′′

0 )t = (∆′ + σ′
0t)− F (x̄)(∆′′ + σ′′

0 t),

that implies ∆̄(x̄) = ∆̄′ − F (x̄)∆̄′′. Finally, we have

∆̄j(x̄)∆j(x̄) = (∆j(x̄) + σ0tj)∆j(x̄) = ∆2
j (x̄) + σ0tj∆j(x̄), j ∈ J. (31)

• If tj∆j(x̄) > 0, then ∆̄j(x̄)∆j(x̄) ≥ 0.
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• If tj∆j(x̄) < 0, then

σ0 ≤ −∆j(x̄)

tj
⇒ σ0 +

∆j(x̄)

tj
≤ 0 ⇒ σ0tj∆j(x̄) + ∆2

j (x̄) ≥ 0,

and from (31) we get ∆̄j(x̄)∆j(x̄) ≥ 0.

• If tj∆j(x̄) = 0, then from (31) we deduce ∆̄j(x̄)∆j(x̄) = ∆2
j (x̄) ≥ 0.

Remark 4.
Denote by

AB̄ = A(I, J̄B), pB̄ = (pj , j ∈ J̄B), qB̄ = (qj , j ∈ J̄B), π̄
T
P = pTB̄A

−1
B̄

, π̄T
Q = qTB̄A

−1
B̄

.

Then, with the choice of the leaving index j0 with (28), it is well known in linear programming (see [37]) that the
new reduced costs vectors computed with the updating formulas (27) are equal to:

∆̄′ = AT π̄P − p, ∆̄′′ = AT π̄Q − q.

Remark 5. In this work, we have supposed that an initial SFS is available for the problem (1)-(2) and that σ0 < ∞.
When the initial SFS is not known in advance, it can be computed with the initialization procedures described in
[28, 5].

The suboptimality estimate corresponding to the new SFS {x̄, J̄B} is given by:

¯̄β = β(x̄, J̄B) =
1

α

 ∑
j∈J̄N ,∆̄j(x̄)>0

∆̄j(x̄)(x̄j − lj) +
∑

j∈J̄N ,∆̄j(x̄)<0

∆̄j(x̄)(x̄j − uj)

 . (32)

Let us define the index sets J̃N0, J̃+
N0, J̃−

N0 and the quantity V0, as follows:

J̃N0 = {j ∈ JN : ∆j(x̄) = 0}, J̃+
N0 = {j ∈ J̃N0 : tj > 0}, J̃−

N0 = {j ∈ J̃N0 : tj < 0}; (33)

V0 =
1

α

tj1 d̄j1 +
∑

j∈J̃+
N0∪J̃+

NE

tj(κj − lj) +
∑

j∈J̃−
N0∪J̃−

NE

tj(κj − uj)

 . (34)

Then, we have the following proposition.

Proposition 2
We can write the suboptimality estimate β(x̄, J̄B) as follows:

β(x̄, J̄B) = β(x̄, JB) + σ0V0. (35)

Proof
We have J̄N = (JN \ {j0}) ∪ {j1}. If σ0 = 0, then j0 ∈ J̃+

N0 or j0 ∈ J̃−
N0.

So ∆j0(x̄) = 0 ⇒ ∆̄j0(x̄) = ∆j0(x̄) + σ0tj0 = 0.
If σ0 > 0, then

∆̄j0(x̄) = ∆j0(x̄) + σ0tj0 = ∆j0(x̄)−
∆j0(x̄)

tj0
tj0 = 0.

Therefore,

¯̄β =


1
α

( ∑
j∈JN ,∆̄j(x̄)>0

∆̄j(x̄)(x̄j − lj) +
∑

j∈JN ,∆̄j(x̄)<0

∆̄j(x̄)(x̄j − uj) + ∆̄j1(x̄)(x̄j1 − lj1)

)
, if ∆̄j1(x̄) > 0;

1
α

( ∑
j∈JN ,∆̄j(x̄)>0

∆̄j(x̄)(x̄j − lj) +
∑

j∈JN ,∆̄j(x̄)<0

∆̄j(x̄)(x̄j − uj) + ∆̄j1(x̄)(x̄j1 − uj1)

)
, if ∆̄j1(x̄) < 0.
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Since ∆j1(x) = 0, we have ∆′
j1

= ∆′′
j1

= 0 and ∆j1(x̄) = ∆′
j1
− F (x̄)∆′′

j1
= 0, thus

∆̄j1(x̄) = ∆j1(x̄) + σ0tj1 = σ0tj1 .

So two cases can occur:

• If ∆̄j1(x̄) > 0, then we have tj1 = 1 ⇒ dj1 < 0. Hence

x̄j1 − lj1 = xj1 + θ0dj1 − lj1 = xj1 +
lj1 − xj1

dj1
dj1 − lj1 = 0.

• If ∆̄j1(x̄) < 0, then we have tj1 = −1 ⇒ dj1 > 0. Hence

x̄j1 − uj1 = xj1 + θ0dj1 − uj1 = xj1 +
uj1 − xj1

dj1
dj1 − uj1 = 0.

Furthermore, from ∆j(x̄)∆̄j(x̄) ≥ 0, we deduce that

∆̄j(x̄) > 0 ⇔ [(∆j(x̄) > 0) or (∆j(x̄) = 0 and tj > 0)]

and
∆̄j(x̄) < 0 ⇔ [(∆j(x̄) < 0) or (∆j(x̄) = 0 and tj < 0)] .

