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Abstract In this paper, we study how LLMs based on the transformer architecture work and the possibility of adjusting
these models to use only the body of email messages to classify them as spam or ham. The models studied are BERT, Gemma,
and Phi. All of them underwent quantization stages, fine-tuning with a real dataset, and evaluation with metrics commonly
used in binary classification problems. The Gemma model achieves over 99% accuracy in detecting spam, standing out as
the best among the compared models.
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1. Introduction

Since its creation, internet access and use have been steadily increasing. By 2023, approximately 67% of the world’s
population, or 5.4 billion people, were online [19]. Consequently, emails, or electronic messages, have become one
of the most utilized forms of communication in recent decades. In 2018, Google’s email service, Gmail, alone had
1.5 billion users [16]. This has led to a significant rise in the incidence of messages known as spam.

The concept of spam is difficult to define precisely, but generally, it refers to any unsolicited electronic message
— usually, but not necessarily, sent in bulk [18]. These messages are typically commercial, aiming to promote
products, services, or fraudulent schemes, and are usually considered electronic waste. They can cause significant
inconvenience for recipients who need to filter their messages to identify important ones.

Besides being inconvenient, spam emails can also present security risks, as they often contain malicious links or
attachments that can compromise the recipient’s computer or network security. The text of these messages often
seeks to deceive recipients into sharing personal, banking, and financial information or even convincing them to
make payments. The threat of manipulative and deceptive emails and associated malware goes beyond commercial
losses or identity theft, including interference in confidential databases and political or electoral processes [17].
These are some examples of how spam messages can directly risk the recipient, but they can also overload servers
and inboxes.

Several methods have been implemented over the past decades to filter spam messages and mitigate the problem
of spam messages. Initially, filtering was done by predefined rules, such as keywords and suspicious email
addresses. In 2002, Graham [20] described on a webpage how to use the Bayesian filter to filter spam. Over the
past twenty years, more advanced techniques have been implemented, such as using blacklists of email addresses,
IPs, and URLSs contained in the message body, user collaboration to report spam senders, and Machine Learning
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techniques. Today, email services can use a combination of techniques. In 2022, Gmail stated that it relies on
”machine learning powered by user feedback to catch spam and help us identify patterns in large data sets —
making it easier to adapt quickly to ever-changing spam tactics™ [21].

Among these Machine Learning models are Large Language Models (LLM), systems of Artificial Intelligence
designed to understand and generate text that is coherent and contextually relevant [22]. These models use deep
learning techniques, notably the Transformers architecture, to analyze a massive database, such as web pages.
Through this analysis, the model learns patterns, syntax, and language semantics, gaining the ability to generate
grammatically correct and contextually appropriate text.

The applications of LLMs are diverse and wide-ranging. The models can be used in natural language
understanding tasks, such as sentiment analysis, language translation, text summarization, and answering questions,
among others [22]. The effectiveness of each model for these tasks may vary depending on the techniques used
during the model’s training.

For the reasons, this paper aims to study and understand how LLLMs work and the possibility of adjusting these
models to use only the email message body to classify them as spam or ham, the term used to refer to legitimate
and relevant messages.

Therefore this study presents three primary contributions:

e first, it demonstrates the successful application of the QLoRA quantization technique to reduce memory
requirements during fine-tuning, making it feasible to train large language models on more modest hardware;

* second, it provides a comprehensive evaluation of three transformer-based models — BERT, Phi, and Gemma
— comparing their performance on email spam detection using only the message body;

* lastly, the study highlights the potential of the Gemma 2B model, which achieved over 99% accuracy,
surpassing the others in this task, and suggests future directions for extending this work to other languages
and exploring visual-based spam detection techniques.

The models were adjusted and evaluated using a real dataset. Each model underwent hyperparameter tuning and
fine-tuning. To enable this research with minimal resources, the models underwent quantization, and the LoRA
technique was used during fine-tuning. Finally, each model was evaluated on the same dataset. To compare the
models, the following metrics were calculated: Accuracy, F1, Precision, Recall, Jaccard Index, and the ROC curve.

The work is divided into sections: Section 2 briefly explains the concepts, techniques, and metrics studied and
used for this paper. Section 3 describes the tools used and the entire process through which the models were adapted
to the binary classification task. Finally, section 4 discusses the difficulties encountered during this research, the
results obtained, and suggestions for future works.

