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Abstract The COVID-19 pandemic has had a major global health impact, highlighting the urgent need for accurate
predictive models to forecast the virus’s spread. This research explores the use of deep learning techniques to improve
the accuracy of COVID-19 case predictions. Traditional machine learning methods often struggle with the complexities of
time-series data inherent in pandemic forecasting, which motivates the use of advanced deep learning models. This study
employs the LSTM-2BiGRU model, a sophisticated deep learning architecture, to predict new COVID-19 cases using two
datasets: historical data from OurWorldInData and medical data with historical disease records. The model was trained to
leverage time-dependent factors and achieve high prediction performance. The LSTM-2BiGRU model achieved a significant
improvement over traditional machine learning models, with an accuracy of 76% and a Mean Absolute Error (MAE) of 8%
for the historical dataset within a 7-day forecast window. When applied to the epidemiology dataset, the model demonstrated
even higher accuracy, ranging from 80% to 90% across different prediction periods (1 to 14 days), with a Mean Absolute
Percentage Error (MAPE) between 10% and 15%. These findings demonstrate the potential of deep learning models like
LSTM-2BiGRU to provide more accurate and timely forecasts for COVID-19, with a substantial reduction in Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) compared to previous studies. This underscores the model’s
improved performance and supports better-informed public health decisions.
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1. Introduction

Since its emergence in December 2019, the coronavirus (COVID-19) has rapidly spread across the globe, [1, 2]
causing widespread morbidity and mortality. The transmission of COVID-19 is facilitated by human interaction,
making containment measures such as travel restrictions, physical distancing, and frequent hand hygiene critical
to limiting its spread. The most common symptoms of COVID-19 include fever and shortness of breath, but in
more severe cases, additional symptoms such as chest pain, sputum production, and hoarseness can also occur. In
its more advanced stages, the virus can lead to pneumonia, which has a reported fatality rate of 5.8 %. In fact, the
mortality rate of COVID-19 has surpassed that of the 1918 Spanish flu pandemic, highlighting the severe impact
of the virus. [3, 4, 5] In response to the global health crisis, medical researchers from various disciplines have been
actively seeking solutions to control the spread of the virus. Epidemiological models have been employed to track
and predict the progression of COVID-19 cases. In certain regions, the confirmed case numbers have reached a
point of saturation, where the rate of new infections has plateaued due to a reduction in the number of susceptible
individuals. Governments have adopted stringent measures such as nationwide lockdowns to isolate infected
individuals and minimize social contact, effectively decreasing the likelihood of further transmission[6, 7, 8, 9, 10].
Machine learning (ML) and deep learning (DL) algorithms have become indispensable tools in epidemiological
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analysis and forecasting. These algorithms are particularly effective when working with large-scale epidemiological
datasets, enabling researchers to model epidemic patterns and predict future trends. Such predictive models are
essential for taking proactive steps to curb the spread of the virus and mitigate its impact. Leveraging real-time data
from sources like the Johns Hopkins University dashboard which already gets updated data from OurWorldInData,
machine learning and deep learning models have been employed to observe the daily dynamics of COVID-19 and
to forecast future case numbers [11, 12, 13, 14]. This research focuses on the application of deep learning models,
specifically Long Short-Term Memory (LSTM) networks and Bidirectional Gated Recurrent Units (BiGRU), to
improve the prediction accuracy of COVID-19 cases. LSTMs, a specialized form of Recurrent Neural Networks
(RNNSs), are designed to capture long-term dependencies in sequential data, making them particularly suited
for time-series forecasting. Meanwhile, BIGRU models allow for the extraction of features in both forward and
backward directions, leading to more robust and meaningful predictions [15, 16, 17, 18, 19].