Hence

¯̄β = 1
α

( ∑
j∈JN ,∆̄j(x̄)>0

∆̄j(x̄)(x̄j − lj) +
∑

j∈JN ,∆̄j(x̄)<0

∆̄j(x̄)(x̄j − uj)

)

= 1
α

( ∑
j∈JN ,∆j(x̄)>0

(∆j(x̄) + σ0tj)(x̄j − lj) +
∑

j∈JN ,∆j(x̄)<0

(∆j(x̄) + σ0tj)(x̄j − uj)

+
∑

j∈JN ,∆j(x̄)=0,tj>0

(∆j(x̄) + σ0tj)(x̄j − lj) +
∑

j∈JN ,∆j(x̄)=0,tj<0

(∆j(x̄) + σ0tj)(x̄j − uj)

)

= 1
α

[( ∑
j∈JN ,∆j(x̄)>0

∆j(x̄)(x̄j − lj) +
∑

j∈JN ,∆j(x̄)<0

∆j(x̄)(x̄j − uj)

)

+σ0

( ∑
j∈JN ,∆j(x̄)=0,tj>0

tj(x̄j − lj) +
∑

j∈JN ,∆j(x̄)=0,tj<0

tj(x̄j − uj)

)

+σ0

( ∑
j∈JN ,∆j(x̄)>0

tj(x̄j − lj) +
∑

j∈JN ,∆j(x̄)<0

tj(x̄j − uj)

)]

= β(x̄, JB) + σ0(α1 + α2),

where

α1 =
1

α

 ∑
j∈JN ,∆j(x̄)=0,tj>0

tj(x̄j − lj) +
∑

j∈JN ,∆j(x̄)=0,tj<0

tj(x̄j − uj)


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and

α2 =
1

α

 ∑
j∈JN ,∆j(x̄)>0

tj(x̄j − lj) +
∑

j∈JN ,∆j(x̄)<0

tj(x̄j − uj)

 .

So, we have:

α1 =
1

α

 ∑
j∈J̃+

N0

tj(x̄j − lj) +
∑

j∈J̃−
N0

tj(x̄j − uj)

 , α2 =
1

α

∑
j∈J̃+

N

tj(x̄j − lj) +
∑
j∈J̃−

N

tj(x̄j − uj)

 .

For j ∈ J̃+
N0 ∪ J̃−

N0 ⊂ J̃NR, d̄j = 0 ⇒ x̄j = κj . Then

α1 =
1

α

 ∑
j∈J̃+

N0

tj(κj − lj) +
∑

j∈J̃−
N0

tj(κj − uj)

 . (36)

Now, we compute the quantity α2:

α2 =
1

α

 ∑
j∈J̃+

NE∪J̃+
NI∪J̃+

NR

tj(x̄j − lj) +
∑

j∈J̃−
NE∪J̃−

NI∪J̃−
NR

tj(x̄j − uj)

 .

For j ∈ J̃+
NR, x̄j = lj and for j ∈ J̃−

NR, x̄j = uj . Hence,

α2 = 1
α

( ∑
j∈J̃+

NE∪J̃+
NI

tj(x̄j − lj) +
∑

j∈J̃−
NE∪J̃−

NI

tj(x̄j − uj)

)

= 1
α

( ∑
j∈J̃+

NE

tj(x̄j − lj) +
∑

j∈J̃−
NE

tj(x̄j − uj) +
∑̃
J+
NI

tj(x̄j − lj) +
∑

j∈J̃−
NI

tj(x̄j − uj)

)
.

For j ∈ J̃+
NI , x̄j − lj = −d̄j , and for j ∈ J̃−

NI , x̄j − uj = −d̄j . Thus, we obtain:

α2 =
1

α

 ∑
j∈J̃+

NE

tj(x̄j − lj) +
∑

j∈J̃−
NE

tj(x̄j − uj)−

 ∑
j∈J̃+

NI

tj d̄j +
∑

j∈J̃−
NI

tj d̄j

 .

Since we have ∑
j∈J

tj d̄j =
∑
j∈JN

tj d̄j +
∑
j∈JB

tj d̄j = 0; d̄j = 0, j ∈ J̃NR and
∑
j∈JB

tj d̄j = tj1 d̄j1 ,

we deduce ∑
j∈JN

tj d̄j = −
∑
j∈JB

tj d̄j ⇒
∑

j∈J̃+
NI

tj d̄j +
∑

j∈J̃−
NI

tj d̄j +
∑

j∈J̃+
NE∪J̃−

NE

tj d̄j = −tj1 d̄j1 .

Thus ∑
j∈J̃+

NI

tj d̄j +
∑

j∈J̃−
NI

tj d̄j = −
∑

j∈J̃+
NE∪J̃−

NE

tj d̄j − tj1 d̄j1 .
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Therefore, α2 becomes:

α2 = 1
α

( ∑
j∈J̃+

NE

tj(x̄j − lj) +
∑

j∈J̃−
NE

tj(x̄j − uj) +
∑

j∈J̃+
NE∪J̃−

NE

tj d̄j + tj1 d̄j1

)

= 1
α

(
tj1 d̄j1 +

∑
j∈J̃+

NE

tj(x̄j − lj + d̄j) +
∑

j∈J̃−
NE

tj(x̄j − uj + d̄j)

)

= 1
α

(
tj1 d̄j1 +

∑
j∈J̃+

NE

tj(κj − lj) +
∑

j∈J̃−
NE

tj(κj − uj)

)
.

