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Function Representation in Hilbert Spaces Using Haar Wavelet Series
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Abstract This work explores the application of integral transforms using Scale and Haar wavelet functions to numerically
represent a function f(t). It is based on defining a vector space where any function can be represented as a linear combination
of orthogonal basis functions. In this case, the Haar wavelet transform is used, employing Haar functions generated from
Scale functions. First, the fundamental mathematical concepts such as Hilbert spaces and orthogonality, necessary for
understanding the Haar wavelet transform, are presented. Then, the construction of the Scale and Haar wavelet functions
and the process for determining the coefficients for function representation are detailed. The methodology is applied to
the function f(t) = t2 over the interval t ∈ [−3, 3], showing how to calculate the series coefficients for different resolution
levels. As the resolution level increases, the approximation of f(t) improves significantly. Furthermore, the representation
of the function f(t) = sin(t) over the interval t ∈ [−6, 6] using the Haar wavelet series is presented.
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1. Introduction

This work aims to demonstrate a specific application of integral transforms, using Scale and Haar wavelet functions
as kernels [1, 2]. The primary objective is to determine the numerical series of a function f(t) that best represents
it. To achieve this, we need to define the mathematical foundation underlying this concept.

We will define the vector space on which we work, where knowing a basis allows us to represent any other
element in the space as a linear combination of the basis elements. In our case, these elements will be functions,
for which we will impose orthogonality to simplify the necessary calculations to determine the coefficients of the
linear combination. Many orthogonal functions are used in literature for representing arbitrary functions, with the
most common being trigonometric sines and cosines, Legendre polynomials, Hermite polynomials, etc. [3, 4, 5].

The Haar wavelet transform is a relatively recent technique where the orthogonal functions consist of a set of
Haar functions generated by a combination of Scale functions [6]. This work will detail how to construct these
orthogonal functions and how to determine the coefficients necessary for representing an arbitrary function as a
linear combination.

In Section 2, we will define the mathematical concepts underlying this application. Section 3 defines the Scale
and Haar wavelet functions, showing detailed calculations for determining the coefficients. Finally, Section 4
presents the application to a function f(t).
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2. Mathematical Preliminaries

This section defines several necessary concepts, such as Hilbert spaces [7, 8], which provide the most immediate
generalization to infinite-dimensional spaces from finite-dimensional Euclidean spaces, preserving geometric
notions such as orthogonality. These foundations are essential to better understand the Haar wavelet transform
as a tool for function representation:

Definition 2.1. A vector space V over the field K is an inner product space if there exists a mapping ⟨·|·⟩ : V × V →
K satisfying the following axioms:

i. ⟨x|x⟩ ≥ 0 ∀x ∈ V ; ⟨x|x⟩ = 0 ⇔ x = 0.
ii. ⟨x|y⟩ = ⟨y|x⟩ ∀x, y ∈ V.

iii. ⟨αx|y⟩ = α⟨x|y⟩ ∀x, y ∈ V, α ∈ K.
iv. ⟨x+ y|z⟩ = ⟨x|z⟩+ ⟨y|z⟩ ∀x, y, z ∈ V.

Every inner product space (V, ⟨·|·⟩) is a normed space if we define:

∥x∥ =
√

⟨x|x⟩. (1)

Now, every normed space (V, ∥ · ∥) gives rise to a metric space (V, d) (and thus to a topological space) where:

d(x, y) = ∥x− y∥. (2)

In this work, we are interested in the vector spaceL2([a, b]) of Lebesgue-measurable functions on the real interval
[a, b] with integrable square [9]:

L2([a, b]) =

{
x : [a, b] → K |x is Lebesgue measurable,

∫ b

a

|x(t)|2 dt <∞

}
,

where pointwise algebraic operations are defined, and the inner product is defined by:

⟨x|y⟩ =
∫ b

a

x(t)y(t) dt, ∀x, y ∈ L2([a, b]). (3)

Definition 2.2. An inner product space (X, ⟨·|·⟩) is called a Hilbert space if the metric space (X, d) is complete,
where d is defined as in 2 and the norm is given by 1.

Recall that a metric space (X, d) is said to be complete if every Cauchy sequence in X converges to an element
of X .

In a metric space (X, d), the distance δ from an element x ∈ X to a non-empty subset M ⊂ X is defined as:

δ = inf
y∈M

d(x, y). (4)

In our work, X will be a certain function space, and M will be a subset of X consisting of well-behaved
functions, such as the scale and Haar wavelet functions. It is important to determine if there exists a unique ỹ ∈M
that minimizes the distance to x ∈ X . This constitutes the well-known problem of existence and uniqueness of the
best approximation to x from M [10, 11].

Definition 2.3. A subset M ⊂ X of a vector space is said to be convex if for any x, y ∈M and any λ ∈ [0, 1], we
have λx+ (1− λ)y ∈M .