2. Theoretical Foundation

This section aims to expose, explain, and define theoretical foundations, techniques, and concepts studied and used
during the development of this paper.

2.1. Transformers

The Transformer architecture is a type of deep learning model designed for Natural Language Processing (NLP)
tasks. It is known for its ability to capture contextual relationships efficiently. The architecture was introduced in
2023 and revolutionized the NLP field [ 14]. The significant feature of Transformers is the use of the multi-head self-
attention mechanism, which allows the model to compute different aspects of context and relationships between
tokens in a sequence efficiently and quickly, demanding less computational power. A diagram of its structure can
be seen in Figure 1.

Like most methods used in NLP, Transformers use the technique of tokenization, which is the process of dividing
a text or sequence into smaller, indivisible units, the tokens. Tokens can be words, parts of words, characters, or
symbols [22]. Each model has its vocabulary, a collection of all predefined tokens, and uses this vocabulary for
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Figure 1. Transformer architecture schematic. Adapted from [14].

division. Each token in the vocabulary has a unique numerical ID (which never changes) and an initial embedding,
a numerical representation in a continuous vector space.

Thus, the initial sequence is divided into tokens, which are then transformed into vectors called token
embeddings, as seen in Figure 2. Token embeddings are parameter vectors that the model will learn to adjust
to better represent each token’s context in the sequence.

) ) (o)) R ) ) o R

E?:sgddings ’E[CLS]H Emy H Edog H Eis H Ecute IE[SEP]H Epe I Eiikes I Eplay HE##ing IE[SEP]‘
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Figure 2. Tokenization and position embeddings. Adapted from [15].

Older models used to process words in a sentence sequentially, while the advantage of Transformers is that they
can consider all tokens in the input sequence and define the relationship between them. This allows understanding
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the context of a word based on the words around it, leading to better performance in tasks such as language
translation, text generation, and sentiment analysis.

Since Transformers lack recurrence or convolution, processing input sequences in parallel and independently,
to make the model aware of token positions in the sequence, in addition to token embeddings, Transformers also
use position encoding [15]. Each position has a unique embedding that never changes. This position embedding is
added to each token’s embedding according to its position in the initial sequence.

The core of the Transformer, the multi-head self-attention mechanism, receives these embeddings and generates
a matrix representing the relationship between all tokens. The multi-head factor means several attention layers are
running simultaneously. All layers know all the sequence tokens but only a part of each token’s embeddings. Thus,
each attention layer, or head, analyzes the sequence and understands the token relationships differently.

2.1.1. BERT abbreviation for Bidirectional Encoder Representations from Transformers, was created in 2019 by
Google’s Artificial Intelligence division. The model stood out for being trained using “[...] deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers” [15]. This
means the model has a greater capacity to understand contexts by analyzing the text in both directions. Additionally,
the pre-trained model was not designed to work with prompts but can be easily adapted for different tasks through
an additional output layer, such as a binary classification layer in this paper. The BERT model has many variations,
and the one used in this paper is BERT Base uncased, it has a little over 110 million parameters and does not
differentiate between uppercase and lowercase letters.

2.1.2. Phi transformer architecture model developed by Microsoft aimed at predicting the next word given an
initial text, a generative model. Its first version was released in June 2023, with just over 1.3 billion parameters,
aiming to generate Python code from a prompt. This first version took only six days to train on eight A100 model
GPUs [3]. The version used in this paper, Phi 2, was released a few months later, in December of the same year,
significantly larger than its predecessors. Phi 2 is a Transformer with over 2.7 billion parameters. Compared to its
previous version, it required more resources to be trained, using 96 A100 model GPUs with 80GB of RAM each
over 14 days [2]. Despite being a small model, it stands out for having an average performance comparable to,
and sometimes better than, much larger models like Mistral with 7 billion parameters and Llama-2 with 13 billion
parameters [2].

2.1.3. Gemma released by Google in 2024, is an entirely open-source model. It was developed with the same
technology used in Gemini, a much larger model aimed at large companies. Gemma has two versions, one with 7
billion parameters and a smaller one with 2.5 billion parameters, all trainable. The version used in this paper was
the smaller one, referred to as Gemma 2B. The Gemma model differs from the original Transformer architecture
in some aspects, the most notable being its attention mechanism. This model uses multi-query attention instead
of multi-head attention. This change reduces memory usage and makes training more efficient by allowing larger
batch processing. Moreover, no performance degradation was observed with this change [22].

