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Abstract In this paper, we analyze Algerian temperature data using the periodic self-exciting threshold autoregressive
(PSETAR) model. While the periodic SETAR model offers significant advantages in capturing seasonal and threshold-based
behaviors, it remains underutilized in practical applications. The primary motivation of this work is to demonstrate the utility
of the PSETAR model for modeling complex temperature dynamics in Algeria. We aim to fill the gap in the literature by
showcasing how this model effectively captures seasonal variations and threshold behaviors in temperature data. The paper
contributes by providing a thorough analysis of the PSETAR model, discussing its estimation via the least squares method,
and testing its linearity using the likelihood ratio test. Additionally, we extend the concept of local asymptotic normality to
include p regimes. This study not only deepens the understanding of Algeria’s temperature dynamics but also highlights the
advantages of using the PSETAR model to address complex real-world time series problems.
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1. Introduction

This study aims to demonstrate the validity and effectiveness of the Periodic Self-Exciting Threshold
Autoregressive model. Our focus is on capturing the nonlinear dynamics and periodic regimes in climatic time
series data, specifically the average temperature in Algeria. While numerous studies have applied time series models
to various datasets, we emphasize the adaptability and robustness of the PSETAR model in scenarios characterized
by distinct regimes, such as cold and warm periods. Despite Algeria’s diverse climate, ranging from coastal to
Saharan zones, our analysis centers on the national average for simplicity. This approach enables us to highlight the
model’s ability to identify broader periodic structures rather than focusing on regional variations. Climatic data has
been extensively studied by researchers, including [13, 15, 17, 4], and others. Since temperature data often exhibit
distinct regimes, we employ the Self-Exciting Threshold Autoregressive (SETAR) model [19, 8, 12] to address
the nonlinearities inherent in such time series. This model facilitates segmentation through threshold selection,
allowing the analysis of dynamic relationships within individual regimes. Moreover, because monthly temperature
data typically follows seasonal patterns, we extend this framework by applying the PSETAR model, specifically
designed to capture periodic nonlinearity. Periodic models are crucial for understanding seasonal behaviors, as
shown in various theoretical and empirical studies [9, 1, 2, 10, 11]. The PSETAR model was initially introduced
by [14], while adaptive tests for periodicity within SETAR frameworks were developed by [6]. Before applying the
model, we examine essential statistical properties, including parameter estimation using the least squares method
and linearity testing via the likelihood ratio test. This study also investigates the locally asymptotically normal
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1340 APPLICATION OF THE PSETAR MODEL

(LAN) property, which has been extended to multiple regimes, as demonstrated by [5] in their adaptive estimation
of the two-regime PSETAR model. The LAN property is a cornerstone of time series analysis [3, 16], offering a
framework for simplifying estimation and hypothesis testing in complex, nonlinear models. While the discussion
of the LAN property in this paper primarily aims to demonstrate its validity through simulations, its inclusion
reinforces the theoretical foundation of this study. The remainder of this paper is organized as follows: Section
2 discusses the model specification, parameter estimation using the least squares method, and linearity testing.
Section 3 delves into the LAN property in greater detail. Finally, Section 4 presents the application of the PSETAR
model to Algeria’s temperature series, highlighting key findings and implications.

2. Periodic Self Exciting Threshold Autoregressive Model

2.1. Model Estimation

The stochastic process {Xt; t ∈ Z} is characterized by a PSETAR(p, 1, . . . , 1) representation with period S (S ≥ 2),
defined as:

Xt =

p∑
i=1

ϕt,iXt−1I(ct,i−1 < Xt−1 ≤ ct,i) + εt, t ∈ Z. (1)

Here, {εt; t ∈ Z} is an independent and identically distributed sequence with mean 0 and variance σ2
t , where the

probability density function is unknown. The autoregressive parameters ϕt,1, . . . , ϕt,p and the innovation variance
σ2
t vary periodically with a period of S. The threshold parameters ct,i are defined such that ct,0 = −∞, ct,p = +∞,

∀t, while the remaining thresholds are periodic with period S. For convenience, it is assumed that these thresholds
are known, given the relatively subjective nature of their estimation.