1.1. Study Contributions

By combining the strengths of LSTM and 2BiGRU architectures, this study aims to enhance the accuracy
of COVID-19 case predictions, surpassing the performance of traditional machine learning algorithms, which
typically achieve an average accuracy of around 64% for common classification tasks. The workflow of the
proposed model, illustrating the step-by-step process, is presented in Figure 1 to provide a visual overview of
the methodology. The primary contributions of this study are as follows:

* Two types of datasets were collected and processed. The first dataset consists of real-time COVID-19
data specific to Egypt, which was preprocessed by removing irrelevant columns and values to retain only
confirmed cases and Dates. The second dataset is an epidemiological dataset of positive and negative COVID-
19 cases from Mexico, sourced from the General Directorate of Epidemiology, Secretariat of Health, and
made publicly available on their official website. This dataset was similarly cleaned and feature-engineered,
with the top 10 features selected from an initial set of 41.

¢ A hybrid model combining Long Short-Term Memory (LSTM) and Bidirectional Gated Recurrent Units
(BiGRU) was developed, with distinct attributes tailored to suit the scale and characteristics of each dataset.

* The model was trained on the Egypt dataset, focusing on confirmed cases over 7 days, and its performance
was compared with previous studies.

* Based on the model’s superior performance on historical data demonstrated by its low Root Mean Squared
Error (RMSE) the same model was trained on the Mexican epidemiological dataset over 1 to 14 days. The
model’s performance was then compared to that of traditional machine learning classifiers and a standalone
LSTM model, prior to the integration of BiGRU

1.2. Paper Organization

In Sect. 2, a literature review of several recent related research was investigated. Section 3 presents the dataset
characteristics. Section 4 illustrates the proposed model phases and design. Section 5 is the main discussion of the
output results, efficiency, and limitations. Section 6 presents the conclusion that summarizes the over all work in
this study with the future directions.

2. Releated Work

Numerous studies have utilized machine learning and deep learning models to predict and analyze the spread of
COVID-19, as well as its associated symptoms and case severity. Reviewing key works in this area highlights
significant progress and existing gaps. Torad et al [20] examined the symptoms and transmission of COVID-19,
noting that the primary symptoms include fever, dry cough, and myalgia, with an incubation period ranging
from 1 to 14 days. The authors emphasized the transmission of the virus through respiratory droplets and surface
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Figure 1. Work-Flow of This Study.

contact. Their research identified a need for further investigation into the clinical and epidemiological features
of COVID-19 patients in Egypt, particularly the impact of health status and work stress. Using a Random Forest
Classifier, the study achieved a mean accuracy of 74.77% in predicting case severity based on vital signs, providing
insight into feature importance rankings.

M. Marzouk et al [18] significant contribution analyzed COVID-19 cases in Egypt by utilizing data on confirmed
cases, recoveries, and deaths. The study employed Long Short-Term Memory (LSTM) networks to forecast the
spread of the outbreak, showing that LSTM outperformed other models. However, the study also highlighted the
complexity of deep learning models, noting that while such models can capture intricate patterns, their complexity
can also pose challenges in terms of interpretability and implementation.

Further S. P. Cumbane et al [17] explored the use of a multi-layer Bidirectional Long Short-Term Memory
(BiLSTM) model for predicting COVID-19 spread in developing countries. The study demonstrated that BILSTM
models consistently outperformed standard LSTM models in predicting the spread of the virus, achieving superior
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accuracy across multiple countries and cities. This suggests that the bidirectional nature of BiLSTM allows for a
more comprehensive capture of temporal dependencies, leading to more accurate forecasts.

Additionally, N. N. Aung et al [16] leveraged open-source data, including flight data, to perform COVID-19
time series forecasting across 190 countries using machine learning methods. The authors utilized data available
until January 31, 2021, to predict the total number of cases over a 14-day period. The study found that while the
BiLSTM model showed a median prediction error of 33%, its maximum error was significantly lower than that of
traditional models such as ARIMA, indicating that the inclusion of more variables, along with the application of
advanced machine learning techniques, can help minimize prediction errors.

D. Fedman et al [15] presented two recurrent neural network-based approaches LSTM and GRU to predict
daily confirmed COVID-19 cases, daily positive tests, and total individuals vaccinated. These models achieved
remarkable accuracy, with a mean absolute percentage error of less than 1.9%, demonstrating their capability to
forecast COVID-19 spread variables effectively.