Theorem 2.4. Every complete, non-empty convex subset M of an inner product space X contains an element with
minimum norm.
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Theorem 2.5. If X is an inner product space and M is a complete, non-empty convex subset of X , then for every
x ∈ X , there exists a unique best approximation to x from M , that is, a unique ỹ ∈M such that

δ = inf
y∈M

∥x− y∥ = ∥x− ỹ∥.

From the previous theorem, if M is a subspace of X with an orthogonal basis {vi}ni=1, then the best
approximation to x from M is given by:

ỹ =

n∑
k=1

ckvk, (5)

where ck = ⟨x|vk⟩.

Definition 2.6. Let (X, ⟨·|·⟩) be an inner product space. Given M ⊂ X , the set

M⊥ = {z ∈ X : z ⊥M} = {z ∈ X : ⟨z|x⟩ = 0∀x ∈M}

is called the annihilator of M .

In the case whereX is a Hilbert space andM is a closed subspace ofX ,M⊥ is called the orthogonal complement
of M .

Definition 2.7. A vector space X is said to be the direct sum of its subspaces Y and Z, denoted X = Y ⊕ Z, if
every x ∈ X can be uniquely written as the sum of an element y ∈ Y and another z ∈ Z. In this case, Y and Z are
said to be complementary subspaces of X .

Theorem 2.8. Let M be a closed subspace of a Hilbert space H . Then H =M ⊕M⊥. More precisely:

1. Every x ∈ H has a unique decomposition x = Px+Qx as the sum of Px ∈M and Qx ∈M⊥.
2. Px and Qx are the best approximations to x ∈ H from M and M⊥, respectively.
3. ∥x∥2 = ∥Px∥2 + ∥Qx∥2.

3. Scale and Haar Wavelet Functions

In this section, we define the base function from the set B ⊂ X that allows us to determine the best approximation
of f ∈ X , known as the Scale Function, where X is the set of functions defined as:

X =
{
f : [a, b] → R | f ∈ L2([a, b])

}
.

Definition 3.1. The Scale function is defined on the set Ω = [0, 1] as follows:

ϕ(t) =

{
1 0 ≤ t < 1,

0 otherwise.
(6)

Now, for f ∈ X , we can determine a unique best approximation from M ⊂ X , meaning there exists a unique
f̃ ∈M such that:

f(t) ≈ f̃(t) =
∑
k∈I

ckϕk(t), (7)

where ϕk(t) = ϕ(t− k) with k ∈ I , an index set, generates the subspace M = span{ϕk(t)}. We define V0 as the
closure of M , that is,

V0 = span{ϕk(t)}. (8)
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Figure 1. Scale Function

It is easy to see that the subspace V0 is orthonormal; therefore, for ck = ⟨f |ϕk⟩ defined as in the inner product 3,
we have:

ck =

∫ k+1

k

f(t)ϕk(t) dt. (9)

If we want to improve the representation of the function f ∈ X , we need to construct a basis with higher
resolution. This involves generating a subspace of Scale functions, called daughter functions, from the Scale
function 6 by scaling and translating:

ϕj,k(t) = 2j/2ϕ(2jt− k), (10)

where the first subscript j ∈ N represents the resolution level, and k ∈ I denotes the translations. Thus, the
representation of f ∈ X will be given by:

f̃(t) =
∑
k∈I

cj,kϕj,k(t), (11)

where

cj,k =

∫ k+1

2j

k

2j

f(t)ϕj,k(t) dt. (12)

Now, we define the orthonormal subspace of functions

Vj = span{ϕj,k(t)} (13)

noting that Vi < Vj for all i < j.

Definition 3.2. The Haar wavelet function is defined on the set Ω = [0, 1] as follows:

ψ(t) =


1 0 ≤ t < 1

2 ,

−1 1
2 ≤ t < 1,

0 otherwise.
(14)
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It can be observed that ψ(t) is orthogonal to ϕ(t) on the interval t ∈ [0, 1], i.e.,

⟨ϕ(t)|ψ(t)⟩ =
∫ 1

0

ϕ(t)ψ(t) dt = 0. (15)
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Figure 2. Haar Wavelet Function

With this orthogonality, we can define the orthogonal complement of M as the set of all functions that can be
obtained through linear combinations of translations of the mother wavelet function:

M⊥ = span{ψk(t)}, (16)

where ψk(t) = ψ(t− k). We define the space W0 as the closure of M⊥, that is,

W0 = span{ψk(t)}. (17)

For a function g ∈ V1, its representation can be decomposed as the sum of Scale and wavelet functions of equal
resolution:

g(t) =
∑
k∈I

c0,kϕ0,k(t) +
∑
k∈I

d0,kψ0,k(t), (18)

or, equivalently, V1 = V0 ⊕W0. In general, we have:

Vj+1 = Vj ⊕Wj , (19)

where Wj is the closure of the space generated by ψj,k(t) = 2j/2ψ(2jt− k). From 19, once the Scale function
is selected, the choice of the wavelet function is not arbitrary.

