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Analysis of uncertainty in the Leontief model by interval arithmetic
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Abstract This paper presents an innovative strategy to enhance the precision of economic projections through the
integration of interval arithmetic into the Leontief model. We emphasise the utilisation of the Gauss-Seidel method for
solving linear systems with interval coefficients. In this paper, we present a method that use the Gauss-Seidel approach
to effectively solve linear systems consisting of interval coefficients. This technique enhances traditional methods by
incorporating potential value intervals, in addition to exact numerical values. The result is a more precise reflection of
uncertainty and a more accurate calculation of solution intervals for economic variables. We have implemented this approach
in the Moroccan economic context and the Washington state context using the Gauss-Seidel method to solve linear systems
with interval coefficients. Based on real economic data, we have demonstrated how this technique can have a positive impact
on the accuracy of output and sensitivity evaluations in the Leontief model.
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1. Introduction

In economic modelling and forecasting, accounting for uncertainty and change is essential to ensure informed
and resilient decision-making. Traditional economic models, while often robust, can underestimate the impact
of the uncertainty inherent in the input data, leaving considerable margins of error in forecasts. It is in this
context that the application of interval arithmetic in the Leontief model emerged as an innovative strategy for
estimating production levels and assessing the sensitivity of the results. The Leontief model [1], also known as
the input-output model, is an important analytical tool for describing the complex interactions between different
sectors of the economy. It is based on the assumption that production in one sector depends on demand from other
sectors, creating a network of economic interdependence. This model makes it possible to quantify the way in
which changes in demand in one sector are propagated throughout the economy.

Briefly, the I-O model can be expressed as X-AX=Z, where X is a vector representing sectoral output, A is a
matrix of technical input-output coefficients and Z is a vector of final demand. Solving equation (I −A)X = Z
gives the Leontief matrix (I −A). If the final demand is known, the quantity of goods required to satisfy that
demand can be determined [4]. However, the technical coefficients of the Leontief matrix are unknown and
must be estimated, thus introducing uncertainty. Several sources of uncertainty can be identified in I-O models,
such as the source data and the assumptions inherent in the I-O analysis (linearity, proportionality, distribution,
aggregation).
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Uncertainty in I-O models can be modeled using two general approaches :

A probabilistic approach assumes a probability distribution of all uncertainties associated with the coefficients
of the Leontief matrix. It allows probability distributions to be used to represent the variability of uncertain values.

The unknown but bounded approach is a method used in uncertainty analysis. It is often applied when there are
uncertainties in the model parameters, but instead of specifying a probability distribution for these uncertainties,
upper and lower bounds are simply defined for each parameter.

A variety of analytical and computational techniques are used to examine the impact of uncertain inputs,
including :

Sensitivity analysis [3], which includes methods for calculating the impact of parameter changes on model
predictions. This can be done univariately (one parameter at a time) or multivariate (several parameters
simultaneously).

Uncertainty propagation [2] is a technique for calculating the uncertainty in model outputs caused by input
uncertainties.

Other deterministic and probabilistic techniques, such as one-to-one analysis, conjoint analysis, parametric
analysis, and Monte Carlo simulation, emphasize the importance of sensitivity analysis and uncertainty, with
particular emphasis on taking into account multiple parameters as possible consequences of simultaneous changes.
The results are significantly different and more representative of the real situation.
Interval arithmetic [9] offers a fundamentally different approach to modeling and quantifying uncertainty. Instead
of providing a single peak, it generates a range of possible values, capturing the diversity of scenarios resulting
from natural fluctuations and uncertainties in the data. This approach is particularly important in the context of
the Leontief model, which aims to describe the complex economic relationships between different sectors of an
economy. By incorporating interval arithmetic into the model, potential changes in output levels can be better
understood and predicted, and the way in which uncertainty affects these estimates can be analyzed.
The main objective of this paper is to explore the application of interval arithmetic to the Leontief model to
estimate production levels and perform a thorough sensitivity analysis. First, it proposes the use of interval
arithmetic as an advanced methodological framework for modeling uncertainty, thereby improving the reliability
of economic forecasts in the Leontief model. Secondly, he highlights the efficiency of the Gauss-Seidel solution
method for linear systems with interval coefficients, allowing solutions to be calculated in interval form.

Two empirical applications in the Moroccan and American economic contexts are also presented, demonstrating
the potential of this method to improve the accuracy of economic projections and sensitivity analyses. Finally, a
comparative analysis with traditional approaches highlights better management of uncertainty and a significant
reduction in margins of error.

Ultimately, this article aims to show that integrating interval arithmetic into economic models can transform the
way we approach economic forecasts, thereby meeting the growing challenges of accuracy and robustness in an
uncertain environment.