2.2. Hyper-parameter search

Hyper-parameter search is a technique to find the combination of hyper-parameter values that yield the best training
or fine-tuning results. This requires a process similar to fine-tuning but using a much smaller dataset. In this paper,
hyper-parameter tuning was performed with one-tenth of the dataset used for fine-tuning.

2.3. Fine-tuning

Fine-tuning is the process of adapting a pre-trained model to use it for a specific task. In this paper, the transfer
learning technique was used, a set of methods that leverage data from specific domains or tasks to train a model with
better generalization properties (pre-trained) to improve its performance on a specific task [23]. In this paper, all the
models are language models that were previously trained and are undergoing fine-tuning for a binary classification
task, classifying messages as spam or ham.
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2.4. QLoRA

LLMs typically have a vast number of parameters that need to be stored in RAM during the model’s fine-tuning
process. Since current models have billions of parameters, they require significant memory. To exemplify this
problem, consider the Gemma model used in this paper, with approximately 2.5 billion parameters represented
in BFloat16 format. BFloat16 is a floating-point number representation format of 2 bytes. Therefore, the Gemma
model parameters occupy approximately 2.5 billion x 2 bytes = 5 GB. During training, other data such as gradients
also needs to be stored, occupying the same space as the parameters, making the total required space 10 GB.
Additionally, the large amount of data used in the process also needs to be stored. To facilitate training these
models, allowing the use of simpler GPUs with less memory, the QLoRA technique can be used. This technique
was introduced in the paper "QLoRA: Efficient Finetuning of Quantized LLMs.” The paper proposes three
innovations to save memory without sacrificing model performance: a new data type called 4-bit NormalFloat,
dual quantization, and paginated optimizers [4]. The technique can be divided into two stages: model quantization
and the use of Low Rank Adapters (LoRA) for fine-tuning.

2.4.1. Quantization technique that uses to represent parameters with fewer bits, reducing memory usage. The
parameters of LLMs are typically represented in floating-point number format, which occupies more space.
Therefore, quantization can be done to represent these parameters in a smaller format, such as 4 bits. The input data
type is scaled to the new data type range using normalization by the maximum absolute value of the input elements
to ensure the entire range of the new data type is used [4]. To perform this quantization, a constant ¢, called the
quantization scale, is defined, multiplying all values to obtain the values in the new scale. The problem with this
strategy is that if some values are far from most, some parts of the range may be underutilized or not utilized. To
solve this problem, the QLoRA technique uses Block-wise quantization, a type of quantization that divides the data
to be quantized into blocks and then performs quantization by defining a quantization scale per block.

Equally-spaced

Equally-sized

Figure 3. Quantization in the QLoRA model. Adapted from [11].

2.4.2. Low Rank Adapters (LoRA) is a technique that can be used to perform fine-tuning. This technique involves
fixing the original model parameters, keeping them unchanged throughout the process. Instead of changing the
original parameters, two new parameter matrices, called adapters, are added. After quantizing the model, fine-
tuning it is not recommended as it can be unstable due to the lower precision of the weights, so the LoRA technique
is indicated as it only adds extra parameters to the model [10]. Considering that fixed parameters have a matrix
format of doder X dmodel> the adapters, named A and B, can have dimensions d,,o4e; X 7 and 7 X dpodels
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respectively, where r is an arbitrary value less than or equal to d,;,04¢;- Thus, at the end of the fine-tuning, the
adapters containing the trained parameters can be multiplied to obtain a matrix with the same dimensions as the
original parameters, which can then be added to them.

This technique has several advantages. It allows training a much smaller number of parameters, consequently
reducing the number of gradients and optimizers stored during training, occupying much less space [5].