Author [21] comparative study focused on COVID-19 vaccination prediction using XGBoost and LightGBM
(LGBM). While LGBM with all features yielded an accuracy of 80% but high RMSE, a refined feature selection
improved the accuracy to 88% with a reduced r2 score when applied to Germany’s daily confirmed cases. This
highlights the importance of feature engineering in optimizing model performance.

A. Solanki at al [22] utilized three datasets: the Johns Hopkins CSSE repository, Worldometers, and additional
sources to develop various predictive models, including SARIMAX, HoltWinters, and polynomial regression.
The SARIMAX model achieved a MAPE of 0.236, while the polynomial regression model demonstrated 85%
accuracy in predicting the number of affected cases and deaths over a 10-day period. Meanwhile, the LSTM model,
optimized using the ADAM optimizer, produced low overall prediction errors, further validating the effectiveness
of deep learning methods in COVID-19 forecasting.

N. E. M. Khalifa at al [19] developed a deep learning sequence-to-sequence regression model using population
mobility reports to predict the spread of COVID-19 in Egypt. Achieving 96.69% accuracy for a 3-day prediction
window, this study diverged from traditional models by focusing on mobility data rather than daily infection rates,
achieving highly accurate predictions with low error.

Finally, S. Bouklif [23] investigating COVID-19 detection through Bi-Directional LSTM and early clinical reports
achieved testing accuracy of 87.15%, with precision at 91% and recall at 88%. The proposed model outperformed
traditional ensemble models, underscoring the potential of Bi-LSTM to enhance the early detection of COVID-19.

3. MATERIALS and METHODS

The objective of this study is to develop a robust and accurate model for predicting COVID-19 case numbers
using deep learning techniques. To achieve this, we utilized two distinct datasets and employed a hybrid LSTM-
2BiGRU architecture for time-series forecasting. The approach undertaken in this work aimed to improve predictive
performance over traditional machine learning models by leveraging the sequential dependencies present in
epidemiological and real-time COVID-19 data. This section outlines the materials, data sources, and methodologies
employed throughout the study. The emphasis is placed on effective data preprocessing, feature selection, and
model construction to achieve optimal predictive accuracy. By systematically preparing the data and evaluating
the model’s performance on different datasets, this work contributes to the growing body of research focused on
forecasting epidemic trajectories and informing public health interventions.

3.1. Data Collecting and Preprocessing

Two datasets were used for the model development: a real-time dataset consisting of daily confirmed COVID-19
cases from Egypt was obtained from the OurWorldInData website [24, 25], and a detailed epidemiological dataset
from Mexico was sourced from the General Directorate of Epidemiology, Secretariat of Health in Mexico [26].
These datasets provided the basis for training and evaluating the predictive model. Preprocessing steps were applied
to ensure data integrity, including removing irrelevant columns, handling missing values using mean imputation,
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where the average value of the respective feature was calculated and substituted for missing entries, and scaling
features to prepare the data for modeling.

The first dataset was collected from daily reported confirmed COVID-19 cases, specifically extracting data for
Egypt. The dataset spans from January 21, 2020, to March 2023, encompassing 515,759 confirmed cases. The
dataset was filtered to retain only three relevant columns: Country, Cases, and Dates. As shown in figure 2, these
columns provided the basis for building the time-series forecasting model. The Cases column was scaled using the
MinMaxScaler [27] to normalize the data. The MinMaxScaler function transforms features by scaling them within
a specified range (0,1), as in fig 3. The equation for the MinMaxScaler 1 is expressed as follows:

X/ o X - Xmin (1)
Xmax - Xmin

Where:

* X is the original value.
¢ X .in 1s the minimum value in the dataset.
¢ Xnax 18 the maximum value in the dataset.

* X' is the scaled value after applying the MinMax scaling.

Country/Region Date Cases

23 Egypt 2020-02-14
24 Egypt 2020-02-15
25 Egypt 2020-02-16
26 Egypt 2020-02-17
27 Egypt 2020-02-18

—_— e

Country/Region ~ Date Cases

TI38  Egypt 2023-03-05 515698
1139  Egypt 2023-03-06 515698
1140  Egypt 2023-03-07 515698
1141  Egypt 2023-03-08 515759
1142 Egypt 2023-03-09 515759

Figure 2. Egypt Confirmed Cases of COVID-19

Scaling the data is particularly important for machine learning models that are sensitive to feature magnitude,
such as neural networks, gradient descent-based models, and those that rely on distance metrics, including Support
Vector Machines (SVM) [28, 29] and k-Nearest Neighbors (KNN) [30]. The scaling ensures effective convergence
during training and helps the model better capture relationships within the data.