The model can be reformulated using indicator functions:

Xt = ϕt,1X
1
t−1 + . . .+ ϕt,pX

p
t−1 + εt, (2)

where
Xi

t−1 = Xt−1I(ct,i−1 < Xt−1 ≤ ct,i).

To clarify, let t = Sτ + s. Then we have:

XSτ+s = ϕs,1X
1
Sτ+s−1 + . . .+ ϕs,pX

p
Sτ+s−1 + εSτ+s, s = 1, . . . , S, τ ∈ Z. (3)

Let ϕ = (ϕ′
1
, ϕ′

2
, . . . , ϕ′

S
)′ ∈ RpS , where ϕ

s
= (ϕs,1, . . . , ϕs,p)

′ represents the parameter vector.
A realization of the periodic SETAR(2,1,1) model is illustrated in Figure 1, where ϕ = (0.7,−1.4;−0.5, 0.5)′

and the threshold c = 0. The density is observed to be non-normal, as indicated by the Shapiro-Wilk normality
test, with a p-value of 0.009199. The presence of nonlinearity is further confirmed by the Keenan test, yielding a
p-value of 6.171129× 10−8.

We consider observations {X1, . . . , XN} from Equation (3), where N = mS represents m years and S seasons.
With known thresholds, the model is represented as a periodically linear regression, allowing us to derive the Least
Squares (LS) estimators. Under necessary assumptions, we have:

ϕ̂
s
=


∑m−1

τ=0 (X1
Sτ+s−1)

2 · · · 0
...

. . .
...

0 · · ·
∑m−1

τ=0 (Xp
Sτ+s−1)

2


−1 

∑m−1
τ=0 XSτ+sX

1
Sτ+s−1

...∑m−1
τ=0 XSτ+sX

p
Sτ+s−1

 , s = 1, . . . , S. (4)

σ̂2
s =

1

m

m−1∑
τ=0

(
XSτ+s − ϕs,1X

1
Sτ+s−1 − . . .− ϕs,pX

p
Sτ+s−1

)2
, s = 1, . . . , S.

The asymptotic distribution of the estimator is given by:
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Figure 1. Periodic SETAR(2,1,1) model.

√
m(ϕ̂

s
− ϕs)

d−→ N (0p, σ
2
sΓ

−1
s ), for s = 1, . . . , S.

where

Γs =

E(X1
Sτ+s−1)

2 · · · 0
...

. . .
...

0 · · · E(Xp
Sτ+s−1)

2

 . (5)

We conducted a small simulation study to verify the effectiveness of the estimators. Observations were
generated from PSETAR2(2,1,1) models with parameters ϕ = (0.9,−0.3;−0.5, 0.8)′ and variance σ2

t = (1, 0.8)′,
using sample sizes ranging from 100 to 300. The threshold was set to 0. Table 1 presents the LS
estimators and their variances. Additionally, we generated a PSETAR2(3,1,1) model with parameters ϕ =
(0.9,−1, 0.2;−0.5, 1.6,−0.1)′ and the same periodic variance. Sample sizes of n = 300 and n = 600 were used,
with thresholds set at −1 and 1. The results are summarized in Table 2. Consistent means across different sample
sizes suggest stability in the estimation process, while decreasing variances with larger sample sizes indicate
increased precision and reliability in the parameter estimates.

