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Abstract Total variation-based methods are effective for magnetic resonance image restoration. To eliminate impulse
noise, the ℓ0-norm total variation model is a proven approach. However, traditional total variation image restoration often
results in staircase artifacts, especially at high noise levels. In this paper, we propose an innovative magnetic resonance
image restoration model that integrates fractional-order regularization and filtering techniques. Specifically, the first term
uses the ℓ0-norm as the data fidelity term to effectively remove impulse noise. The second term introduces a fractional-order
total variation regularizer, which preserves structural information while reducing staircase artifacts during deblurring. Due
to its limitations in texture detail recovery, we employ recursive filtering for high-quality edge-preserving filtering. Finally,
we solve the optimization model using the alternating direction method of multipliers. Experimental results demonstrate the
effectiveness of our method in restoring magnetic resonance images.
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1. Introduction

Magnetic Resonance (MR) imaging is a powerful tool in the field of medical imaging, used for diagnosing and
monitoring various diseases. However, the quality of MR images can often be compromised by the presence of
impulse noise, which appears as sparsely occurring white and black pixels. This type of noise can significantly
degrade image quality, making it difficult for medical professionals to interpret the images accurately. Impulse
noise in MR images can arise from several factors, including hardware faults, transmission errors, and other
interferences. The challenge of image restoration lies in developing effective methods to remove this noise while
preserving important details and edges in the images.

In the quest to eliminate impulse noise from MR images, a spectrum of methodologies has been meticulously
investigated. Among these, regularization techniques and filtering strategies stand out as particularly effective. A
cornerstone in the realm of medical image restoration is the total vriation (TV) model, which has demonstrated
remarkable efficacy in denoising, deblurring, segmentation, and superresolution tasks. However, the TV model
encounters limitations when confronted with noise in piecewise affine regions, often manifesting as undesirable
staircase artifacts. To address this limitation, a variety of regularization techniques have been introduced. Such as,
the High-Order TV method [3], Non-Convex High-Order TV [4], Fractional-Order TV (FOTV). [5] and [6] are
among the notable advancements, their numerical experiments showed that their methods alleviated the staircase
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effect effectively. Additionally, [2] introduced the Overlapping Group Sparse Fractional-Order TV (OGSTV),
which has garnered attention for its refined approach. Besides, [10] proposed an enhanced ℓ1-NCFOTV method,
which promises to elevate the restoration precision of images afflicted by impulse noise and to diminish the staircase
effect.

In the realm of filtering, the median filter (MF) and adaptive median filter (AMF) [22] have long been established
as fundamental tools in denoising efforts. Despite their widespread use, these filters struggle with high noise
intensities, leading to the development of more advanced techniques such as recursive filtering, recursive mean
filtering, a non-local adaptive mean filter (NAMF) [8] and improved median filter [9]. Additionally, recursive
filtering demonstrates effective performance in restoring edges. To effectively eliminate impulse noise, the ℓ2-
norm [1] is sensitive to outliers and can easily result in unsatisfactory image restoration. It is commonly used for
images degraded by additive Gaussian noise. There has been a growing interest in using an ℓ1-fidelity term instead
of the ℓ2-fidelity term for image restoration, as seen in many studies such as [11, 12]. Numerical evidence clearly
indicates that the proposed method has made substantial advancements in its capacity for restoration. While the
ℓ1-norm has been recognized for its benefits in sparse signal processing and image restoration, it has been noted
that it might excessively penalize the resulting solution in the context of impulse noise elimination, as highlighted
by [7].

To circumvent this issue, a method for removing impulse noise using ℓ0 total variation (ℓ0-TV) was proposed in
[13]. This method employs the ℓ0-norm for the data fidelity and uses the proximal alternating direction method of
multipliers (ADMM) for image restoration. The empirical evidence show better performance than ℓ1-norm based
methods. Consequently, this indicates that ℓ0-norm is suitable for the restoration of images distorted by impulse
noise. The image restoration of the optimization problem can be depicted as

min
u

∥o⊙ (Hu− b)∥0 + λϕTV (u), (1)

where u ∈ Rn×m is the desired original clean image, b ∈ Rn×m is the degraded image, λ > 0 is the regularization
parameter, o ∈ {0, 1}n is specified by the user, ⊙ denotes an elementwise product, H ∈ Rn×n represents a
linear operator. Another circumstance, when H = I , the identity operator, the problem simplifies to one of noise
reduction.