2. Interval arithmetic

2.1. Generalized intervals

Let IR = {â = [a1; a2] : a1 ⩽ a2anda1, a2 ∈ R} be the set of all proper intervals and IR =
{â = [a1; a2] : a1 > a2anda1, a2 ∈ R} be the set of all improper intervals on the real line R. If a1 = a2 = a,
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2 ANALYSIS OF UNCERTAINTY IN THE LEONTIEF MODEL BY INTERVAL ARITHMETIC

then â = [a, a] = a is a real number (or a degenerate interval). We shall use the terms ”interval” and ”interval
number” interchangeably. The mid-point and width(or half-width) of an interval number â = [a1, a2] are defined

as m(â) =
a1 + a2

2
and w(â) =

a2 − a1
2

. We denote the set of generalized intervals (proper and improper) by :

KR = IR ∪ IR = {[a1; a2] : a1, a2 ∈ R}

The set of generalized intervals KR is a group with respect to addition and multiplication operations of zero free
intervals, while maintaining the inclusion monotonicity.
The ”dual” is an important monadic operator proposed by kaucher that reverses the end-points of the intervals
in KR. For â = [a1, a2] ∈ KR, its dual is defined by dual(â) = dual([a1, a2]) = [a2, a1]. The opposite of an

interval â = [a1, a2] is opp([a1, a2]) = [−a1,−a2] which is the additive inverse of [a1, a2] and
[
1

a1
,
1

a2

]
is the

multiplicative inverse of [a1, a2], provided 0 /∈ [a1, a2].

That is, â+ (−dual(â)) = [0, 0] and â× 1

dual(â)
= [1, 1].

Ganesan and Veeramani [5] proposed new interval arithmetic on IR. We extend these arithmetic operations to the
set of generalized interval numbers KR and incorporating the concept of dual.
For â = [a1; a2] , b̂ = [b1; b2] ∈ KR and for ∗ ∈ {+;−;×;÷} we define :

â ∗ b̂=[m(â) ∗m(̂b)− k;m(â) ∗m(̂b) + k] and k = min
{
(m(â) ∗m(̂b)− α;β −m(â) ∗m(̂b))

}
α and β are the end points of the interval â et b̂.

2.2. Algebraic solution of an interval linear system

Definition: an interval matrix [6] Â is a matrix whose elements are intervals.
Let Â be an interval matrix of order n× n.
To solve a linear system involving interval matrices, we try to find the smallest interval vector containing the set
of vectors X̂ in a way that there exists a elementary matrix A ∈ Â and B ∈ B̂ and we have the equality Ax = B.
When solving linear systems with interval coefficients, the choice of method depends on various factors, including
the nature of the system, the complexity of the interval, and the modeling objectives. However, depending on the
characteristics of the system, some common methods can be considered, such as :
Cholesky decomposition method [12]: the application of the method to linear systems with interval coefficients
presents certain specific constraints and conditions. It requires a positive definite symmetric matrix and during the
decomposition process, uncertainty can propagate at each step. These uncertainties affect the final solution.
Cramer’s method [11]: the application of Cramer’s method to linear systems with interval coefficients can be
complex due to the calculation of determinants, which involves delicate calculations, particularly on high-order
interval-coefficient matrices.
However, iterative methods can provide better numerical stability than some direct methods, allowing the
management of large systems. Nevertheless, it is important to note that the choice of method depends on the
specific characteristics of the Leontief model, the nature and size of the interval coefficient matrix, the required
convergence tolerance, and other considerations.
After testing different approaches on the test cases to determine which is best suited to the problem, the Gauss-
Seidel method is chosen.

Solving the Â X̂=B̂ system using the Gauss-Seidel method: the method of Gauss-Seidel in KR is a method
for solving linear systems ÂX̂ = B̂, that Â is a matrix n× n with interval coefficients and X̂ , B̂ are vectors with
interval coefficients.
The Gauss-Seidel method consists of decomposing Â into the form Â = D̂ − Ê − F̂ , that D̂ is a diagonal matrix,
−Ê is a lower triangular matrix, and −F̂ is an upper triangular matrix.
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The system ÂX̂ = B̂ is equivalent to:
If the matrix D̂ − Ê is invertible then:

ÂX̂ = B̂ ⇔ (D̂ − Ê)X̂ − F̂ X̂ = B̂ ⇔ X̂ = (D̂ − Ê)−1F̂ X̂ + (D̂ − Ê)−1B̂

A sequence of vectors X̂k will be calculated directly by solving the following system with an arbitrary X̂0:

X̂k+1 = (D̂ − Ê)−1F̂ X̂K + (D̂ − Ê)−1B̂ with k ∈ N

Concerning the stopping condition of the Gauss-Seidel method is determined according to one of the following
circumstances:
- Maximum number of iterations.
- Absolute convergence : X̂n+1 − X̂n = ϵ̂ ≈ 0̂ , with ϵ̂ is a vector whose coefficients are amplitude intervals

tending to 0 and 0̂ =


[0, 0]
[0, 0]

...
[0, 0]

 .

We stop the calculation when one of the conditions is verified.

Gauss-Seidel algorithm using generalized interval numbers: let Â be a square matrix and B̂ a vector with
n-order interval coefficients.
The resolution of this linear system with interval coefficients consists in following the following steps :
Step 1: decompose Â as D̂ − Ê − F̂ .
Step 2: check if matrix (D̂ − Ê) is invertible and calculate (D̂ − Ê)−1.

Step 3: set X̂0 =


[0, 0]
[0, 0]

...
[0, 0]

 and Ŷ =(D̂ − Ê)−1B̂.

Step 4: do a recursive calculation in X̂n+1 = (D̂ − Ê)−1F̂ X̂n + Ŷ with n ∈ N∗.
After each iteration, we check if X̂n+1 − X̂n ≈ 0̂.