2.4.3. Fine-tuning using QLoRA has a lot of advantages. In Figure 4, the difference between full fine-tuning,
fine-tuning with the LoRA technique, and fine-tuning with the QLoRA technique can be seen. For QLoRA fine-
tuning to have satisfactory performance two additional techniques are proposed: use the 4-bit NFloat data type
(NF4) for quantization and dual quantization [4]. The 4-bit NFloat data type is used because most neural network
weights follow a zero-centered normal distribution. Quantization using this data type ensures that each quantization
block has the same number of values, which can avoid approximation errors [4]. Dual quantization quantizes the
quantization constants, helping save memory. 8-bit floats are used for this, which do not degrade performance
[4]. Additionally, the technique also takes advantage of NVIDIA’s unified memory feature to perform paging and
distribute optimizer states between the GPU and CPU during training, ensuring the GPU does not run out of
memory.

Full Finetuning LoRA QLoRA
(No Adapters)

gptmizer N

Juduy SRS
1 l l DOD
D T S Y N

Adapters
(16 bit)

Parameter Updates =

e | ]
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Gradient Flow

Figure 4. Full fine-tuning, LoRA and QLoRA. Adapted from [4].

2.5. Evaluation Metrics

In this work, models were evaluated using the most common performance evaluation metrics for binary
classification algorithms. To compute these metrics, the values below are used, calculated from the model’s
predictions and the actual labels of the test data:

e TP: True Positive, spam messages correctly labeled;

» FP: False Positive, ham messages incorrectly labeled as spam;
* TN: True Negative, ham messages correctly labeled; and

* FN: False Negative, spam messages incorrectly labeled as ham.

2.5.1. Accuracy 1is the proportion of correct predictions among the total number of cases processed [12]. It can be
calculated by Equation 1. Depending on the category distribution in the test dataset, accuracy can be misleading.
Considering a hypothetical test set where 90% of the test data is of the same category, the model could label all
data with this category and achieve 90% accuracy. For this reason, accuracy should be used with other evaluation
metrics for a better understanding of the results.

TP+TN

A = 1
WY = TP Y TN+ FP+ FN M
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2.5.2. Precision is the fraction of positive (spam) cases correctly labeled relative to all cases labeled as positive
by the model [12]. It is calculated using the Equation 2. This metric is more important for use cases where false
positives should be avoided more than false negatives. The value should range between 0 and 1, and the higher, the

better.
P isi S — 2
recision 2)

2.5.3. Recall is the fraction of positive test cases correctly labeled by the model relative to all truly positive cases
[12]. This metric is especially useful in situations opposite to the previous item, where false negatives are more
concerning than false positives. The value is obtained by Equation 3 and should range between O and 1, the higher,

the better. Tp
Recall = ————
= TPIFN 3)

2.5.4. F1 is the harmonic mean between precision and recall values. It is calculated by the Equation 4. Since
precision and recall indices generally fluctuate and are mutually restricted in large-scale datasets, the F1 method is
necessary for more comprehensive consideration [13].

2 x Precision X Recall

Fl = 4)

Precision + Recall

2.5.5. Jaccard Index also known as the Jaccard Similarity Coefficient, measures the similarity between the actual
values and the model’s predictions in the positive class, in this case, spam. The closer to 1, the more similar the
predicted values. It can be calculated using Equation 5:

TP
Jaccard Index = TP+ FPTFN (®)]

2.5.6. Receiver Operating Characteristic (ROC) Curve is a graphical representation commonly used to evaluate
the performance of binary classification models. The ROC curve plots the True Positive Rate (TPR) against the
False Positive Rate (FPR) for various threshold settings. To plot the ROC curve, it is necessary to consider not
only the predicted category for each test case by the models but also the probability of the case being classified
into each category. Each point on the ROC curve represents a different threshold used for classification. A high-
performing classifier will have a curve approaching the graph’s upper left corner, indicating high TPR and low FPR
at different thresholds. With the ROC curve, the area under the curve (AUC) can also be used as a summary metric
for model performance. It ranges from O to 1, where a value closer to 1 indicates better discrimination capability
of the model. An AUC-ROC of 0.5 suggests that the model is no better than random guessing, while a value of 1
indicates a perfect classifier.

3. Methodology

The first step was to define the dataset used to train and test the models. Next, for each model, four stages were
performed: data preprocessing, model quantization, fine-tuning using training data and the LoRA technique, and
finally, testing to evaluate performance by computing evaluation metrics and generating graphs to facilitate result
interpretation. Listed below are the tools and data used for this paper’s development. The process followed for all
models studied in this paper is described afterward.