The Second dataset was sourced from the Epidemiology Directorate of the Secretariat of Health in Mexico. It
contains 41 features related to pre-existing conditions, such as asthma, pneumonia, and diabetes, which may
influence the outcome of COVID-19 tests (i.e., positive or negative results) features are written in Spanish. So,
the names of the columns were translated into English. After preprocessing, 18 relevant features were selected for
the analysis. The outcome variable was scaled to binary form, where O represents a negative COVID-19 test result
and 1 represents a positive result. Additionally, date features were converted into numerical values to facilitate
model processing.
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Figure 3. Distribution of Scaled Values VS Original

3.2. Feature Engineering and Dimensionality Reduction

Using the epidemiology dataset provided by the Secretariat of Health in Mexico, we performed feature
engineering and applied feature importance analysis using a ’RandomForestClassifier’ the output in figure 4
with randomState=42" eq2 This method was employed to rank features based on their contribution to prediction
outcomes. The results highlighted AGE as the most critical feature, followed by ICU admission, intubation, and
pneumonia, which align with known clinical risk factors in COVID-19 outcomes. Subsequently, dimensionality
reduction was applied using Principal Component Analysis (PCA) eq4 to identify patterns in the data and reduce
noise, ensuring the model could focus on the most relevant information without overfitting, followed by feature
selection with the SelectKBest method eq3. The top 10 features were identified for model training, The top-
ranked features further validated the importance of clinical factors such as comorbidities (e.g., diabetes, obesity,
hypertension). This pipeline reduced the impact of noisy and irrelevant data, focusing the predictive model on the
most informative features.

g =mode(T1(X), T2(X), ..., Tn(X)) 2)
Where:
* g is the predicted class.
o T;(X) represents the prediction of the i-th decision tree on input X, wherei = 1,2, ..., m and m is the total

number of trees in the forest.

» mode(-) denotes the majority vote function, which selects the most frequent class from the predictions of the
individual decision trees.

The SelectKBest method selects the top k features based on their scores. The equation for computing the score of
each feature can be represented as:

Score(X;) = f(X;,v) (€)]
Where:
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Figure 4. Feature Importance Analysis: RandomForestClassifier

* Score(X;) is the score for feature X;.

e f(X;,y) is a function that evaluates the relationship between the feature X; and the target variable y. This
function can be based on various statistical tests, such as ANOVA, Chi-square, or mutual information.

The PCA aims to transform the data into a new coordinate system where the greatest variance lies on the first
coordinates (principal components). The equation for PCA can be written as:

Z=XW (€]
Where:

* 7 is the matrix of transformed features (principal components).

* X is the original data matrix with dimensions n X p (where n is the number of samples and p is the number
of original features).

e IV is the matrix of eigenvectors (principal components) derived from the covariance matrix of X.

The principal components are the directions of maximum variance, and the transformation is achieved by projecting
the original data onto these components.
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4. Model Phases and Design

The datasets were split into training and testing sets, with 80% of the data used for training and 20% reserved for
testing. The predictive model utilized a hybrid LSTM-2BiGRU architecture [31, 32, 33, 34], designed to capture
both short- and long-term dependencies in the sequential data.

4.1. Applying Model for First Dataset

For Egypt dataset 3.1, The model was trained using 60-time steps, meaning it used 60days of past data to predict
the number of cases within the next 7days. The model was configured with 100 units per layer, alongside a 30%
dropout rate to prevent overfitting as shown in figure 5. The trade-off between the number of units and overfitting
was considered: a higher number of units allows the model to learn complex patterns but increases the risk of
overfitting. In contrast, fewer units simplify the model but may limit its capacity to identify intricate relationships
in the data.