2.3. Gauss-Seidel complexity for systems with interval coefficients

The complexity of the Gauss-Seidel method, when adapted to linear systems with interval coefficients, depends
on several factors linked to the nature of the calculations on the intervals. Unlike the traditional method applied
to linear systems with real coefficients, where the calculations are direct, interval arithmetic requires additional
operations to manage the bounds of the intervals and the dependencies between them. This increases the
complexity significantly.
For systems with interval coefficients, each elementary operation becomes more expensive because of the
arithmetic of the intervals. In particular :

Calculations on intervals: arithmetic operations on intervals (addition, subtraction, multiplication) require the
processing of lower and upper bounds, doubling the number of elementary operations.

Propagation of dependencies: dependencies between intervals need to be tracked, to avoid overextending the
bounds. This requires additional checks.
Management of uncertain coefficients: when a coefficient is modified during an iteration, it affects other interval
coefficients in the system, increasing the calculations required to stabilize the bounds.

Some factors and criteria influence convergence and minimize computation time and complexity :
A well-structured matrix: convergence and minimized complexity are guaranteed if the matrix is strictly diagonal
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dominant or symmetric positive definite or a hollow matrix.
Interval coefficients with a small amplitude: wider intervals increase the propagation of uncertainties, requiring
a greater number of iterations to achieve convergence, which implies more computation time.
However, complementary approaches, such as interval reduction before each iteration, can reduce complexity.

The complexity of the Gauss-Seidel method on a linear system with interval coefficients, although increased
compared with the classical version, remains suitable for economic models of reasonable size thanks to its iterative
structure. However, for very large systems or ill-conditioned matrices, it may be necessary to adopt optimizations
or alternative methods.

2.4. Gauss-Seidel limits for linear systems with interval coefficients

The first thing to note is the computational complexity. Although the method is effective for matrices of moderate
size, solving large systems with coefficients in intervals quickly becomes costly in terms of computing time.
Convergence is not guaranteed: the Gauss-Seidel method requires the system matrix to have certain properties
to guarantee convergence. With interval coefficients, these properties are not necessarily verified for all possible
realizations, complicating the convergence analysis.
An ill-conditioned system with large interval coefficients can lead to an amplification of the uncertainties, widening
the bounds of the solutions and making the results less meaningful. These limitations underline the importance
of carefully choosing the parameters of the system, optimally structuring the data, and, if necessary, considering
the use of complementary or hybrid methods to overcome these obstacles. Therefore, Solutions to these problems
include:
- Reformulating the problem as an optimization task aimed at minimizing the width of the intervals while
guaranteeing viable solutions.
- Minimising the size of the system.
- Combining with other solution methods.

2.5. Application and comparison of results

We consider the system ÂX̂ = B̂ with interval coefficient :

Â =

 [3.7; 4.3] [−1.5;−0.5] [0; 0]
[−1.5;−0.5] [3.7; 4.3] [−1.5;−0.5]

[0; 0] [−1.5;−0.5] [3.7; 4.3]

 and B̂=

[−14; 0]
[−9; 0]
[−3; 0]


By using the Gauss-Seidel algorithm and generalized interval numbers, we find :

X̂=

[−4.03; 0.86]
[−2.73; 1.32]
[−1.12; 0.65]


Comparaison of results :

Definition: let V =


x̂0

x̂1

...
x̂n

 be a vector with interval coefficients and x̂i = [ai; bi] with i ∈ N.

The total amplitude width of the vector V is the value Tv which equals the sum of the interval widths of all its
interval coefficients, such that:
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Tv =

n∑
i=0

|bi − ai|

The aim of this numerical optimisation method is to compare different methods of solving linear systems with
interval coefficients and to determine the optimum solution with minimum uncertainty.

Table 1. Comparison between resolution methods

Results Methods Width of the
vector

X̂=

[−4.03; 0.86]
[−2.73; 1.32]
[−1.12; 0.65]

 Using the Gauss-Seidel
method T = 10.71

X̂=

[−4.96; 0]
[−4.51; 0]
[−2.2; 0]

 Using the inverse matrix
proposition [7] T = 11.67

X̂=

 [−6.38; 0]
[−6.40; 1.32]
[−3.40; 0]

 The result find by Ning
and al [8] using Gauss

elimination
T = 17.5

X̂=

[−6.38; 1.12]
[−6.40; 1.54]
[−3.40; 1.40]

 The result find by Ning
and al using the technique

of Hansen [8]
T = 20.02

X̂=

[−4.76; 0.31]
[−3.78; 0]

[−1.80; 0.08]

 Using the Cramer’s method
[11] T = 10.73

X̂=

 [−4.12; 0.96]
[−2.99; 1.63]
[−1.37; 0.096]

 Using the Jacobi method T = 12.03

X̂=

[−5.77; 1.44]
[−4.81; 1.48]
[−2.79; 1.20]

 Using interval hull method
[13] T = 17.52

X̂=

[−4.53; 0]
[−3.9; 0]
[−1.76; 0]

 using the Choleski
decomposition[12] T = 10.19

To assess the efficiency and convergence of the various methods applied to linear systems with interval
coefficients, a detailed analysis was carried out, including the inverse matrix method, Gauss elimination, Cramer’s
method, Jacobi’s method, interval hull method, technique of Hansen and the Cholesky decomposition, in addition
to the Gauss-Seidel method. Of these, the Cholesky decomposition has shown the best accuracy and stability,
with convergence guaranteed for symmetric and positive definite matrices, making it particularly suitable for
well-conditioned systems. The Gauss-Seidel method also demonstrated high performance, with rapid convergence
in many cases, even for large matrices that are not necessarily well-conditioned, which is a major advantage.