3.1. Tools

3.1.1. Python is a prevalent and versatile programming language, especially in the field of Machine Learning.
Besides having a simple syntax, Python also has strong community support, integration with other technologies,
and a vast ecosystem of libraries, making it the ideal choice for developing and deploying Machine Learning
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models. In addition to pure Python, several libraries were used to facilitate data manipulation and Machine Learning
application development, such as sklearn, pandas, numpy, and torch. Libraries like matplotlib and plotly were used
to generate the graphs presented in section 4, and the wordcloud library was used to generate the word clouds
presented in subsection 3.2. Moreover, libraries from the platform described in subsubsection 3.1.3 were also used.

3.1.2. Google Colab is a development and code execution environment for Python and R, based on Jupyter
notebooks [9]. The environment is particularly suited for Machine Learning, offering access to computing resources
such as dedicated GPUs with high RAM, pre-installed libraries, and integration with GitHub. The platform was
used for all practical work, especially to speed up hyper-parameter search and fine-tuning with its GPUs.

3.1.3. Hugging Face is a platform that provides an API that facilitates access to various pre-trained models,
including the three models chosen for this study. With it, the entire data preprocessing process, QLoRA
implementation, hyper-parameter search, fine-tuning, and model evaluation can be performed. To facilitate using
its API, the platform provides a Python library used in this paper.

3.2. Dataset

The dataset used in this paper was obtained from Kaggle, an online platform similar to Hugging Face, where
various resources for Machine Learning applications, including datasets, can be found. The chosen dataset was the
Spam Email Classification Dataset [6]. This dataset was generated from two other real datasets widely used for
studying spam message classification, the TREC 2007 Public Corpus [8] and the Enron-Spam Dataset [7]. Each
record in this dataset has only two attributes:

* text: the text of the email message body, in English.
* label: the label indicating whether the message is spam or ham, with the value 1 corresponding to spam and
0 to ham.

The dataset used consists of over 80,000 records, but only 10,000 were used, 50% of each label. Of the selected
10,000 records, 90% were used for model fine-tuning, and the remaining 10% were used for evaluation. All models
used the same data split for fine-tuning and testing. Table 1 contains two example records from the dataset.

text label
hello your refinance application has been accepted we are ready to give you a loan | spam
there is no obligation and this is a free quote debt consolidation home improvement
refinancing second mortgage equity line of credit first purchase visit here for more
information expect to be contacted within 3 hours.

hi louise, can you please provide some guidance? originally what we prepared for you | ham
has been an origination schedule each month. we’ve since added mpr items. are you
okay with this? would you like to see two schedules each month - one with only true
originations, then an additional report that includes originations, and accrual items?

Table 1. Training set data examples.

Analyzing the data used for training, it is possible to notice the vocabulary difference used in each type of
message. In Figure 5, two word clouds can be seen, where the most frequently used words in each type of message
(ham or spam) are represented in size proportional to their frequency in the messages.

Most of the highlighted words for spam messages in Figure 5a are related to selling products and promotions,
such as per item, retail price, pills, money, product, company, and save, among others. In the word cloud in
Figure 5b for ham messages, more words related to work are present, such as posting guide, mailing list, stat,
help, thank, project, and work. Observing this difference in vocabulary for each message type, it can be concluded
that LLMs used in classifying these messages should be able to differentiate them according to the text.
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Figure 5. Word cloud for (a) spam and (b) ham messages.

3.3. Process

The process is very similar for each model. For all of them, the first step is to load the data used for fine-tuning
and model evaluation. Additionally, it is necessary to load the corresponding tokenization function, or tokenizer,
for each base model and configure it to tokenize the dataset, both for training and testing data. Since the BERT
model has a maximum input sequence length of 512 tokens, and this is the smallest value among the three models
evaluated, this was the maximum length allowed for all models’ input sequences.

After tokenizing the data, the pre-trained models to be fine-tuned are loaded, already using quantization
techniques as part of the QLoRA method. All models used in this process were quantized with the same
configuration: 4-bit quantization, using the NF4 format for parameter storage, dual quantization, and BFloat16
data format for faster computation.

Once the models are quantized, the LoRA technique is implemented. Since each model used in this study has
different sizes, the LoRA configuration slightly varies across models, particularly in the adapter dimensions, which
define the number of trainable parameters. The exact quantities of parameters per model are detailed in section 4.