Table 1. LS estimators of PSETAR2(2,1,1) model.

n ϕ1,1 ϕ1,2 ϕ2,1 ϕ2,2

100 Mean 0.8857 -0.3017 -0.5045 0.7916
Var 0.1408 0.0210 0.0192 0.0685

200 Mean 0.9093 -0.2990 -0.5015 0.7963
Var 0.0629 0.0101 0.0085 0.0308

300 Mean 0.8972 -0.2990 -0.5011 0.7958
Var 0.0390 0.0063 0.0059 0.0183
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1342 APPLICATION OF THE PSETAR MODEL

Table 2. LS estimators of PSETAR2(3,1,1) model.

n ϕ1,1 ϕ1,2 ϕ1,3 ϕ2,1 ϕ2,2 ϕ2,3

300 Mean 0.8964 -0.9943 0.1959 -0.5025 1.6063 -0.1028
Var 0.0134 0.0395 0.0084 0.0059 0.0316 0.0111

600 Mean 0.9059 -1.0049 0.1975 -0.5020 1.6031 -0.0993
Var 0.0075 0.0178 0.0043 0.0028 0.0169 0.0055

2.2. Test

In the specific scenario where ϕs,1 = · · · = ϕs,p = ϕs,∀s = 1, . . . , S, the model (3) simplifies to the periodic AR(1)
model. In this section, we employ the likelihood ratio test (LR) to examine the linearity. The hypotheses under
consideration are:

H0 : Xt ∼ PARS(1) vs H1 : Xt ∼ PSETARS(p, 1, . . . , 1).

The LR test rejects H0 at the asymptotic level α if

LRm = m

S∑
s=1

log

(
σ̃2
s

σ̂2
s

)
> χ2

(p−1)S(1− α),

where σ̃2
s and ϕ̃s are the estimators under H0, given by

σ̃2
s =

1

m

m−1∑
τ=0

(XSτ+s − ϕsXSτ+s−1)
2
,

and

ϕ̃s =

∑m−1
τ=0 XSτ+s−1XSτ+s∑m−1

τ=0 X2
Sτ+s−1

.

This LR test provides a statistical method to assess the linearity of the model, comparing the fit of the PAR
model to the more general PSETAR model. The decision to reject or accept H0 is based on the comparison of the
LR statistic to the critical value χ2

(p−1)S(1− α).

3. Local Asymptotique Normality (LAN)

3.1. Notation and Assumptions

Let H
(n)
f (ϕ) be a sequence of null hypotheses, under which X

(n)
t is a realization of the process (3) with the

parameter ϕ. H(n)
f (ϕ(n)) represents the sequence of alternatives with the central parameter:

ϕ(n) = ϕ+
1√
n
h(n), h(n) ∈ RpS ,

such that supn h
(n)′h(n) < ∞. Let τ (n) = (τ

(n)
1 , τ

(n)
2 , . . . , τ

(n)
S )′, where τ

(n)
s = (h

(n)
s,1 , h

(n)
s,2 )

′, for s = 1, 2, . . . , S.
To establish the LAN property, the following assumptions are required on the model to ensure differentiability

in quadratic mean:
Assumption (A.1). The model is periodically stationary. A sufficient condition is given by ϕs,1 < 1, ϕs,p < 1 and

ϕs,1ϕs,p < 1, for s = 1, 2, . . . , S.
Assumption (A.2). The innovation density f(.) is supposed to satisfy the following conditions:
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(i) f(x) > 0, ∀x ∈ R,
∫
xf(x) dx = 0 and σ2

t = E(ϵ2t ) < ∞.
(ii) f(.) is absolutely continuous with respect to the Lebesgue measure µ.

(iii) The Fisher information I(f) =
∫
(ϕf (x))

2f(x) dx is finite, where ϕf = − f ′

f .

3.2. Local asymptotic normality

For simplicity, let’s assume that the size of the observed time series, n, is a multiple of S, i.e., n = mS, m ∈ N∗,
and let t = s+ Sτ , s = 1, . . . , S and τ = 0, 1, . . . ,m− 1. Then we have:

Z(n)
s,τ (ϕs

) = X
(n)
Sτ+s − ϕs,1X

(n)1
Sτ+s−1 − · · · − ϕs,pX

(n)p
Sτ+s−1, s = 1, . . . , S, τ = 0, . . . ,m− 1.