The Gauss-Seidel method generally converges if the matrix is strictly diagonal dominant or symmetric and
positive definite, although the latter condition is not always necessary in the context of interval coefficients.
Its adaptability to large matrices comes from its iterative structure, which reduces memory requirements and
computations compared with direct methods such as Cramer or matrix inversion, which are often costly for large
systems. This property makes Gauss-Seidel particularly effective for low-cost applications where matrix sizes can
be large.
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The others methods, while effective in some cases, have shown convergence limits for ill-conditioned systems
or matrices with strong interval dependence. Cramer’s method, although accurate in simple cases, has a high
computational complexity (calculating the determinant), which limits its applicability for large systems. Finally,
the inverse method, despite its theoretical simplicity, has demonstrated increased instability in the face of
uncertainties, making its solutions less reliable.

In brief, the Cholesky decomposition offers the best accuracy for well-conditioned matrices. At the same time,
Gauss-Seidel stands out for its robustness and its ability to adapt to large matrices and less stringent conditions,
making it a particularly practical tool in complex economic analyses. These observations reinforce the importance
of assessing the specific characteristics of the system before selecting a method, to ensure both convergence and
accuracy.

3. Integrating interval arithmetic into Leontief’s model: Approach and Applications

In a global economic context marked by growing uncertainty, mathematical models play a central role in analysis
and decision-making. However, the accuracy of the results obtained is highly dependent on the quality and
reliability of the data used. The integration of interval arithmetic is emerging as a powerful approach for explicitly
incorporating this uncertainty into calculations, by replacing the precise values of coefficients with intervals
representing their variability.
Among the economic models where interval arithmetic can be successfully applied, the Leontief model stands
out. This model, which is based on a matrix of technical coefficients describing the interdependent relationships
between an economy’s sectors, is particularly sensitive to variations in the parameters. Using intervals makes it
possible to better manage the uncertainties associated with imprecise economic data, providing ranges of results
for in-depth sensitivity analysis. The benefits include a more realistic assessment of the robustness of predictions
and better identification of critical sectors.
Another relevant example is the gravity model applied to international trade, which examines trade flows between
two countries as a function of their economic masses and the distance separating them. The arithmetic of intervals
in this context makes it possible to manage the imprecision of data linked to economic distances, logistical costs,
or variations in national GDPs. This improves the assessment of factors influencing trade and enables various
uncertainty scenarios to be tested.
In addition, applications can be envisaged in economic forecasting models, such as general equilibrium models
or models of the propagation of shocks in supply chains. These frameworks benefit from the ability of intervals
to encapsulate uncertainty, facilitate more realistic simulations, and guide decision-makers in complex economic
environments.
In the following sections, we will apply our approach to the Leontief model.

3.1. Leontief’s model

The input-output equilibrium model, or Leontief model [1], is a mathematical representation of intersectoral
relations within an economy. It describes how the output of each sector is used to satisfy both final consumption
needs and the demands of the other sectors of the economy.
The model is written in the form :

(I −A)X = D

With:

I: is the identity matrix.
A: is the matrix of technical coefficients, representing the quantity of inputs required to produce one unit of output
for each sector.
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X: is the vector of sectoral production levels.
D: is the final demand vector.

This model is based on the assumption of a linear relationship between inputs and outputs, which allows for the
resolution of associated linear systems to ascertain the requisite production levels.
In the case of interval arithmetic, this model is suitable for managing the uncertainties inherent in economic data.
The technical coefficients aij of the matrix A are replaced by intervals, representing their variability or uncertainty.
Similarly, the components of the vectors X and D are replaced by intervals.
The model becomes in the form (Î − Â)X̂ = D̂, the solution of this system offers a range of possible solutions,
reflecting the uncertainty of the data and allowing a more robust sensitivity analysis.
Leontief’s model is based on a set of assumptions that must be adapted in the case of interval arithmetic [table 2].

Table 2. Assumptions of the Leontief model with interval arithmetic

Hypothesis Description in the classical case Adaptation in case of intervals
Constant
proportionality

The inputs required to produce one
unit of each good are constant,
regardless of the production level.

The technical coefficients become âij intervals
to represent uncertainty or variability in input
requirements.

Sector independence Each sector depends solely on the
other sectors via fixed technical
coefficients.

Sector dependencies are expressed in terms
of ranges of values, allowing more flexible
relationships to be modeled.

Technology stability The technology used to produce
goods remains unchanged over the
period.

Technological stability is represented by inter-
vals, allowing for potential variations in tech-
nologies or production methods.

Fixed external
demand

Final demand Y is given and
constant.

Final demand becomes a vector of intervals,
reflecting variations in demand.

No substitution Inputs from one sector cannot be
replaced by inputs from another
sector.

This assumption is retained in the interval
case, but intervals offer flexibility for modeling
potential variations in utilization ratios.

No excess capacity Each sector produces exactly what
is needed.

This assumption is retained, but the uncertainties
in total production are calculated to take account
of possible variations in the final demand vector.

3.2. Applying Gauss-Seidel algorithm using generalized interval numbers in the Leontief model to estimate the
level of production : The case of Morocco 2013

The Moroccan economy counts 12 economic regions. Considering this regional macroeconomic identity of
Morocco, the components of the gross regional product are solely made up of sectoral variables such as gross
output, added value, household final consumption, and employment [10].