Next, the hyper-parameter search stage is performed, and the results are used in the model’s fine-tuning process.
The hyper-parameters searched for were the number of training epochs, the learning rate and the batch size. The
values found and used for each model are as described in Table 2.

Model Learning Rate Number of Training Epochs | Batch Size
BERT | 2.5719605731158755e-06 5 4
Phi 2 3.628060796399553e-05 3 8
Gemma | 3.589634237431302e-05 5 8

Table 2. Hyper-parameter values found for each model.

The models’ fine-tuning occurs in stages called epochs. Each epoch is a complete iteration over the training
dataset. During each epoch, several cycles occur where the model makes predictions and compares them with
the expected results to adjust its weights. The number of epochs is one of the parameters defined by the hyper-
parameter search stage. Too many epochs can result in model overfitting (when training loss is much smaller than
validation loss), and too few can result in underfitting (when the model cannot achieve good results). At the end
of each epoch, the evaluation metrics are computed, adding training loss and validation loss, and a checkpoint of
the weights is generated. Training loss is the loss computed from the training data, i.e., the difference between the
model’s results and the actual data. Validation loss is computed at the end of each epoch with the validation data,
which the model does not consider to adjust its weights.

At the beginning of the training, the metric used to select the best model checkpoint is defined. In this work, the
chosen metric was accuracy. At the end of all epochs, the weight values stored in the checkpoint with the highest
accuracy will be used by the model.
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4. Results

4.1. BERT

Table 3 contains the results obtained during the BERT model training. With the model quantization technique, only
10 GB of RAM was needed to complete the fine-tuning process in approximately one hour. The original model has
over 110 million trainable parameters, but with the LoRA technique, only 5,359.106 parameters were trained, just
over 4.66% of the original amount. In Figure 6, the confusion matrix obtained by the model can be seen.

Epoch | Training Loss | Validation Loss | Accuracy F1 Precision | Recall
1 0.2449 0.2435 0.901 0.8930 | 0.9718 0.826
2 0.2545 0.2138 0.937 0.9336 | 0.9866 0.886
3 0.1397 0.2162 0.944 0.9413 | 0.9890 0.898
4 0.1184 0.2134 0.946 0.9436 | 0.9869 0.904
5 0.2056 0.1942 0.952 0.9502 | 0.9871 0.916

Table 3. BERT model results.

BERT - Confusion Matrix
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Figure 6. BERT model confusion matrix.

4.2. Phi2

Phi 2 has approximately 2,7 billion parameters. With the LoRA technique, only 47,191,040, or 1,7506%, were
used for fine-tuning. This stage used less than 20GB of RAM, took just over an hour, and went through three
epochs, generating the results described in Table 4. The confusion matrix obtained by this model can also be seen
in Figure 7.
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Epoch | Training Loss | Validation Loss | Accuracy F1 Precision | Recall
1 0.1312 0.112205 0.974 0.973523 | 0.991701 | 0.956
2 0.0224 0.08222 0.989 0.989011 | 0.988024 0.99
3 0.0654 0.80575 0.988 0.988 0.988 0.988
Table 4. Phi 2 model results.
Phi 2 - Confusion Matrix
0.8
HAM 98.80%
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Figure 7. Phi 2 model confusion matrix.
4.3. Gemma 2B

The Gemma 2B model achieved the best results with this dataset. It has just over 2.5 billion original parameters,
but only 28,610,560, or 1.1287%, were used for fine-tuning. The training process took around one hour and twenty
minutes and went through five epochs, as described in Table 5. The confusion matrix obtained by this model can

also be seen in Figure 8.

Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall
1 0.0491 0.0730 0.989 0.989 0.9861 0.992

2 0.0253 0.0516 0.99 0.99 0.992 0.988

3 0.006 0.0546 0.993 0.993 0.992 0.994

4 0 0.0545 0.994 0.994 0.994 0.994

5 0.0001 0.0554 0.994 0.994 0.994 0.994

Table 5. Gemma 2B model results.
Stat., Optim. Inf. Comput. Vol. 13,
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Figure 8. Gemma 2B model confusion matrix.