Then

α1 + α2 =
1

α

tj1 d̄j1 +
∑

j∈J̃+
N0∪J̃+

NE

tj(κj − lj) +
∑

j∈J̃−
N0∪J̃−

NE

tj(κj − uj)

 = V0

and
β(x̄, J̄B) = β(x̄, JB) + σ0V0.

Remark 6. In this remark, we will examine the conditions which allow us to get β(x̄, J̄B) ≤ β(x̄, JB).
We have ∀j ∈ J̃+

N0, tj > 0, κj = x̄j ≥ lj and ∀j ∈ J̃−
N0, tj < 0, κj = x̄j ≤ uj . So

α1 =
1

α

 ∑
j∈J̃+

N0

tj(κj − lj) +
∑

j∈J̃−
N0

tj(κj − uj)

 ≥ 0.

If there exists an index j ∈ J̃N0, such that (tj > 0 and κj > lj) or (tj < 0 and κj < uj), then α1 > 0. However
in this case, by using formulas (28), we get σ0 = 0. If σ0 > 0, then J̃+

N0 ∪ J̃−
N0 = ∅, α1 = 0. Thus in all cases we

deduce that σ0α1 = 0. Consequently, if J̃+
NE ∪ J̃−

NE = ∅, then α2 = 1
α tj1 d̄j1 . So, three cases can occur:

If σ0 = 0, then from (35), we get β(x̄, J̄B) = β(x̄, JB).
If σ0 > 0 and tj1 d̄j1 < 0, then α2 < 0 and β(x̄, J̄B) = β(x̄, JB) + σ0α2 < β(x̄, JB).
If σ0 > 0 and tj1 d̄j1 ≥ 0, then β(x̄, J̄B) ≥ β(x̄, JB).
In the case where J̃+

NE ∪ J̃−
NE ̸= ∅, α2 may be positive and β(x̄, J̄B) may be greater than β(x̄, JB).

Note that the negative effect in this later case will be reduced by the choice of the parameter η with Procedure 3
presented in Subsection 4.4.

Finally, we change the support with the short step rule or the long step rule [28, 37] slightly modified. These
rules are described below in Procedures 1 and 2.

Procedure 1. (Short step rule).

1. Calculate σ0 = σj0 = min
j∈JN

σj , where σj are determined with (28);

2. Calculate σ′
0 and σ′′

0 with (29)-(30);

3. Calculate ∆̄′ = ∆′ + σ′
0t, ∆̄′′ = ∆′′ + σ′′

0 t and ∆̄(x̄) = ∆(x̄) + σ0t;

4. Put J̄B = (JB \ {j1}) ∪ {j0};

5. Calculate β(x̄, J̄B) = β(x̄, JB) + σ0V0;
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Procedure 2. (Long step rule)

1. Calculate {σj , j ∈ JN}, where σj are determined with relationships (28);

2. Sort the indices {i ∈ JN : σi ̸= ∞}:

σi1 ≤ σi2 ≤ · · · ≤ σip , ik ∈ JN , σik ̸= ∞, k = 1, . . . , p;

3. If V0 ≥ 0 or p = 1, then put j0 = i1 and go to step 7;

4. For all ik, k = 1, . . . , p, calculate ∆Vik = 1
α |tik | (uik − lik);

5. Calculate Vik , k = 0, . . . , p, where{
Vi0 = V0,

Vik = V0 +
∑k

s=1 ∆Vis = Vik−1
+∆Vik , k = 1, . . . , p;

6. Choose the index j0 = iq, such that Viq−1 < 0 and Viq ≥ 0;

7. Calculate σ′
0 and σ′′

0 with formulas (29) and (30); put J̄B = (JB \ {j1}) ∪ {j0}, σ0 = σj0 = σiq ,
∆̄′ = ∆′ + σ′

0t, ∆̄′′ = ∆′′ + σ′′
0 t and ∆̄(x̄) = ∆(x̄) + σ0t;

8. Calculate β(x̄, J̄B) with (32);

4.2. Algorithm of the hybrid direction method

Let {x, JB} be an initial SFS for problem (1)-(2) and ϵ ≥ 0, η > 0. The algorithm of the Hybrid Direction Method
(HDM) is described in the following steps:

Algorithm 2. (HDM)

1. Calculate F (x) and

πT
P = pTBA

−1
B , ∆′

j = πT
Paj − pj , j ∈ JN , πT

Q = qTBA
−1
B ,

∆′′
j = πT

Qaj − qj , j ∈ JN , ∆j (x) = ∆′
j − F (x)∆′′

j , j ∈ JN ;

2. Calculate the suboptimality estimate β with (20);

3. If β = 0, then the algorithm stops with the optimal SFS {x, JB};

4. If β ≤ ϵ, then the algorithm stops with the ϵ-optimal SFS {x, JB};

5. Calculate η(x− l) and η(x− u); the index sets J+
NE and J−

NE with (17), and µ with (19);