These different values can be put into a table, called the (IIOM-MOR) [table 2]. The rows of the [table 2]
indicate the distribution of production among the different regions in millions of (MAD), while the columns
determine the consumption of each region. We have also included the regional demand for imported products (the
last row) which has been estimated by considering the structure of demand by need, and international exports by
region (last column).

It is possible to add up the figures in each column, thus obtaining the cost of production for each region. On the
other hand, the sum of the corresponding line gives the total consumption of each region (the values are in millions
of MAD) [table 3].
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Table 3. Interregional commerce in Morocco, 2013 (million MAD)[7]

• R1 R2 R3 R4 R5 R6 R7
R1 69980 2187 3537 3911 1218 12832 2171
R2 2681 54731 3813 2401 995 7686 1414
R3 5956 5656 81361 6755 2346 18203 2860
R4 7778 3291 6460 111369 2753 37929 4284
R5 2018 1189 2394 2673 39855 18271 4089
R6 34756 18362 27080 52858 19104 215240 35012
R7 3899 2319 3308 5759 4330 25670 85581
R8 1056 810 1655 1131 693 4768 1080
R9 2974 2088 2540 3767 2187 12059 5128
R10 295 175 257 376 188 1094 430
R11 438 269 365 437 209 2729 497
R12 80 63 89 79 43 236 80
IMP 48842 26748 37534 47534 21206 160187 41340

R8 R9 R10 R11 R12 EXP
1224 1479 282 565 414 20098
1335 1068 225 583 409 8447
2768 1956 408 904 636 9157
2065 2505 625 1117 686 17403
997 2038 270 537 359 15242

10375 16944 3220 4212 2862 120080
1774 4588 832 1360 839 10513

23678 835 113 287 198 1466
1421 55014 1923 1732 983 5838
131 943 10547 342 152 1742
179 540 201 14457 314 2847
38 96 23 90 3730 2609

12627 23625 3651 5759 2579 0000

Table 4. Total consumption and production of each region of Morocco, 2013 (in millions of MAD)

• Total consumption Total production
R1 180753 119898
R2 117888 85785
R3 170393 138966
R4 239050 198265
R5 95127 89932
R6 516904 560105
R7 183966 150772
R8 58612 37770
R9 111631 97654

R10 22320 16672
R11 31945 23482
R12 14161 7256
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To determine the production level of each region, we must solve the equation X −AX = Z.

X −AX = Z ⇔ (I −A)X = Z ⇔ X = (I −A)−1Z (1)

We define :

X : The production level of the regions.
A : The technical coefficient matrix (to determine the technical coefficients of production, we simply divide the
inputs of each region by its total production).
AX : Domestic consumption (between the 12 regions).
Z : Vector export.
I : The identity matrix.

With :

A =



0, 5837 0, 0255 0, 0254 0, 0197 0, 0135 0, 0229 0, 0144 0, 0324 0, 0151 0, 0169 0, 0241 0, 0570
0, 0224 0, 6380 0, 0274 0, 0121 0, 0111 0, 0137 0, 0094 0, 0353 0, 0109 0, 01350 0, 0248 0, 0563
0, 0497 0, 0660 0, 5855 0, 0341 0, 0261 0, 0325 0, 0190 0, 0733 0, 0200 0, 0245 0, 03851 0, 0876
0, 0649 0, 0384 0, 0465 0, 5617 0, 0306 0, 0677 0, 0284 0, 0547 0, 0256 0, 0375 0, 0476 0, 0945
0, 0168 0, 0139 0, 0172 0, 0135 0, 4432 0, 0326 0, 0271 0, 0264 0, 0209 0, 0162 0, 0229 0, 0495
0, 2899 0, 2140 0, 1949 0, 2666 0, 2124 0, 3843 0, 2322 0, 2747 0, 1735 0, 1932 0, 1794 0, 3944
0, 0325 0, 0270 0, 0238 0, 0290 0, 0481 0, 0458 0, 5676 0, 0469 0, 0470 0, 0499 0, 0579 0, 1156
0, 0088 0, 0094 0, 0119 0, 0057 0, 0077 0, 0085 0, 0071 0, 6269 0, 0085 0, 0068 0, 0122 0, 0273
0, 0248 0, 0243 0, 0183 0, 0190 0, 0243 0, 0215 0, 0340 0, 0376 0, 5633 0, 1153 0, 0737 0, 1354
0, 0025 0, 0020 0, 0019 0, 0019 0, 0020 0, 0019 0, 0028 0, 0035 0, 0096 0, 6327 0, 0145 0, 0209
0, 0036 0, 0031 0, 0026 0, 0022 0, 0023 0, 0049 0, 0033 0, 0047 0, 0055 0, 0120 0, 6156 0, 0433
0, 0006 0, 0007 0, 0006 0, 0004 0, 0005 0, 0004 0, 0005 0, 0010 0, 0009 0, 0014 0, 0038 0, 5140


And

Z =



20098
8447
9157
17403
15242
120080
10513
1466
5838
2847
1742
2609



From (1), we find :
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X =



119899.7890
85794.3109
138968.1226
198267.7031
89933.4731
560115.8013
150776.0223
37772.3468
97655.3334
16675.4799
23480.7273
7254.9865


We notice that the [R6] (Casablanca-Settat) region has the highest level of production of the whole country with
an amount of 560115.8013 millions MAD, on the other hand the [R12] region (Dakhla-Oued Ed-Dahab) has the
lowest level of production of the whole country with an amount of 7254.9865 millions MAD.