Layer (type) Output Shape Param #
Istm_4 (LSTM) (None, 60, 100) 40800
dropout_12 (Dropout) (None, 60, 100) 0
bidirectional _8 (Bidirection (None, 60, 128) 63744
dropout_13 (Dropout) (None, 60, 128) 0
bidirectional 9 (Bidirection (None, 128) 74496
dropout_14 (Dropout) (None, 128) 0
dense_4 (Dense) (None, 7) 903

Total params: 179,943
Trainable params: 179,943
Non-trainable params: 0

Figure 5. LSTM-2BiGRU Model Summary for Egypt Dataset

To assess the performance of the model, several key metrics[35, 36, 37] were calculated and the output of evaluation
during training model is shown in figure6:

Mean Absolute Error (MAE): MAE is used to measure the average magnitude of the errors in a set of predictions,
without considering their direction. It is calculated as eq5:

n

1 N
MAE = gZLUz‘ — Bl o)
i=1

where:

e y;: Actual value.
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e 7;: Predicted value.
* n: Total number of data points.

Mean Absolute Percentage Error (MAPE): MAPE calculates the average percentage error between predicted and
actual values, providing a normalized view of the prediction accuracy. The formula is eq6:

1
MAPE = — ;

Yi — Ui
Yi

x 100 (6)

Where:
e y;: Actual value.

e ¢;: Predicted value.
* n: Total number of data points.

Root Mean Square Error (RMSE): RMSE is the square root of the average squared differences between actual and
predicted values. It penalizes larger errors more than smaller ones, making it sensitive to outliers It is computed as
eq’/

(7

Where:

e y;: Actual value.
e 7;: Predicted value.
* n: Total number of data points.

The performance of the proposed models was evaluated using precision, recall, accuracy, and F1-Score. These
metrics were computed according to the following equations:

TP

procision — TP .
recision TP+ FP )
TP

Recall = — 9
T TPLFN ©)

Precision x Recall
F1 Score = 2 x - oooton X Reed (10)

Precision + Recall

TP+ TN

A - 11
UMY = T P TN+ FP+ FN (I

where:

e T'P: True positives.
e T'N: True negatives.
e F'P: False positives.

* F'N: False negatives.

The LSTM-2BiGRU model achieved the following metrics: MAE of 8%, MAPE of 12%, RMSE of 10%, Precision
of 76%, Recall of 68%, F1 Score of 72%, and Accuracy of 76%. These metrics illustrate the model’s ability to
predict future COVID-19 cases with a high degree of accuracy and minimal error. The results obtained in this study
were compared with previous research, demonstrating the model’s efficiency. A detailed comparison is presented
in Table 1. The primary objective of this study is to validate the model’s performance on the medical dataset from
Mexico. We achieved the best results by considering long days for prediction (7 days), with low Error percentages
8%, and higher accuracy compared to the study [19] with the same dataset and days.
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Figure 6. Model Evaluation: RMSE, MAE & MAPE over Epochs

Table 1. Comparison With Other Studies

Study Model Days | RSME, MAE, MAPE Accuracy
BILSTM [16] 14 days MAE 33% Not provided
SARIMAX India [22] 10 days MAPE 23% Not provided
Egypt LSTM [19] 7days RSME 60% 72.71%
. MAE 1.9% .
LSTM+GRU [15] daily RSME 9% Not provided
MAE 7.986%
This Study LSTM 2BIGRU | 7 days RSMS 9.669% 76%
MAPE 12.589%

4.2. Applying Model for Second Dataset

For Mexico dataset 3.1 The 2 layers of LSTM model was developed with the following parameters: optimizer =
’adam’, loss function ="mean_squared_error’, and evaluation metrics = [’'mae’]. Callbacks were implemented
to enable early stopping and model checkpointing based on validation loss, with the best model saved as
"best_-model.h5’ The model’s performance was assessed using key metrics, as follows: Precision eq8: 0.625, Recall
eq9: 0.462, F1-Score eql0: 0.531, AUC: 0.714 Overall accuracy eql1 was 68% fig9, with a macro average of
64% for both precision and recall. The weighted average precision, recall, and F1-score were 0.67, 0.68, and 0.67,
respectively. The test mean absolute error (MAE) fig8, was reported as 0.415. Compared to traditional machine
learning methods[38] fig7 , the LSTM and deep learning models demonstrated superior prediction accuracy when
utilizing standard model parameters.