6. Calculate the index sets J+
NI , J−

NI and JNR with (17);

7. Calculate the direction d using relationships (21);

8. Calculate θj1 , θj2 and the steplength θ0 with (22);

9. Calculate x̄ = x+ θd and F (x̄) = F (x) + αθ0(β+µ)
Q(x̄) ;

10. Calculate

∆(x̄) = ∆′ − F (x̄)∆′′, β̄ =
1

α

∑
j∈J̃+

N

∆j(x̄)(x̄j − lj) +
∑
j∈J̃−

N

∆j(x̄)(x̄j − uj)

 ;
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11. If β̄ = 0, then the algorithm stops with the optimal SFS {x̄, JB};

12. If β̄ ≤ ϵ, then the algorithm stops with the ϵ-optimal SFS {x̄, JB};

13. If θ0 = θj2 ∨ 1, then put x := x̄, F (x) := F (x̄), β := β̄ and go to step 5;

14. Change of the support JB by J̄B:

14.1 Calculate the new vectors η(x̄− l), η(x̄− u) and the new index sets J̃+
NE , J̃−

NE ;

14.2 Calculate the new index sets J̃+
NI , J̃−

NI and J̃NR;
14.3 Calculate the vector d̄ with (26), the vectors κ = x̄+ d̄ and the vector t = (tj , j ∈ J):

tj1 = −sign dj1 ; tj = 0, j ̸= j1, j ∈ JB ; t
T
N = tTBA

−1
B AN ;

14.4 Calculate V0 with (34);
14.5 Calculate the new support J̄B , the new reduced costs vectors ∆̄′, ∆̄′′, ∆̄(x̄) and the new suboptimality

estimate ¯̄β = β(x̄, J̄B) with the short step rule (Procedure 1) or the long step rule (Procedure 2) and go
to step 15;

15. Put x := x̄, F (x) := F (x̄), JB := J̄B , ∆′ := ∆̄′, ∆′′ := ∆̄′′, ∆(x) := ∆̄(x̄), β := ¯̄β and go to step 3;

Remark 7. If θ0 > 0 and σ0 > 0 in each iteration of HDM, then we will have a new different SFS {x̄, J̄B}, with
J̄B ̸= JB and F (x̄) > F (x). Since the number of the supports of problem (1)-(2) is finite (less or equal to Cm

n ), so
the algorithm will stop in a finite number of iterations.

Remark 8. When η → +∞, we will have J+
NE = J−

NE = ∅. Hence

JNE = ∅, J+
NI = J+

N = {j ∈ JN : ∆j(x) > 0} , J−
NI = J−

N = {j ∈ JN : ∆j(x) < 0}

and
lim

η→+∞
γ(η, x, JB) = β(x, JB) and lim

η→+∞
µ(η, x, JB) = 0.

Thus, the hybrid direction will be equal to the standard direction of the adaptive method: dj = lj − xj , if ∆j(x) > 0;
dj = uj − xj , if ∆j(x) < 0;
dj = 0, if ∆j(x) = 0;

j ∈ JN , dB = −A−1
B ANdN .

When η is set to +∞ and Q(x) = 1 in HDM for LFP, then we will find exactly the adaptive method of linear
programming [28].

4.3. Numerical example

Let us solve the following problem with HDM using the long step rule:

max F (x) =
P (x)

Q(x)
=

5x1 + x2 + 10

4x1 + 2x2 + 12
,

subject to

5x1 +x2 +x3 = 20,
4x1 −x3 +x4 = 14,

2 ≤ x1 ≤ 5,
4 ≤ x2 ≤ 12,
0 ≤ x3 ≤ 25,
0 ≤ x4 ≤ 18.
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Let {x, JB}, with x = (2, 10, 0, 6)T and JB = {1, 2}, an initial support feasible solution and F (x) = 3
4 = 0.75 the

value of the objective function at this solution. We set η = 1 and ϵ = 0.
The minimum of the function Q over the feasible set S is α = minx∈S Q(x) = 28.
First iteration:
We have

JB = {1, 2} , JN = {3, 4} , pTB = (5, 1), pTN = (0, 0), qTB = (4, 2), qTN = (0, 0),

AB =

(
5 1
4 0

)
, A−1

B =

(
0 1/4
1 −5/4

)
, AN =

(
1 0
−1 1

)
.

The multipliers and the reduced costs vectors are:

πT
P = pTBA

−1
B = (1, 0), ∆′

N = AT
NπP − pN = (1, 0)T , ∆′ = (0, 0, 1, 0)T ,

πT
Q = qTBA

−1
B = (2,−3/2), ∆′′

N = AT
NπQ − qN = (7/2,−3/2)T ,

∆′′ = (0, 0, 7/2,−3/2)T , ∆N (x) = ∆′
N − F (x)∆′′

N = (−13/8, 9/8)
T
,

∆(x) = (0, 0,−13/8, 9/8)T .

We have J+
N = {4}, J−

N = {3}, so the suboptimality estimate is:

β(x, JB) =
∆4(x)(x4 − l4) + ∆3(x)(x3 − u3)

α
=

379

224
≃ 1.6920 > ϵ.

The vectors η(x− u) and η(x− l) are:

η(x− u) = (−3,−2,−25,−12)T , η(x− l) = (0, 6, 0, 6)T .