Finally, the representation of f ∈ X over the space Vj+1 will be given by:

f(t) =
∑
k∈I

cj,kϕj,k(t) +
∑
k∈I

dj,kψj,k(t). (20)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. CAMELO, C. RAMÍREZ, J. GONZÁLEZ 5

4. Results and Simulations

This section presents the calculations and conditions required to obtain the best representation of the function f(t)
over a predefined interval. We start by analyzing the function f(t) = t2 over the interval t ∈ [−3, 3] to simplify the
calculation of the series coefficients.

Before calculating these coefficients, we verify that f ∈ X , i.e., f ∈ L2([−3, 3]), which means:∫ 3

−3

f2(t) dt < +∞.

This integral yields: ∫ 3

−3

t4 dt =
486

5
< +∞.

Thus, we can guarantee that a unique best approximation of f exists over the space Vj .
Using equation 20, we select the resolution level j. For j = 0, we have:

f(t) ≈
∑
k

c0,kϕ0,k(t) +
∑
k

d0,kψ0,k(t),

where c0,k = ⟨f |ϕ0,k⟩ and d0,k = ⟨f |ψ0,k⟩.
Expanding the expressions for c0,k and d0,k, we get:

c0,k =

∫ k+1

k

t2 dt =
3k2 + 3k + 1

3
,

for all k ∈ Z within the range k = −3 to k = 2, as defined by the interval of approximation. Similarly, the
coefficients for the Haar wavelet functions are given by:

d0,k =

∫ k+0.5

k

t2 dt−
∫ k+1

k+0.5

t2 dt =
2k − 1

4
.

To improve the approximation, we increase the resolution level. For j = 1, we calculate twice the coefficients
for both c0,k and d0,k, now denoted c1,k and d1,k, respectively. They are given by:

c1,k =

∫ (k+1)/2

k/2

t2 dt =
3k2 + 3k + 1

12
√
2

,

and

d1,k =

∫ (k+0.5)/2

k/2

t2 dt−
∫ (k+1)/2

(k+0.5)/2

t2 dt = −2k + 1

16
√
2
.

As shown, the approximation of f(t) = t2 improves significantly with an increased resolution level. At a high
enough resolution, such as j = 4, the functions become indistinguishable from the original function, as shown in
Figure 5.

Now, for f(t) = sin(t) over the interval t ∈ [−6, 6], its Haar wavelet series representation at resolution level
j = 2 is given by:

sin(t) ≈
∑
k

c2,kϕ(4t− k) +
∑
k

d2,kψ(4t− k).

Finally, in Figure 7, we present the representation of a piecewise function:

f(t) =


t2 −6 ≤ t < 0,

36− 6t 0 ≤ t < 6,

0 otherwise,
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Figure 3. Haar Wavelet Series Representation with j = 0
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using both Fourier series and Haar wavelet series. It is evident that in the Fourier series representation of
discontinuous functions, the Gibbs phenomenon appears as overshoots near the discontinuities. In contrast,
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Figure 5. Haar Wavelet Series Representation with j = 4
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Figure 6. Haar Wavelet Series Representation for f(t) = sin(t)

Haar wavelets, due to their time and frequency localization properties, allow a more accurate representation of
discontinuous functions, avoiding the overshoots typical of Fourier series.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 FUNCTION REPRESENTATION IN HILBERT SPACES USING HAAR WAVELET SERIES

−6 −4 −2 0 2 4 6
t

0

5

10

15

20

25

30

35
f(t
)

Approximation level j=2
Fourier Series
Haar Wavelet serie
f(t)

Figure 7. Representation of a Discontinuous Function using Fourier and Haar Wavelet Series

5. Conclusion

The representation of functions using Haar wavelet series has had a significant impact in recent decades due to
its simplicity compared to Fourier series representation. Haar wavelet series allow for efficient approximation of
functions, especially those with discontinuities, while avoiding the overshoots known as the Gibbs phenomenon,
which commonly occur in Fourier series.

In this work, we have presented a detailed construction of the spaces Vj+1 and the necessary conditions for an
arbitrary function f ∈ X to be approximated as a partial sum of Scale and Haar wavelet functions. We demonstrated
the orthogonality calculations of the functions ϕk(t) and ψk(t), and applied this method to functions like f(t) = t2

and f(t) = sin(t), showing how to calculate the series coefficients at different resolution levels.
By increasing the resolution level from j = 0 to j = 4, we observed a significant improvement in the

approximation of f(t) = t2. This ability to adjust the resolution level makes Haar wavelet series a powerful tool for
achieving high accuracy in function approximations. The simplicity of calculating the coefficients is a key aspect
that makes Haar wavelet series an accessible and efficient method for numerical representation.

In future research, the application of Haar wavelet transforms could be extended to more complex functions
and problems. Additionally, comparing the effectiveness of Haar wavelets with other types of wavelets, such as
Daubechies or Morlet, in various fields, including signal processing and image compression, would help further
expand the scope and utility of wavelet methods in both theoretical and applied fields.

This work highlights the importance of wavelet methods in areas requiring precise and localized function
representations, which can be particularly useful in technological applications where data compression and noise
reduction are critical.
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