3.3. The advantages of changing a fixed Leontief coefficient per interval that contains it

A country’s growth rate is a measure of the change in gross domestic product (GDP) or other economic indicators
over a given period, generally expressed as a percentage. It is a key indicator for assessing the health of a country’s
economy and its ability to create wealth and improve living standards. A country’s growth rate can be influenced
by many factors, such as investment, consumption, exports, government policies, political stability, technological
innovation, and so on.
The assumption of a fixed Leontief coefficient means that the production process in each industry or sector is
constant, indicating that the inputs required to produce a unit of output do not change. However, the elements
required for production can vary for many reasons, such as technological advances, changes in the skills of the
workforce, and the availability of resources. Therefore, using fixed Leontief coefficients could produce incorrect
results when assessing the effect of policy changes or external shocks on the economy.
By using interval arithmetic and integrating the growth rate into the Leontief matrix and the export matrix, we
replace each coefficient of these two matrices with an interval that surrounds them. We therefore obtain matrices
whose intervals reflect the uncertainty associated with each coefficient.
As a result, this change offers a range of potential outcomes that can be used for decision-making purposes. For
example, it can make it easier to identify the most unfavorable and the most favorable scenarios, which can help to
guide risk management tactics.
This approach takes better account of the uncertainty of technical coefficients, which are difficult to estimate
accurately. This approach provides a formal representation of this uncertainty.
These intervals capture possible changes in technology coefficients over time, providing a more realistic model of
economic relationships subject to fluctuations. This allows policy decision-makers and analysts to understand the
range of changes associated with forecasts.

3.4. Application : Estimated production levels by region in Morocco in 2014

Consider the technical coefficient matrix with an uncertainty of ±2.67% which is the annual growth and decline
rate that has been forecasted in Morocco in 2014.
Considering the uncertainty, each element ai of the technical coefficient matrix will be replaced by an interval in
form :[
ai − (

2.67ai
100

); ai + (
2.67ai
100

)

]
, it facilitates the identification of best-case and worst-case scenarios by

simultaneously considering the uncertainty of growth and decline rates, thus providing the flexibility needed to
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adapt to economic changes. The impact of economic development on the interaction between sectors can be
realistically simulated based on the growth rate adjustment coefficient.
We find :
From column 1 up to 6

Â =

[0.5681, 0.5992] [0.0248, 0.0262] [0.0248, 0.0262] [0.0192, 0.0202] [0.0132, 0.0139] [0.0223, 0.0235]
[0.0218, 0.0230] [0.621, 0.6550] [0.0267, 0.0282] [0.0117, 0.0124] [0.0107, 0.0113] [0.0133, 0.0141]
[0.0483, 0.0510] [0.0641, 0.0676] [0.5698, 0.6011] [0.0331, 0.0349] [0.0253, 0.0268] [0.0316, 0.0334]
[0.0631, 0.0666] [0.0373, 0.0393] [0.0452, 0.0477] [0.5467, 0.5767] [0.0297, 0.0314] [0.0659, 0.0695]
[0.0163, 0.0172] [0.0134, 0.0142] [0.0167, 0.0176] [0.0131, 0.0138] [0.4313, 0.4550] [0.0317, 0.0334]
[0.2821, 0.2976] [0.2083, 0.2197] [0.1896, 0.2] [0.2594, 0.2737] [0.2067, 0.2180] [0.3740, 0.3945]
[0.0316, 0.0334] [0.0263, 0.0277] [0.0231, 0.0244] [0.0282, 0.0298] [0.0468, 0.0494] [0.0446, 0.0470]
[0.0085, 0.0090] [0.009, 0.0096] [0.0115, 0.01227] [0.0055, 0.0058] [0.0075, 0.0079] [0.0082, 0.0087]
[0.0241, 0.0254] [0.0236, 0.0249] [0.0177, 0.0187] [0.0184, 0.0195] [0.0236, 0.0249] [0.0209, 0.0221]
[0.0023, 0.0025] [0.0019, 0.0020] [0.0018, 0.0019] [0.0018, 0.0019] [0.002, 0.0021] [0.0019, 0.002]
[0.0035, 0.0037] [0.003, 0.0032] [0.0025, 0.0026] [0.0021, 0.0022] [0.0022, 0.0023] [0.0047, 0.005]
[0.0006, 0.0006] [0.0007, 0.0007] [0.0006, 0.0006] [0.0003, 0.0004] [0.0004, 0.0004] [0.0004, 0.0004]