For same dataset the target column for results was binarized, with O representing negative cases and 1 for positive
cases. The data was split into training and testing sets. A time-series framework was adopted by defining time steps
of 60 days and a prediction horizon of 1 to 14 days ahead. The LSTM-2BiGRU model was configured with the
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Layer (type) Output Shape Param #
Istm_1 (LSTM) (None, 60, 200) 170400
dropout_3 (Dropout) (None, 60, 200) 0
bidirectional 2 (Bidirection (None, 60, 400) 482400
dropout_4 (Dropout) (None, 60, 400) 0
bidirectional 3 (Bidirection (None, 400) 722400
dropout_5 (Dropout) (None, 400) 0
dense_1 (Dense) (None, 14) 5614

Total params: 1,380,814
Trainable params: 1,380,814
Non-trainable params: 0

Figure 10. LSTM-2BiGRU Model Summary for Mexico Dataset

Adam optimizerand a sigmoid eql2 activation function to accommodate the binary nature of the target variable.
We utilized callbacks for early stopping and model checkpointing, and the model was trained over 500 epochs
with a batch size of 128 and a dropout rate of 30% as shown in fig10 and below is the Algorithm Pseudo-code 1
represent step-by-step to build and evaluate the proposed model.

The sigmoid activation function [39] is widely used for binary classification tasks as it outputs a value between 0
and 1. This is particularly useful in determining the probability of a binary outcome.

B 1
T 14e®

o(z)

12)
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Algorithm 1 Pseudocode for the Proposed Model

Input: Dataset D
Output: Prediction ¢
Import Keras library for creating a deep learning model M
Initialize the model with parameters by setting timesteps=60, daysAhead=14, batchSize=128, epochs= 500
Preprocess the dataset D with Features Engineering
for each training epoch do
for each batch of data do
Forward propagate the input through the model
Compute the loss using the objective function
Backpropagate the error
Update the model parameters
end for
: end for
Evaluate the model on validation data by MAE, RMSE, MAPE
: Output the final prediction ¢

—_ =
TV R RN R RN

_ = =
AN

where:

* z is the input value,
e is Euler’s number (approximately 2.718)

The sigmoid function squashes the input xxx to a range of 0 to 1, making it suitable for binary classification
problems, as the output can be interpreted as a probability. The model’s performance was assessed using multiple
metrics. The Mean Absolute Error (MAE) eq5 was calculated to be 0.118, while the Root Mean Square Error
(RMSE) eq7 ranged between 0.130 and 0.140. The precision ranged from 0.88 to 0.92, recall from 0.85 to 0.90,
and the Fl-score between 0.86 and 0.91. The Area Under the Curve (AUC) ranged from 0.88 to 0.92, and the
Mean Absolute Percentage Error (MAPE) eq6 was estimated at 10% to 15%. The overall Accuracy of the model
averaged 86%, falling within a range of 80% to 90%.

4.3. Hyperparameter Tuning

To optimize the performance of our hybrid LSTM-BiGRU model, we conducted systematic hyperparameter tuning
as shown in table:2. The following parameters were varied during the tuning process:

e Number of LSTM/GRU Units: Configurations with 100, 150, 200, and 250 units were tested to determine
the optimal number of neurons in each recurrent layer.

* Dropout Rates: Values of 0.1, 0.2, and 0.3 were explored to balance model regularization and the prevention
of overfitting.

* Learning Rates: Three learning rates (0.001, 0.005, and 0.01) were evaluated using the Adam optimizer.
» Batch Sizes: Batch sizes of 32, 64, and 128 were tested to balance training speed and convergence stability.

* Prediction Horizon (days_ahead): The model was designed to predict between 1 and 14 days ahead based
on historical data, enabling flexibility in short- and long-term forecasting.