These calculated residuals under H(n)
f (ϕ) coincide with ϵSτ+s. Additionally, we have:

Z(n)
s,τ (ϕ

(n)

s
) = Z(n)

s,τ (ϕs
)− 1√

n
h
(n)
s,1X

(n)1
Sτ+s−1 − · · · − 1√

n
h(n)
s,pX

(n)p
Sτ+s−1.

These are the calculated residuals under the alternatives.
The logarithm of the likelihood ratio is given by:
Λ
(n)
f

(
ϕ+ 1√

n
τ (n)

)
=
∑S

s=1

∑m−1
τ=0

(
log fσs

(
Z

(n)
s,τ (ϕs

)− 1√
n
h
(n)
s,1X

(n)1
Sτ+s−1 − · · · − 1√

n
h
(n)
s,pX

(n)p
Sτ+s−1

)
− log fσs

(
Z

(n)
s,τ (ϕs

)
))

+ op(1).

The central sequence is given by:

∆(n)(ϕ) =


∆

(n)
1 (ϕ

1
)

...
∆

(n)
S (ϕ

S
)

 =



1√
n

∑m−1
τ=0 ϕσ1

(
Z

(n)
1,τ (ϕ1

)
)
X

(n)1
Sτ

...
1√
n

∑m−1
τ=0 ϕσ1

(
Z

(n)
1,τ (ϕ1

)
)
X

(n)p
Sτ

...
1√
n

∑m−1
τ=0 ϕσS

(
Z

(n)
S,τ (ϕS

)
)
X

(n)1
S−1+Sτ

...
1√
n

∑m−1
τ=0 ϕσS

(
Z

(n)
S,τ (ϕS

)
)
X

(n)p
S−1+Sτ


.

The pS × pS squared block diagonal information matrix is expressed as:

Γ(ϕ) =


Γ1(ϕ)

σ2
1

. . . 0

...
. . .

...
0 . . .

ΓS(ϕ)

σ2
S

 ,

where Γs(ϕ) = Γs, given by formula (5).
The following proposition establishes the Local Asymptotic Normality property.
Proposition 3.1. Under the regularity conditions (A1)-(A2) and under H(n)

f (ϕ), we have, as n → ∞ :

1) Λ
(n)
f

(
ϕ+

1√
n
τ (n)

)
= τ (n)′∆(n)(ϕ)− I(f1)

2S

(n)′
Γ(ϕ)τ (n) + op(1),

2) L

(
∆(n)(ϕ)

Pn,ϕ

)
⇒ N

(
0,

I(f1)

S
Γ(ϕ)

)
.

Proof The proof of this LAN result relies on Swensen’s Conditions (1985) [18] and is a straightforward extension
of the case p = 2 in [5]. The most crucial point is the differntiability in mean quadratic:∫ (

f
1
2
σs

(
x− 1√

n
h
(n)
s,1X

(n)1
Sτ+s−1 − . . .− 1√

n
h(n)
s,pX

(n)p
Sτ+s−1

)
− f

1
2
σs(x)
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−1

2
ϕσs

(x)

(
1√
n
h
(n)
s,1X

(n)1
Sτ+s−1 − . . .− 1√

n
h(n)
s,pX

(n)p
Sτ+s−1

))2

dx = o(∥hs∥2).

On the other hand, for s fixed, this reduces to SETAR(p, 1, . . . , 1) model considered by ([7].

3.3. Simulation results

In our simulation studies, we have confirmed the asymptotic normality of the central sequence. Specifically, we
simulated PSETAR(2,1,1) models with a periodicity of 2, varying the sample sizes at n = 100, 500, and 1000.
The parameter values used for the models are ϕ = (0.9,−0.3;−0.5, 0.8)′ and σ2 = (1, 0.8)′. The central sequence,
denoted as ∆(n)

k (φ) for k = 1 to 1000, was computed for k = 1 to 1000 under both logistic and Gaussian densities.
Figures 2, 3, and 4 offer a detailed comparison via kernel density estimates of the central sequence against its

asymptotic counterpart, as stated in Proposition 3.1. Additionally, a Normal Q-Q plot under the Gaussian density
is presented for further insight. The results are compelling, demonstrating a strong alignment between the central
sequence and the theoretical normal distribution.