From column 7 up to 12



[0.0140, 0.0148] [0.0315, 0.0332] [0.0147, 0.0155] [0.0164, 0.0173] [0.0234, 0.0247] [0.0555, 0.0586]
[0.0091, 0.0097] [0.0344, 0.0362] [0.0106, 0.0112] [0.0131, 0.0138] [0.0241, 0.0255] [0.0549, 0.0578]
[0.0184, 0.0195] [0.0713, 0.0752] [0.0194, 0.0205] [0.0238, 0.0251] [0.0374, 0.0395] [0.0853, 0.0899]
[0.0276, 0.0291] [0.0532, 0.0561] [0.0249, 0.0263] [0.0364, 0.0384] [0.0462, 0.0488] [0.0920, 0.0970]
[0.0263, 0.0278] [0.0256, 0.0271] [0.0203, 0.0214] [0.0157, 0.0166] [0.0222, 0.0234] [0.0481, 0.0507]
[0.2260, 0.2384] [0.2673, 0.2820] [0.1688, 0.1781] [0.1880, 0.1983] [0.1745, 0.1841] [0.3838, 0.4049]
[0.5524, 0.5827] [0.0457, 0.0482] [0.0457, 0.0482] [0.0485, 0.0512] [0.0563, 0.0594] [0.1125, 0.1186]
[0.0069, 0.0073] [0.6101, 0.6436] [0.0083, 0.0087] [0.0065, 0.0069] [0.0118, 0.0125] [0.0265, 0.0280]
[0.0331, 0.0349] [0.0366, 0.0386] [0.5483, 0.5783] [0.1122, 0.1184] [0.0717, 0.0757] [0.1318, 0.1390]
[0.0027, 0.0029] [0.0033, 0.0035] [0.0093, 0.0099] [0.6158, 0.6495] [0.0141, 0.0149] [0.0203, 0.0215]
[0.0032, 0.0033] [0.0046, 0.0048] [0.0053, 0.0056] [0.0117, 0.0123] [0.5991, 0.6320] [0.0421, 0.0444]
[0.0005, 0.0005] [0.0009, 0.0010] [0.0009, 0.001] [0.0013, 0.0014] [0.003, 0.003] [0.5, 0.5277]


And as for the export vector, we replace each element zi of the export vector by an interval in the form[
zi − (

2.67ai
100

); zi + (
2.67ai
100

)

]
We find :



[19561.38, 20634.62]
[8221.465, 8672.535]
[8912.508, 9401.492]
[16938.34, 17867.66]
[14835.04, 15648.96]
[116873.9, 123286.1]
[10232.3, 10793.7]
[1426.858, 1505.142]
[5682.125, 5993.875]
[1695.489, 1788.511]
[2770.985, 2923.015]
[2539.34, 2678.66]
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To determine the production level of each region taking into account the proposed uncertainty, one must solve the
equation : X̂ − ÂX̂ = Ẑ

X̂ − ÂX̂ = Ẑ ⇔ (Î − Â)X̂ = Ẑ

By applying the Gauss-Seidel algorithm using generalized interval numbers, we find :

X̂=



[100724.66, 146235.25]
[69600.76, 108560.79]
[111465.35, 177764.24]
[161471.77, 249678.72]
[75476.16, 109852.86]
[472073.36, 681750.30]
[121584.75, 191787.33]
[29724.70, 49253.83]
[78148.25, 125185.95]
[13548.07, 21070.34]
[19372.85, 29176.96]
[6548.03, 8150.17]



Figure 1. Estimation of the production level of each region of Morocco

Figure [1] provides a visual illustration of the impact of using interval arithmetic on Leontief production level
estimates. The resulting production intervals highlight the range of possible values, underlining the inherent
variability of the input data and the complex interactions between economic sectors. This visual representation
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enhances understanding of the uncertainties associated with forecasting, while providing insight into the
advantages of the interval approach over conventional methods based on point values.

The results obtained confirm that this method can effectively evaluate optimistic and pessimistic economic
scenarios while identifying sectors that are sensitive to variations in the parameters. Although the study focused
on the Moroccan economy, the methodology easily adapts to other countries and economic contexts, particularly
those sharing similar structures. However, the effectiveness of this approach depends on the rigorous structuring
of the data and careful estimation of the interval amplitudes, as an incorrect transformation of the real coefficients
into interval coefficients can compromise the reliability and significance of the results.

3.5. Application 2: Economic impact of increased exports for Washington State 1987

This application uses the direct purchase coefficients estimated for the State of Washington in 1987 with an
uncertainty of 10%, as presented in [Table 5] (the technology interval matrix from the table in Chase et al.,
1993)[14]. The objective is to estimate the total economic impact of an economic shock caused by an increase
in exports of natural resources worth between 30 and 40 million, manufacturing products worth between 40
and 45 million, commercial services and personal consumption worth between 50 and 60 million, and personal
consumption worth between 100 and 110 million.

Table 5. 1987 Washington State Input-Output Study : Direct Purchase Coefficient Table with ± 10 % uncertainty

Sectors Natural resources Manufacturing Trade and services Personal consumption
Natural resources [0.0947, 0.115] [0.0385, 0.04707] [0.00258,0.00316] [0.00274, 0.00336]
Manufacturing [0.0743, 0.0910] [0.097, 0.1196] [0.0525, 0.0642] [0.0289, 0.03534]
Trade and services [0.0780, 0.0953] [0.0917, 0.1121] [0.1828, 0.2235] [0.3199, 0.3911]
Personal consumption [0.5627, 0.6879] [0.3103, 0.3794] [0.5495, 0.6717] [0.0718, 0.0878]

We put:

Â =


[0.0947, 0.115] [0.0385, 0.04707] [0.00258, 0.00316] [0.00274, 0.00336]
[0.0743, 0.0910] [0.097, 0.1196] [0.0525, 0.0642] [0.0289, 0.03534]
[0.0780, 0.0953] [0.0917, 0.1121] [0.1828, 0.2235] [0.3199, 0.3911]
[0.5627, 0.6879] [0.3103, 0.3794] [0.5495, 0.6717] [0.0718, 0.0878]

 and B̂=


[30; 40]
[40; 45]
[50; 60]
[100, 110]