Training Callbacks: The training process incorporated the following callbacks:

1. Model Checkpointing: To save the best model based on validation loss during training.
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Table 2. Hyperparameters used in the Model

Hyperparameter

Values

Brief

Timesteps

60

This value determines the number of past
time steps used as input for the model to
make predictions

Prediction Horizon

day 1 to 14

enable the model to provide both short-
term (1-day ahead) and medium-term (up
to 14-days ahead) forecasts.

LSTM Units

200

The first LSTM layer contains 200 units,
chosen to balance model complexity and
computational efficiency

Bidirectional GRU

Units

200

Two Bidirectional GRU layers are
included, each with 200 units, to capture
both forward and backward temporal
dependencies in the data

Dropout Rate

0.3

Applied after each layer to prevent
overfitting by randomly dropping 30% of
neurons during training

Dense Layer Units

1to 14

The final dense layer outputs predictions
for the next 1-14 days.

Optimizer

Adam

Selected for its adaptive learning capa-
bilities, allowing efficient optimization
across a wide range of tasks

Loss Function

Mean  Squared
Error (MSE)

Used for continuous variable prediction
to minimize the error between actual and
predicted values.

Metrics

Mean Absolute
Error (MAE)

Monitored during training to assess
model performance.
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2. Early Stopping: To halt training if the validation loss did not improve for a specified number of epochs, thereby
avoiding unnecessary computation.

For each combination of hyperparameters, the model was trained for up to 500 epochs with a batch size of 128,
and its performance was monitored using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) on
the validation set. The best-performing hyperparameters were selected based on the lowest validation error.

5. Results and Discussions

The results obtained from the application of the LSTM-2BiGRU model on the epidemiological dataset, along
with a comparative analysis between the performance of the LSTM-only model and the LSTM-2BiGRU hybrid
model. The main objective is to demonstrate the effectiveness of the LSTM-2BiGRU model in improving prediction
accuracy and performance in predicting COVID-19 outcomes.
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5.1. Performance on the Epidemiological Dataset

The epidemiological dataset contained historical data from the General Directorate of Epidemiology, Secretariat
of Health in Mexico, consisting of 41 features related to comorbidities such as asthma, pneumonia, and diabetes,
which potentially affect the COVID-19 test results. After performing feature engineering and selection techniques,
including RandomForestClassifier for feature importance analysis and dimensionality reduction using PCA, the
most relevant 10 features were selected for the final model. The LSTM-2BiGRU model was built to predict
positive and negative COVID-19 cases. Using the Adam optimizer and Sigmoid activation function, the model
was trained for 500 epochs with a batch size of 128 and a dropout rate of 0.3. Callbacks for early stopping and
model checkpointing were employed to optimize the model training process.

5.2. Comparative Analysis LSTM vs LSTM-2BiGRU

To assess the impact of using the LSTM-2BiGRU hybrid model, we compared its performance with a traditional
LSTM-only model. The LSTM-only model achieved an accuracy of 68%, with moderate performance metrics
including precision, recall, and Fl-score. The application of the LSTM-2BiGRU model on the same dataset,
however, significantly improved the results across all metrics. The LSTM-2BiGRU model achieved an average
accuracy of 86%, with accuracy falling within a range of 80% to 90%. This represents a substantial improvement
over the LSTM-only model. Other performance metrics further, demonstrate the advantages of using the hybrid
model:

e Precision: 0.88 to 0.92

Recall: 0.85 to 0.90
e F1-Score: 0.86 to 0.91

AUC: 0.88 t0 0.92

¢ Mean Absolute Error (MAE): 0.118

* Root Mean Squared Error (RMSE): 0.130 to 0.140

* Mean Absolute Percentage Error (MAPE): 10% to 15%

These results indicate that the LSTM-2BiGRU model outperforms the traditional LSTM model in terms of both
predictive accuracy and error minimization

5.3. Impact of Feature Selection and Scaling

Feature engineering and selection played a critical role in the model’s performance. By selecting only the most
relevant features and scaling the target variable (COVID-19 test results), the model was better able to capture the
underlying patterns in the data. The application of SelectKBest for feature selection and MinMaxScaler for scaling
the data improved the convergence of the model and minimized prediction errors. The scaling of the dataset to
a range of (0, 1) ensured that the model efficiently handled the input data, allowing for more effective learning.
Additionally, the dimensionality reduction through PCA helped in reducing the complexity of the dataset while
retaining the most informative features. This contributed to the overall improvement in model performance.