The index sets are:
J+
NI = {4}, J−

NI = {3}, J+
NE = J−

NE = ∅ ⇒ µ = 0.

The direction d is computed as follows:
We have 3 ∈ J−

NI ⇒ d3 = u3 − x3 = 25; 4 ∈ J+
NI ⇒ d4 = l4 − x4 = −6. Hence

dN =

(
25
−6

)
, dB = −A−1

B ANdN =

(
31/4

−255/4

)
, d =


31/4

−255/4
25
−6

 .

The steplength θ0 along the direction d is computed as follows:

θj1 = min {θ1, θ2} = min

{
u1 − x1

d1
,
l2 − x2

d2

}
= min

{
12

31
,
8

85

}
=

8

85
= θ2,

θj2 = ∞, θ0 = min {θj1 , θj2 , 1} = min {8/85,∞, 1} = 8/85 = θ2 = θj1 ⇒ j1 = 2.

The new feasible solution x̄ is:

x̄ = x+ θ0d =


2
10
0
6

+
8

85


31/4

−255/4
25
−6

 =


232/85

4
40/17
462/85

 .

The new value of the objective function is:

Q(x̄) =
2628

85
, F (x̄) = F (x) +

αθ0(β + µ)

Q(x̄)
=

1175

1314
≃ 0.8942 > F (x) = 0.75.
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The new reduced costs vector ∆(x̄) and the new suboptimality estimate β̄:

∆(x̄) = ∆′ − F (x̄)∆′′ = (0, 0,−1231/578, 1175/876)T , J̃+
N = {4}, J̃−

N = {3},

β̄ =
∆4(x̄)(x̄4 − l4) + ∆3(x̄)(x̄3 − u3)

α
=

1281

646
≃ 1.9830 > ϵ.

Change of the support JB by J̄B:
We have:

J̃+
NE = J̃−

NE = ∅, J̃+
NI = {4}, J̃−

NI = {3}.

The vector d̄ is:
d̄3 = u3 − x̄3 = 25− 40/17 = 385/17; d̄4 = l4 − x̄4 = 0− 462/85 = −462/85. Hence

d̄N =

(
385/17
−462/85

)
, d̄B = −A−1

B AN d̄N =

(
2387/340
−231/4

)
, d̄ =


2387/340
−231/4
385/17
−462/85

 .

The vector κ is: κ = x̄+ d̄ = (39/4,−215/4, 25, 0)T .
The vector t is:

tTB = (t1, t2) = (0,−sign d2) = (0, 1);

tTN = (t3, t4) = tTBA
−1
B AN = (9/4,−5/4);

t = (0, 1, 9/4,−5/4)T .

Hence J̃+
N0 = J̃−

N0 = ∅ and

α1 = 1
α

( ∑
j∈J̃+

N0

tj(κj − lj) +
∑

j∈J̃−
N0

tj(κj − uj)

)
= 0.

α2 = 1
α

(
tj1 d̄j1 +

∑
j∈J̃+

NE

tj(κj − lj) +
∑

j∈J̃−
NE

tj(κj − uj)

)
= d̄2

α = −33/16.

Thus, V0 = −33/16 < 0. The steplengths σj , j ∈ JN are:

∆3(x̄) < 0, t3 = 9/4 > 0 ⇒ σ3 = −∆3(x̄)/t3 = 1169/1235;

∆4(x̄) > 0, t4 = −5/4 < 0 ⇒ σ4 = −∆4(x̄)/t4 = 235/219.

We have σ3 < σ4 ⇒ i1 = 3, i2 = 4, and p = 2. Then ∆Vi1 = ∆V3 = 1
α (|t3| (u3 − l3)) = 225/112,

∆Vi2 = ∆V4 = 1
α (|t4| (u4 − l4)) = 45/56.

Hence 
Vi0 = V0 = −33/16 < 0,

Vi1 = V3 = Vi0 +∆Vi1 = −3/56 < 0,

Vi2 = V4 = Vi1 +∆Vi2 = 3/4 ≥ 0.
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We have Vi1 = −3/56 < 0 and Vi2 = 3/4 > 0. So

j0 = iq = i2 = 4, σ0 = σj0 = σ4 = 235/219.

Therefore, the new support is:

J̄B = (JB \ {j1}) ∪ {j0} = {1, 4} , J̄N = {2, 3} .

The new reduced costs vectors are:

σ′
0 = −∆′

j0

tj0
= 0, σ′′

0 = −∆′′
j0

tj0
= −6/5;

∆̄′ = ∆′ + σ′
0t = (0, 0, 1, 0)T , ∆̄′′ = ∆′′ + σ′′

0 t = (0,−6/5, 4/5, 0)T ;

∆̄(x̄) = ∆(x̄) + σ0t = (0, 235/219, 187/657, 0)T .

The new suboptimality estimate is:

β(x̄, J̄B) =
∆̄2(x̄)(x̄2 − l2) + ∆̄3(x̄)(x̄3 − l3)

α
=

110

4599
≃ 0.0239 > ϵ.