Figure 2. Theoretical and asymptotic law of ∆(n)
k (φ) with Normal innovation and n = 100.

On the other hand, we conducted simulations of the same model with a different set of parameters, specifically
ϕ = (0.8,−0.4;−0.6, 0.7)′ under the logistic density.

Figures 5, 6, and 7 present the probability densities of the central sequence alongside the Gaussian density, with
the mean and variance of ∆(n)

k (φ). Additionally, Q-Q plots are included to visually assess the goodness of fit of the
distributions.

The affirmation of normality is consistent across all cases, as corroborated by the Normal Q-Q plots. These
plots systematically demonstrate that the central sequence adheres closely to a normal distribution. Regardless of
the parameter variations and the law in Figures 2, to 7, the observed quantiles align closely with the expected
quantiles under the assumption of normality.
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Figure 3. Theoretical and asymptotic law of ∆(n)
k (φ) with Normal innovation and n = 500.

Figure 4. Theoretical and asymptotic law of ∆(n)
k (φ) with Normal innovation and n = 1000.
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Figure 5. Theoretical and asymptotic law of ∆(n)
k (φ) with logistic innovation and n = 100.

Figure 6. Theoretical and asymptotic law of ∆(n)
k (φ) with logistic innovation and n = 500.

4. Application

4.1. Data Description

The temperature data used in this analysis was obtained from the World Bank Climate Knowledge Portal, covering
the entire 59-year period from January 1901 to December 1960. The data is recorded monthly and represents the
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Figure 7. Theoretical and asymptotic law of ∆(n)
k (φ) with logistic innovation and n = 1000.

mean temperature observed in Algeria, measured in degrees Celsius. In general, temperature readings are collected
from various weather stations across Algeria, providing a representative overview of the country’s climate over
time. Figure 8 shows the plot of this time series.

Table 3 provides a detailed summary of the descriptive statistics for the full temperature series and for each
individual month. The mean temperature exhibits a clear seasonal trend, with lower values in the winter months
(January, February, December) and higher values in the summer months (June, July, August). The standard
deviation is generally low, indicating limited variation within each month, with July and August being the most
stable months.

Skewness and kurtosis values reveal additional patterns. For instance, positive skewness in months like
January, February, and May indicates that these months occasionally experience higher-than-average temperatures.
Conversely, negative skewness in September suggests a tendency toward slightly lower temperatures during this
month. Kurtosis values close to zero, as seen in most months, suggest that the temperature distribution is fairly
normal. However, months like August and April show more negative kurtosis, indicating a flatter distribution,
meaning fewer extreme temperatures are recorded during these months.

These statistics provide insights into the seasonal dynamics of Algeria’s temperature, highlighting predictable
cyclical patterns, with more stability during summer and greater variability in other seasons. This understanding
can be valuable for both climate study and regional policy planning.

The cyclical behavior observed in the scatter plot in Figure 9 indicates nonlinearity in the data, and the empty
space in the middle suggests the presence of a limit cycle. The p-value of Keenan’s test for the log-transformed
temperature data is 0.0006, confirming the nonlinearity of this time series. To further validate the quality of the
dataset, we performed homogeneity tests to ensure that the series does not contain significant structural breaks.
The results of Pettitt’s test (p-value = 0.5022) and the Buishand Range Test (p-value = 0.989) indicate that the data
are homogeneous over the analyzed period. These findings confirm the dataset’s suitability for modeling without
requiring additional pre-processing for structural changes.

Stat., Optim. Inf. Comput. Vol. 13, March 2025
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Figure 8. Algeria’s temperature.