4.4. Comparison between models

As can be observed in the graph presented in Figure 9, the Gemma 2B model achieved the best results, and Phi 2
also performed well. This is likely because both are larger models compared to BERT, which in turn had slightly
worse performance but still satisfactory. Additionally, BERT, being a smaller model, does not benefit as much from
the QLoRA technique and may experience a more significant performance loss with its use.

All Models Comparison

| I | II | I | I | I
Accuracy Precision Recall F1 Jaccard

Figure 9. Performance comparison between models
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ROC Curves
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Figure 10. ROC curves for the three models.

It can also be observed in Figure 10 that the ROC curves generated by the Gemma 2B and Phi 2 models are
almost overlapping, with very similar AUCs, while the ROC curve of the BERT model is notably lower, with a
smaller AUC than the other models.

5. Considerations

This section discusses some points that should be taken into consideration when implementing LLMs for spam
detection.

5.1. Comparing to traditional methods

Traditional spam detection methods, such as rule-based filters or simple statistical models, are computationally
efficient and easy to maintain. They operate effectively on limited resources and are cost-effective, making them
accessible to smaller organizations. However, these methods often lack adaptability, relying on predefined rules that
spammers can bypass with slight modifications. In addition, rule-based systems require constant manual updates
to maintain efficacy as spam techniques evolve. This can be time-consuming and prone to human error. In contrast,
LLMs offer greater accuracy by understanding the nuanced context of language, making them more effective
at identifying sophisticated spam tactics like phishing attempts. Furthermore, once trained, LLMs can adapt to
evolving spam patterns more effectively without manual intervention, provided they are retrained periodically with
updated datasets. However, retraining LLMs can be resource-intensive. It is also important to consider that despite
their advantages, LLMs come with significant drawbacks. They require substantial computational power and
infrastructure, which can be costly to implement and maintain. Ultimately, the choice between the two approaches
depends on the balance between accuracy, cost, and privacy considerations suited to the organization’s needs.

5.2. Ethical and privacy concerns

It is worth noting that using this technique to detect email spam raises significant ethical and privacy concerns.
Unlike traditional spam detection methods that often rely on predefined rules or keyword-based filters, LMMs
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need to read the content of the message to analyze and make a decision. This analysis may inadvertently expose
sensitive or private user data. Hence, implementing LMMs for spam detection demands careful consideration of
privacy safeguards and ethical frameworks to ensure compliance with data protection regulations and to maintain
user trust. Traditional methods, on the other hand, focus on metadata or specific keywords, therefore tend to pose
fewer ethical risks.

6. Conclusion

The biggest challenge encountered was performing the entire process on just one GPU. Various attempts were
made to achieve the configurations used in the QLoRA and fine-tuning stages to make it feasible to perform the
entire process with limited memory while maintaining good results. Moreover, each model has some peculiarities
and rules that must be followed, which are not explicitly stated in their reference documents on the Hugging Face
platform, making the process of using the models more difficult and causing errors.

With the results presented in section 4, it can be concluded that the Gemma 2B model stands out for having
the best performance, achieving over 99% accuracy in its predictions, demonstrating its effectiveness in detecting
spam messages using only the email message body. Despite this, all models used in this paper could be used in a
spam detector, as they all present satisfactory results. The Phi 2 model has results very close to Gemma 2B, with
98.9% accuracy. The BERT model has less satisfactory results compared to the others, with 95.2% accuracy, but
has the advantage of being a lightweight model that occupies less space.

For future work, it would be interesting to train the models on a bigger dataset with recent messages and also
analyze which messages are not correctly classified by the model to better identify the weaknesses of this spam
detection strategy. Furthermore, the LLMs could be trained to classify spam messages by their type, like phishing,
malware, etc. In addition to this, new LMMs get released very frequently, so different models and versions
could also be analyzed have their performance compared. It would also. be interesting to train and study the
models’ performance on a dataset in other languages, such as Portuguese, since most LLMs currently available are
predominantly trained in English. Additionally, Computer Vision models could be studied and trained to identify
spam messages that only use images, a field that is less explored but becoming increasingly relevant.

It is also important to notice the results presented on this paper were obtained by LLMs trained with the QLoRA
technique. This approach was chosen to enable the execution of the project within the constraints of limited
computational resources. In the future, it would be valuable to explore alternative quantization techniques and
compare the performance of these models against their non-quantized counterparts. It could also be valuable to
analyze the performance of the baseline models against their fine-tuned versions.
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