Remark 9. If we use the relationships given in Remark 4 for computing the multipliers and the reduced costs
vectors corresponding to the new SFS {x̄, J̄B}, we obtain results which are equal to the ones found with the
updating formulas (27). Indeed, we have

x̄ = (232/85, 4, 40/17, 462/85)T , F (x̄) =
1175

1314
, J̄B = {1, 4} , J̄N = {2, 3} ,

pTB̄ = (5, 0), pTN̄ = (1, 0), qTB̄ = (4, 0), qTN̄ = (2, 0),

AB̄ =

(
5 0
4 1

)
, A−1

B̄
=

(
1/5 0
−4/5 1

)
, AN̄ =

(
1 1
0 −1

)
,

π̄T
P = pTB̄A

−1
B̄

= (1, 0), ∆̄′
N = AT

N̄ π̄P − pN̄ = (0, 1)T , ∆̄′ = (0, 0, 1, 0)T ,

π̄T
Q = qTB̄A

−1
B̄

= (4/5, 0), ∆̄′′
N = AT

N̄ π̄Q − qN̄ = (−6/5, 4/5)T , ∆̄′′ = (0,−6/5, 4/5, 0)T ,

∆̄N (x̄) = ∆̄′
N − F (x̄)∆̄′′

N = (235/219, 187/657)
T
, ∆̄(x̄) = (0, 235/219, 187/657, 0)T .

Second iteration:
We have

x = (232/85, 4, 40/17, 462/85)T , F (x) =
1175

1314
, JB = {1, 4} , JN = {2, 3} , β =

110

4599
,

∆′ = (0, 0, 1, 0)T , ∆′′ = (0,−6/5, 4/5, 0)T , ∆(x) = (0, 235/219, 187/657, 0)T .

The vectors η(x− u) and η(x− l):

η(x− u) = (−193/85,−8,−385/17,−1068/85)T , η(x− l) = (62/85, 0, 40/17, 462/85)T .

The index sets are:
J+
NI = {3}, J−

NI = ∅, J+
NE = J−

NE = ∅ ⇒ µ = 0.

The ascent direction d is:
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Since 2 ∈ J+
NR and 3 ∈ J+

NI , then d2 = 0 and d3 = l3 − x3 = −40/17.

dN =

(
0

−40/17

)
, dB = −A−1

B ANdN =

(
8/17

−72/17

)
, d =


8/17
0

−40/17
−72/17

 .

The steplength θ0 is:

θj1 = min {θ1, θ4} = min

{
u1 − x1

d1
,
l4 − x4

d4

}
= min

{
193

40
,
77

60

}
=

77

60
= θ4,

θj2 = ∞, (JNE = ∅), θ0 = min {θj1 , θj2 , 1} = min {77/60,∞, 1} = 1.

The feasible solution x̄ is:

x̄ = x+ θ0d =


232/85

4
40/17
462/85

+ 1


8/17
0

−40/17
−72/17

 =


16/5
4
0
6/5

 .

The new value of the objective function is:

Q(x̄) =
164

5
, F (x̄) = F (x) +

αθ0(β + µ)

Q(x̄)
=

75

82
≃ 0.9146 > F (x) = 0.8942.

The new reduced costs vector and the new suboptimality estimate are:

∆(x̄) = (0, 45/41, 11/41, 0)T , β̄ =
∆2(x̄)(x̄2 − l2) + ∆3(x̄)(x̄3 − l3)

α
= 0.

Therefore, the vector x∗ =
(
16
5 , 4, 0, 6

5

)T
, with F (x∗) = 75

82 , is optimal for the considered LFP problem.

4.4. Choice of the parameter η

The experimental study carried out in this work has shown that it is judicious to choose the parameter η so as to
force the sets J+

NE , J−
NE , J̃+

NE and J̃−
NE to be empty at each iteration. Thus, in order to improve the efficiency of

Algorithm 2, we first start by setting η to an initial positive fixed value, for example η = 1, and if the SFS {x, JB}
is not optimal or ϵ-optimal, then we calculate the index sets J+

NE and J−
NE . If J+

NE ∪ J−
NE ̸= ∅, then we update the

value of η with Procedure 3. Furthermore, we compute the index sets J̃+
NE and J̃−

NE ; if they are not empty, then we
set x := x̄ and update an other time η with Procedure 3.

Procedure 3.

(1) If J+
NE ̸= ∅, then put η0 = max

j∈J+
NE

∆j(x)
xj−lj

, else put η0 = 0;

(2) If J−
NE ̸= ∅, then put η1 = max

j∈J−
NE

∆j(x)
xj−uj

, else put η1 = 0;

(3) Put η := max{η0, η1}+ 1.

Thus, for the new value of η computed with Procedure 3 as explained above, we will have in each iteration
J+
NE ∪ J−

NE = ∅ and J̃+
NE ∪ J̃−

NE = ∅, µ = 0, γ = β, θj2 = ∞ and θ0 = min{θj1 , 1}, etc. This will allow to
simplify calculus and reduce computational effort in each iteration. Moreover, by using Procedure 3, we may
increase the probability to get a better suboptimality estimate β(x̄, J̄B) by eliminating the quantity depending on
the sets J̃+

NE and J̃−
NE , which can be positive. So, we modify Algorithm 2 (HDM), as follows: after the step 5, we
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introduce the step 5a and after the step 14.1, we add the step 14.1a:
(5a) If J+

NE ∪ J−
NE ̸= ∅, then update η with Procedure 3 and go to step 5, else go to step 6.