Table 3. Monthly Patterns in the Algerian Temperature Series

Month Mean SD Min Max Skewness Kurtosis
Annual 22.4240 7.2115 9.9069 33.6628 -0.0521 -1.4155

Jan 11.8054 0.8673 9.9069 14.3062 0.2889 -0.1126
Feb 14.3950 1.0643 12.2803 16.6114 0.3312 -0.5690
Mar 17.9453 0.9017 15.6129 20.1139 -0.1044 -0.0641
Apr 21.9764 0.8037 20.3271 23.4943 -0.2333 -0.8546
May 26.2224 0.7697 24.7761 28.3895 0.4362 -0.2369
Jun 30.6230 0.8359 29.0544 32.8770 0.3042 -0.5954
Jul 32.2668 0.6051 30.7174 33.6628 -0.1507 -0.4413

Aug 31.7176 0.5302 30.5925 32.6099 -0.2634 -1.0383
Sep 28.5553 0.6139 26.6743 29.6487 -0.7878 0.7806
Oct 23.2166 0.7716 21.2238 24.8586 -0.2723 -0.1069
Nov 17.4501 0.8222 14.9068 19.3124 -0.3028 0.3538
Dec 12.9144 0.7985 10.8395 14.6173 -0.1078 -0.5655

4.2. SETAR modelization

As pointed out by a referee, we benchmarked the performance of the PSETAR model by comparing it with the
classic SETAR model. Using the tsDyn package in R, we fitted the data to the following SETAR model:

Xt =

0.6424
(0.1487)

+ 0.9758
(0.0330)

Xt−1 − 0.1445
(0.0620)

Xt−2 + ϵt, if Xt−1 ≤ 2.748,

0.9038
(0.0427)

+ 1.7332
(0.0160)

Xt−1 − 1.0277
(0.0202)

Xt−2 + ϵt, if Xt−1 > 2.748.

Here, Xt represents the log-transformed data, and the values in parentheses denote the standard errors. The
threshold value of 2.748 corresponds to a temperature of 15.6113°C, defining two regimes:

• Low regime: Colder temperatures (Xt−1 ≤ 2.748) with 23.68% of the observations.

Stat., Optim. Inf. Comput. Vol. 13, March 2025
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Figure 9. Lag plot of Algeria’s temperature.

• High regime: Hotter temperatures (Xt−1 > 2.748) with 76.32% of the observations.

This indicates that the higher regime occurs significantly more frequently than the lower regime. Figure 10 shows
the regime-switching plot, while Figure 11 provides a filtered time series derived from the model. The root mean
square error (RMSE) for this model is 0.0707, and the Akaike Information Criterion (AIC) is -3796.

Figure 10. The regime switching plot.
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Figure 11. Simulation from the SETAR(2,2,2) model.

4.3. Periodic SETAR modelization

To fit the temperature data using a periodic SETAR model, we initially selected the thresholds for each period
by employing a grid search approach. The optimal thresholds were determined by minimizing the Residual Sum
of Squares (RSS), as shown in Figure 12. However, the residual analysis revealed significant correlations in two
specific months, suggesting that the chosen thresholds might not fully capture the seasonal dynamics of the data.

As a refinement, we opted to set the thresholds based on the seasonal mean, calculated as the average of monthly
temperatures over the years. Table 4 presents a comparison between the thresholds estimated using the grid search
method and those derived from the monthly means. This approach ensures that the model incorporates seasonally
relevant information while addressing potential shortcomings identified during the residual analysis. Consequently,
the mean was subtracted from Xt to seasonally center the data.

Starting with the LR test from Section 2, we found LRm = 44.6118 > χ2
12(0.95) = 21.0260. As a result, we

reject the linear PAR model in favor of the PSETAR model. The parameter estimates, their t-statistics, and variances
are presented in Table 5.