The aim is to assess the total economic impact of a forecast increase in the financial sectors, taking account of the
uncertainties associated with the coefficients. We apply the Leontief model and the Gauss-Seidel method to the
resolution of linear systems with interior coefficients applied to the modelled system (Î − Â)X̂ = B̂.
We find :

X̂=


[30.18, 43.61]
[32.47, 47.51]
[10.91, 65.40]
[12.59, 84.86]


The results of the total economic impact, expressed as intervals, show that the natural resources sector would
contribute between 30.19 and 43.61 million dollars, while the manufacturing sector would generate between
32.47 and 47.51 million dollars. The trade and services sector shows a more uncertain contribution, varying
between 10.91 and 65.40 million dollars, while the personal consumption sector shows a wide range, between
12.59 and 84.86 million dollars. In economic terms, these results highlight the industries that are most sensitive
to uncertainties and where efforts to improve data accuracy could have the greatest impact on improving the
reliability of global forecasts.
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3.6. Improving Sensitivity Analysis by Interval Arithmetic in Economic Models

Sensitivity analysis is a crucial step in the study of complex economic systems. It consists of assessing the extent
to which variations in the input parameters influence the model’s results. This approach is essential for identifying
critical parameters, improving the robustness of forecasts, and increasing confidence in the results obtained. In the
context of this research, interval arithmetic offers an innovative approach to sensitivity analysis, making it possible
to quantify the uncertainty inherent in economic data and modeling assumptions.
Unlike traditional methods, which use fixed values for the parameters, the interval arithmetic approach represents
these parameters by intervals that frame them. This makes it possible to take account of the uncertainties associated
with coefficient estimates, which are often unavoidable in economic models. Sensitivity analysis in this context is
carried out by observing the impact of variations in one or more input intervals on the bounds of the calculated
results.
To demonstrate the effectiveness of this approach, we have applied sensitivity analysis on the Leontief model
extended to interval arithmetic by going through the following steps:

Definition of Input Parameters: Technical coefficients and final demand levels were defined as intervals based on
observed economic data.
Variation of Intervals: We modified the bounds of these intervals to simulate different levels of uncertainty,
progressively increasing the margins.
Calculation of the results: The Gauss-Seidel method adapted to the intervals was used to solve the associated linear
systems, allowing the bounds of the solutions obtained to be determined.
Identification of Critical Parameters: A comparative analysis was used to identify the parameters whose variations
have the greatest influence on the results, thereby shedding light on the elements of the model that are most sensitive
to uncertainty.

3.6.1. Results and recommendations: When the coefficients of the input parameters (such as technical coefficients
or final demand levels) have extensive ranges, the bounds of the solutions obtained deviate considerably. This
reflects a strong propagation of uncertainty in the model, making the results less meaningful for decision-making.
For example, a model with input coefficients defined by wide intervals may produce economic projections with
extensive margins, limiting their relevance. On the other hand, well-calibrated intervals, reflecting reasonable
estimates of uncertainties, lead to more accurate and usable results. A moderate amplitude ensures that the model
remains sensitive to variations in the parameters while limiting excess uncertainty.
Recommendations:
The intervals must be chosen to reflect the real uncertainties of the economic data without exaggerating them.
A preliminary analysis of the data can help to define the optimal margins for the coefficients, taking into account
the acceptable limits for the amplitude of the intervals.
Testing different amplitudes to assess their impact on the results helps to select intervals that produce meaningful
and reliable projections.

4. Conclusion

In conclusion, the integration of interval arithmetic within the Leontief model represents a significant advance
in economic analysis and decision-making in uncertain environments. The inherent advantages of this approach
over traditional methods are indisputable, opening up new prospects for a better understanding and management
of uncertainties in the complex context of economic interactions. The use of interval arithmetic provides a more
realistic understanding of the variability of production and sensitivity results, taking into account the diversity of
possible scenarios resulting from the inherent uncertainty of the input data. The intervals obtained offer a more
realistic range of values, more accurately reflecting potential fluctuations in the estimates. This gives decision-
makers and economic planners a more complete picture of the implications of variations in economic parameters
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and relationships. Sensitivity analysis also becomes more relevant and informative thanks to the interval approach.
By identifying more precisely the parameters with the greatest impact on results. In short, the application of interval
arithmetic to the Leontief model represents a significant step forward in economic modeling and uncertainty
management.
This approach takes better account of the realities of a complex and uncertain world, making forecasts more reliable
and decisions more robust. Its potential to contribute to more resilient and informed economic planning cannot be
underestimated, opening up new perspectives for economic analysis and strategic decision-making.
This study opens up several promising avenues of research. The first is to integrate probabilistic techniques with
interval arithmetic, making it possible to combine bounded uncertainty with probability distributions to better
model complex systems. Secondly, the development of hybrid algorithms, combining iterative methods such as
Gauss-Seidel with optimization or machine learning approaches, could improve both accuracy and computational
efficiency. Finally, the application of interval arithmetic to dynamic models, including temporal interactions
between economic sectors, could improve our understanding of economic impacts in an evolving context. These
prospects will enable us to push back the current limits and make this approach even more relevant to economic
analysis and public policy.
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