(14.1a) If J̃+
NE ∪ J̃−

NE ̸= ∅, then set x := x̄, update η with Procedure 3 and go to step 14.1, else go to step 14.2.
Let us call Algorithm 2, HDM with a Fixed parameter (HDMF) and HDM with the steps 5a and 14.1a, HDM with
a Variable parameter (HDMV).
The practical advantages of the modified version of HDM (HDMV) will be discussed in the experimental study
presented in the following section.

5. Numerical experiments

In order to perform a numerical comparison between the hybrid direction method (HDM), the Primal
Simplex Method (PSM) and the Interior-Points Method (IPM) implemented in Matlab, we have developed an
implementation of HDM and PSM with the MATLABR2018a programming language. In the implementation of
the two algorithms HDM and PSM, the basis matrix inverse is updated in each iteration using the product form of
the inverse [20, 44], and in order to maintain numerical stability we reinvert the basis matrix from scratch every
100 iterations. For the IPM algorithm, we have set the parameters of the Matlab “fmincon” function as follows: the
initial point “x0 = (lb+ ub)/2”, “Algorithm=interior-point”, “MaxIter=100” and “MaxFunEvals=1e6”. Then we
have run the different solvers on a machine with 8 GB of RAM and a microprocessor Intel(R) Core(TM) i5-8250U
1.60GHz working under the Windows 10 operating system.

The numerical study is carried out on 120 randomly generated LFP test problems with bounded variables. These
test problems are written in the following form:

max F (x) =
P (x)

Q(x)
=

pTx+ p0
qTx+ q0

,

subject to Ax+ xe = b, l ≤ x ≤ u, le ≤ xe ≤ ue,

where p, q, x, b and xe are vectors in Rn; A a square matrix of order n, p0 and q0 are two real numbers.
The components of the vectors p, q, l and the entries of the matrix A are randomly generated following the

uniform distribution: −100 ≤ pj ≤ 100, 0 ≤ qj ≤ 100, 0 ≤ aij ≤ 100, 0 ≤ lj ≤ 100. In order to have Q(x) > 0,
we have generated q ≥ 0 and q0 > 0. The vectors b, u, le and ue are constructed as follows: b = Al + r1, u = l + r2,
le = b−Al − r3, ue = b−Al + r4, where rk, k = 1, 2, 3, 4, are n-vectors randomly generated following the
uniform distribution, such that 1 ≤ rkj ≤ 100, j = 1, 2, . . . , n, and rkj represents the jth component of the vector
rk.

We have initialized PSM and HDM with the basic feasible solution {x, JB}, where x = (l, b−Al) and JB =
{n+ 1, n+ 2, . . . , 2n}, and we have set the initial value of η to 1 and ϵ = 10−10 for HDM. In this study, we have
generated problems with a constraint matrix having a density d = 10% (the number of non zero entries×100/n2)
and we have considered two variants of the hybrid direction method: HDM with a Variable parameter and the Short
step rule (HDMVS) and HDM with a Variable parameter and the Long step rule (HDMVL).

For each algorithm and for each problem size n, we report in Table 1 the average number of iterations (NIT) and
the average CPU time (CPU) necessary for solving the 10 generated problems with the same size. ERR designates
the average absolute value of the gap between the optimal value found by the simplex algorithm and the maximum
found by the considered algorithm. For each algorithm, we plot the average number of iterations and the average
CPU time in terms of the problem size n. The obtained graphs are shown in Figure 1.

From Table 1 and Figure 1, we remark that HDMVL is more efficient than HDMVS and it outperforms the
primal simplex algorithm and the interior-points method implemented in Matlab. The superiority of HDMVL over
PSM and IPM becomes more clear with the increase of the problem dimension. However, HDM is less efficient
than the primal simplex method when we use the short step rule for changing the current support. Notice also
that the experimental study has shown that the choice of the parameter η with Procedure 3 presents the following
practical advantages:
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PSM HDML HDMS IPM
n CPU NIT CPU NIT ERR CPU NIT ERR CPU NIT ERR

100 0.02 37.6 0.04 44.4 8.4E-07 0.05 75.7 8.4E-07 1.36 100 1.0E-03
200 0.05 90.7 0.07 88.9 6.7E-07 0.14 183.1 6.7E-07 5.64 100 4.5E-04
300 0.20 167.0 0.19 119.6 7.8E-08 0.42 272.5 7.8E-08 15.02 100 2.5E-04
400 0.75 231.9 0.68 161.3 2.3E-07 1.62 405.1 2.3E-07 31.90 100 1.8E-04
500 1.73 333.2 1.27 202.8 1.8E-08 3.59 562.3 1.8E-08 57.19 100 1.3E-04
600 3.67 437.6 2.32 230.4 1.4E-07 6.89 687.7 1.4E-07 91.43 100 9.4E-05
700 7.34 589.6 3.87 266.5 3.8E-09 12.47 796.2 3.8E-09 134.26 100 6.5E-05
800 12.21 633.0 6.61 297.6 9.0E-08 20.00 896.6 9.0E-08 192.10 100 8.5E-05
900 17.52 692.9 9.14 306.0 6.1E-10 30.97 1035.9 6.1E-10 263.28 100 7.3E-05
1000 30.78 877.1 13.96 345.0 8.9E-10 48.13 1193.1 8.9E-10 346.69 100 4.9E-05
1200 54.38 977.1 24.71 398.5 7.6E-17 94.56 1513.7 5.3E-17 554.85 100 5.6E-05
1400 117.27 1364.1 41.95 450.7 9.2E-17 164.28 1782.4 9.9E-17 855.62 100 4.6E-05

Table 1. The average number of iterations and the average CPU time in terms of n
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Figure 1. Graphs of CPU and NIT in terms of n

1. The degeneracy is highly reduced and the number of iterations is reduced too. Indeed, in all the iterations and
for all the test problems, we have obtained a primal steplength θ0 > 0 and a strict increase of the objective
function: F (x̄) > F (x).