Table 4. Comparison of Threshold Values Estimated by Grid Search and Monthly Means for the PSETAR Model.

s 1 2 3 4 5 6 7 8 9 10 11 12
Threshold 2.4292 2.6357 2.9161 3.1095 3.2645 3.4547 3.4581 3.4558 3.3685 3.0991 2.9036 2.5725

Mean 2.4659 2.6642 2.8860 3.0893 3.2661 3.4213 3.4738 3.4567 3.3516 3.1443 2.8582 2.5564

The AIC value is -4919.129, and the global RMSE is approximately 0.0398. Considering the significance of the
parameters, the PSETAR12(2,1,1) model is represented as follows:

X12τ+1 − 2.4659 =

{
0.2649(X12τ − 2.4659) + ε12τ+1 if X12τ ≤ 2.4659

0.3356(X12τ − 2.4659) + ε12τ+1 if X12τ > 2.4659

X12τ+2 − 2.6642 =

{
0.4474(X12τ+1 − 2.6642) + ε12τ+2 if X12τ+1 ≤ 2.6642

0.5005(X12τ+1 − 2.6642) + ε12τ+2 if X12τ+1 > 2.6642

Stat., Optim. Inf. Comput. Vol. 13, March 2025
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Figure 12. Optimal Threshold Selection Using RSS.

Table 5. Estimates in PSETAR12(2,1,1).

s 1 2 3 4 5 6 7 8 9 10 11 12
ϕs,1 0.2649 0.4474 0.3015 0.3491 0.3687 0.5311 0.4307 0.4619 0.4911 0.0560 0.8078 0.6567
t-stat 4.1287 4.6937 4.5204 3.4061 2.5206 1.7523 1.7054 1.2548 1.1439 1.5762 2.2604 3.2566
ϕs,2 0.3356 0.5005 0.3773 0.2092 0.4139 0.3677 0.4869 0.4171 0.4244 0.5748 0.6577 0.4719
t-stat 2.8289 3.4828 3.5925 2.2839 1.5858 1.4377 1.2790 0.8572 0.7448 0.8871 1.4669 2.1172
σ2
s 0.0049 0.0040 0.0018 0.0010 0.0006 0.0005 0.0001 0.0002 0.0004 0.0010 0.0016 0.0029

X12τ+3 − 2.8860 =

{
0.3015(X12τ+2 − 2.8860) + ε12τ+3 if X12τ+2 ≤ 2.8860

0.3773(X12τ+2 − 2.8860) + ε12τ+3 if X12τ+2 > 2.8860

X12τ+4 − 3.0893 =

{
0.3491(X12τ+3 − 3.0893) + ε12τ+4 if X12τ+3 ≤ 3.0893

0.2092(X12τ+3 − 3.0893) + ε12τ+4 if X12τ+3 > 3.0893

X12τ+5 − 3.2661 =

{
0.3687(X12τ+4 − 3.2661) + ε12τ+5 if X12τ+4 ≤ 3.2661

ε12τ+5 if X12τ+4 > 3.2661

X12τ+6 − 3.4213 =

{
0.5311(X12τ+5 − 3.4213) + ε12τ+6 if X12τ+5 ≤ 3.4213

ε12τ+6 if X12τ+5 > 3.4213
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X12τ+7 − 3.4738 =

{
0.4307(X12τ+6 − 3.4738) + ε12τ+7 if X12τ+6 ≤ 3.4738

ε12τ+7 if X12τ+6 > 3.4738

X12τ+8 − 3.4567 = ε12τ+8

X12τ+9 − 3.3516 = ε12τ+9

X12τ+10 − 3.1443 = ε12τ+10

X12τ+11 − 2.8582 =

{
0.8078(X12τ+10 − 2.8582) + ε12τ+11 if X12τ+10 ≤ 2.8582

ε12τ+11 if X12τ+10 > 2.8582

X12τ+12 − 2.5564 =

{
0.6567(X12τ+11 − 2.5564) + ε12τ+12 if X12τ+11 ≤ 2.5564

0.4719(X12τ+11 − 2.5564) + ε12τ+12 if X12τ+11 > 2.5564

Explanation of the Model
In this model, for each month, the log-transformed temperature Xt is compared to a threshold. If the temperature
is below the threshold, the model applies one set of autoregressive (AR) coefficients; if it is above the threshold, a
different set is used. This structure captures the nonlinearity inherent in temperature dynamics across the year.