5.4. Ethical Considerations

This study utilized publicly available COVID-19 datasets, including epidemiological data from Mexico, which
do not contain any personally identifiable information such as patient names or other private data. The data is
aggregated and anonymized, ensuring compliance with ethical standards for research involving human-related
datasets. We are committed to upholding principles of fairness and accountability in the development and
application of machine learning models. While the datasets used in this study were unbiased in their structure and
collection, we acknowledge the potential for algorithmic bias to emerge due to unequal representation of certain
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demographic or comorbidity-related features. To address this, we conducted feature importance analysis and model
validation to ensure that our predictions remain fair and interpretable.

5.5. Discussion of Findings

The results demonstrate that the LSTM-2BiGRU model is highly effective in handling time-series data with
complex, multivariate features. The hybrid deep learning architecture successfully captures both short-term
and long-term dependencies within the data, leading to enhanced accuracy and robustness in predictions. The
bidirectional nature of the BiGRU layers significantly contributes to the model’s ability to learn from both
past and future time steps, a feature particularly critical in epidemiological forecasting where data patterns are
often nonlinear and multidirectional. The model’s performance improvement over the LSTM-only architecture
highlights the benefits of combining complementary deep learning techniques in hybrid models. This capability
is especially advantageous for public health applications, where timely and accurate predictions can aid in
decision-making during pandemics. Moreover, the reduction in error metrics and improved predictive accuracy
compared to traditional machine learning models further validates the utility of the LSTM-2BiGRU framework
for complex, multivariate time-series tasks. However, to enhance the model’s real-world applicability, future work
should prioritize optimizing computational efficiency. Techniques such as model pruning and quantization could
be explored to reduce the model’s size and latency, making it more suitable for real-time applications. These
improvements could enable the deployment of the model in resource-constrained environments, such as mobile or
edge devices, facilitating broader accessibility in public health contexts. In summary, the LSTM-2BiGRU model
demonstrates a strong potential for predicting COVID-19 outcomes with high accuracy, reduced error metrics, and
robust performance. The study underscores the significant advantages of hybrid deep learning models in addressing
complex, multivariate time-series prediction challenges. Future research could also explore integrating decision-
making components through Deep Reinforcement Learning (DRL) to further enhance predictive accuracy and
applicability in real-world scenarios.

6. CONCLUSION

This study developed and evaluated a hybrid deep learning model, LSTM-2BiGRU, for predicting COVID-19
case trends using two distinct datasets from Egypt and Mexico. The results demonstrate that the proposed model
significantly outperforms traditional machine learning models and standalone deep learning architectures. The
LSTM-2BiGRU model achieved an accuracy of 76% with a Mean Absolute Error (MAE) of 8% for the Egypt
dataset, and 80% to 90% accuracy for the Mexico dataset across various prediction periods. These findings highlight
the model’s ability to accurately capture the dynamic patterns of COVID-19 transmission and provide reliable
forecasts for public health decision-making.

The key contribution of this study is the successful integration of LSTM and BiGRU architectures into a hybrid
model, which enhances the ability to capture both short- and long-term dependencies in time-series data. This
advancement is particularly important for epidemiological forecasting, where traditional models often fail to handle
the complexities of sequential data. The LSTM-2BiGRU model presents a promising tool for predicting future
COVID-19 trends and informing timely public health interventions. However, the model’s complexity presents
certain challenges, particularly in terms of computational demands and the need for high-quality data. Future
work could focus on optimizing the model’s efficiency, making it more suitable for real-time applications, and
incorporating methods to handle missing or noisy data. Additionally, integrating real-time data streams, such as
vaccination rates and population mobility, could further enhance the model’s predictive power. Overall, this study
demonstrates the potential of deep learning models like LSTM-2BiGRU to significantly improve COVID-19 case
prediction accuracy, providing a valuable tool for health authorities in managing and mitigating the impact of
pandemics.
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