2. The obtained quantity V0 at each iteration of HDMVL for all the considered test problems is negative and
β(x̄, J̄B) < β(x̄, JB). This leads to a better suboptimality estimate when we pass from the support JB to J̄B .

3. We have also noticed that for all the iterations of HDMVL and for all the considered test problems the new
suboptimality estimate β(x̄, J̄B) is better than (less than) β(x, JB). In the left side of Figure 2, we represent
graphically the variation of the suboptimality estimate in terms of the iterations number for the third test
problem of size 100.

In the other hand, the variant HDMFL (HDM with a fixed parameter η and the long step rule, i.e., Procedure 3 is
not used to change η in each iteration) suffers from degeneracy. Indeed, for the majority of test problems, we have
a big number of iterations with θ0 = 0, x̄ = x and F (x̄) = F (x); this prevents the objective function to progress,

Stat., Optim. Inf. Comput. Vol. 13, March 2025



946 A HYBRID DIRECTION METHOD FOR LINEAR FRACTIONAL PROGRAMMING

0 5 10 15 20 25 30 35

Iterations number of HDMVL for the third test problem of size 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(x
,J

B
)

0 50 100 150 200 250

Iterations number of HDMFL for the third test problem of size 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(x
,J

B
)

Figure 2. Variation of β(x, JB) in terms of the iterations number of HDMVL and HDMFL

although an optimal solution or an ϵ-optimal is not yet achieved. Furthermore for some iterations, the quantity V0

is positive and we have β(x̄, J̄B) ≥ β(x̄, JB).
For example, when we apply HDMFL for the first and the second test problems of size n = 100, we find the

optimal values F (x∗) = −0.1190 (in 69 iterations) and F (x∗) = −0.0308 (in 85 iterations), respectively. However
for the third test problem of size 100 (see the graph in the right side of Figure 2), after 51 iterations, the objective
function stays without further progress in the value 0.18191775 until we interrupt the execution in iteration 200,
with β(x, JB) = 0.0331. However, the optimal values of the first, second and the third test problems are found by
HDMVL without degeneracy in 56, 48 and 35 iterations, respectively.

6. Conclusion

In this article, we have proposed a new method for solving linear fractional programming problems with bounded
variables. This method is a generalization of the hybrid direction method developed recently in [22]. The
experimental study carried out on solving 120 randomly generated test problems has shown the superiority of
the proposed algorithm with the long step rule over the primal simplex algorithm and the interior-points method
implemented in MATLABR2018a. In future works, we will study the efficiency of HDM on solving practical test
problems which arise in different real-world applications of linear fractional programming. Furthermore, we intend
to generalize the proposed algorithm for the resolution of quadratic fractional programming problems.

Acknowledgement

The authors are indebted to the Editor-in-Chief and to the anonymous referees whose comments and suggestions
have improved the quality of this paper.

REFERENCES

1. A. Andjouh, and M. O. Bibi, Adaptive global algorithm for solving box-constrained non-convex quadratic minimization problems,
J Optim Theory Appl, vol. 192, no. 1, pp. 360–378, 2022.

2. M. Azi, and M. O. Bibi, Optimal control of a dynamical system with intermediate phase constraints and applications in cash
management, Numerical Algebra, Control and Optimization, vol. 12, no. 2, pp. 279–291, 2022.

3. E. B. Bajalinov, On the economic sense of dual Variables in linear-Fractional Programming, Ekonomika i matematicheskie metody,
vol. 24, pp. 558–561, 1988 (in Russian).

Stat., Optim. Inf. Comput. Vol. 13, March 2025



M. A. HAKMI, M. BENTOBACHE AND M. O. BIBI 947

4. J. Awerjcewicz, Linear-Fractional Programming: Theory, Methods, Applications and Software, Applied optimization, Springer,
University of Florida, USA, 2003.

5. M. Bentobache, and M. O. Bibi, A two-phase support method for solving linear programs: Numerical experiments, Mathematical
Problems in Engineering, 28 pages, Article ID 482193, doi:10.1155/2012/482193, 2012.

6. M. Bentobache, On mathematical methods of linear and quadratic probgramming, PhD Dissertation, University of Bejaia, Bejaia,
Algeria, 2013 (in French).

7. M. Bentobache, and M. O. Bibi, A hybrid direction algorithm with long step rule for linear programming: Numerical experiments,
In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management
Sciences. Advances in Intelligent Systems and Computing, Springer, Cham, vol. 359, pp. 333–344, 2015.

8. M. Bentobache, M. Telli, and A. Mokhtari New LP-based local and global algorithms for continuous and mixed-integer nonconvex
quadratic programming, Journal of Global Optimization, vol. 82, no. 4, pp. 659–689, 2022.
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