For example:

• In January: If the temperature exceeds the threshold (2.4659, approximately 11.77°C), a stronger
autoregressive effect is observed, meaning higher persistence from past values.

• In February: The equation suggests a higher level of stability above the threshold, meaning temperatures
revert more slowly to the mean.

• From June to July: The autoregressive process is strong when temperatures are below the threshold. When
the temperature exceeds the threshold, no autoregressive effect is present, suggesting temperatures revert
quickly without significant influence from past values.

• From August to October: There is no autoregressive process, and the temperature is purely driven by error
terms, indicating more random behavior with no significant past dependence.

• In November: A strong autoregressive effect is seen below the threshold, but above the threshold, the model
suggests random behavior.

The correlograms of the residuals, shown in Figure 13, validate the periodic SETAR model by demonstrating the
absence of significant autocorrelation. This is further confirmed by the Box-Ljung tests (BL), where all p-values
exceed 0.05, as presented in Table 6. The same table also confirms the normality of the residuals (Shapiro-Wilk test
(SW)), with the exception of September, where normality is rejected. Additionally, the residuals’ homoscedasticity
is confirmed with Breusch-Pagan test (BP). These findings support the conclusion that the PSETAR model provides
an appropriate fit for Algeria’s temperature series.

s 1 2 3 4 5 6 7 8 9 10 11 12
BL 0.9611 0.7137 0.9987 0.7939 0.9762 0.6142 0.3927 0.8915 0.9507 0.4667 0.0624 0.6330
SW 0.6251 0.7780 0.0349 0.5261 0.9963 0.4940 0.8315 0.5710 0.0084 0.4367 0.6549 0.8979
BP 0.7074 0.6469 0.7226 0.1765 0.0816 0.6457 0.2302 0.8776 0.2244 0.2327 0.3757 0.2646

Table 6. p-values of Autocorrelation, Normality, and Heteroscedasticity Tests on Residuals.

Figure 14 shows the temperature time series with distinct regimes. The red points represent periods when
the temperature exceeds the threshold (indicating warmer periods), while the blue points correspond to periods
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Figure 13. Correlograms of PSETAR residuals.

when the temperature is below the threshold (indicating cooler periods). In Figure 15, the threshold lines mark
the monthly thresholds around which the temperature fluctuates. This figure illustrates the monthly temperature
cycles, with regime-specific thresholds throughout the year, and highlights the transitions between warmer and
cooler periods. It provides a clear view of how the temperature regimes evolve over the months.

Figure 14. Temperature Time Series with Regime-Specific Thresholds: Hot vs. Cold Periods
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Figure 15. Monthly Temperature Cycles with Regime-Based Thresholds Across the Year.

The AIC and RMSE values for the PSETAR12(2,1,1) model, when compared to the SETAR(2,2,2) model,
indicate that the periodic model offers a better fit to the data, as it more effectively explains the variability around
the fitted values. The filtered time series from the model is shown in Figure 16, while the predicted time series is
presented in Figure 17.

5. Conclusion

In this study, we employed the periodic Self-Exciting Threshold Autoregressive model to analyze Algeria’s
temperature data. By incorporating periodicity, the PSETAR model demonstrated its advantage over the classical
SETAR framework in capturing both seasonal variations and nonlinear dynamics. This allowed for a clearer
distinction between temperature regimes during cooler and warmer months, with heightened sensitivity to past
temperatures observed in warmer periods. Our analysis revealed strong nonlinear dynamics, particularly in months
like June, July, and November, where the autoregressive behavior shifted significantly depending on whether the
temperature exceeded the threshold. These findings align with real-world seasonal patterns, highlighting persistent
trends in summer, characterized by gradual changes, and greater variability during transitional seasons such as
spring and autumn.
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Figure 16. Simulation from PSETAR.

Figure 17. Predicted time series from PSETAR
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