In recent work, the ℓ0-norm has been employed as a data fidelity criterion for impulse noise elimination.
[2] proposed the ℓ0-norm with an OGSTV and MC penalty model, significantly enhancing image restoration
performance, especially under high impulse noise conditions. [14] proposed ℓ0-OGSTV model effectively
diminishes staircasing artifacts and precisely restores images marred by impulse noise. [15] successfully
incorporated the ℓ0-norm data fidelity term into a nonconvex generalized regularization framework, improving the
model’s ability to preserve sharp image contours while minimizing staircase artifacts. Collectively, these models
demonstrate the effectiveness of the ℓ0-norm in restoring images affected by impulse noise.

1.1. Contributions

To the best of our knowledge, the combination of ℓ0-norm data fidelity, fractional-order total variation and recursive
filtering has not been addressed by any of the existing optimization models. Therefore, this has motivated us to
combine them for the restoration of MR images in medical imaging. In this article, we focus on addressing the
challenge of restoring MR image in medical imaging that have been degraded by blurred boundaries and residual
noise. The model comprises an ℓ0-norm data fidelity term to restore images from impulse noise, a regularizer of
fractional-order total variation (FOTV) to eliminate the staircase effects, and the recursive filtering to improve edge
quality significantly. Our method capitalizes on the strengths of the forward-backward total variation to provide
superior denoising capabilities, effectively mitigating the staircasing artifacts. Additionally, the recursive filtering
technique employed not only refines the texture details within medical images, but also reduces the computational
process. We employ the alternate direction multiplier algorithm to solve the subproblems. Finally, we conduct
numerical experiments to analyze the effectiveness of our proposed model, and the numerical results show our
method is very effective.
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1.2. Organization

The rest of this article is organized as follows. In Section 2 introduces fundamental ideas and preliminary
information pertinent to the proposed algorithm. In Section 3, we propose a novel framework aimed at eliminating
blur and impulse noise and derive an efficient algorithm to solve the corresponding minimization problem. In
Section 4, the superiority of the proposed method is proved by numerical experiments. Finally, a conclusion is
made in Section 5.

2. Preliminaries

In this section, we briefly review a few key components of the ℓ0-norm fidelity term, the discrete fractional-order
difference, the recursive filtering and the alternating direction method of multipliers framework.

2.1. The ℓ0 Fidelity Term

Initially, we provide an overview of the essential definitions and characteristics associated with ℓ0-norm fidelity
term. In the expression ∥o⊙ (Hu− f)∥0, the o ∈ {0, 1}n is specified by the user. Specifically, when oi = 0, it
implies the pixel in position i is an outlier, while when oi = 1, it implies the pixel in position i is a potential outlier.

For this paper, we set oi =

{
0, ti = umin or umax

1, otherwise
for the impulse noise.

The following lemma, as meticulously outlined in the work of [13], elucidates the variational formulation that
underpins the ℓ0-norm.

Lemma 1
For any given w ∈ Rn, it holds that

∥w∥0 = min
0≤z≤1

< 1, 1− z >,

s.t. z ⊙ |w| = 0,
(2)

and z∗ = 1− sign(|w|) is the unique optimal solution to problem Eq. (2). Here, the standard signum function sign
is employed in component form, and sign(0) = 0.

The result of Lemma 1 implies that the ℓ0-norm minimization problem in (1) is equivalent to

min
0≤u,z≤1

< 1, 1− z > +λ ∥∇u∥1

s.t. z ⊙ |o⊙ (Hu− b) | = 0.
(3)

If u∗ is an overall optimal solution of Eq. (1), then (u∗, 1− sign (|Hu∗ − b|)) is overall optimal solution of Eq. (3).
In a similar manner, if u∗ is a global Ideal solution of Eq. (3), then (u∗, 1− sign (|Hu∗ − b|)) is an overall optimal
solution of Eq. (1). The ability of ℓ0-norm has proven to be remarkably effective in restoring images, offering
superior performance.

2.2. Fractional-Order Total Variation

Given an image domain Ω ⊂ R2, we discretize it as a rectangular grid {(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}.
Consequently, the image discretized on the Euclidean plane RM×N , denoted as ui,j = u (xi, yj). Let Cα

0 (Ω) with
α > 0 be the space of α-order continuously differentiable functions defined on Ω with compact support. Based on
the GL fractional-order derivatives, the discrete form of the fractional-order gradient ∇au can be evaluated by

∇αu = [Dα
xu,D

α
y u], (4)

where α is the fractional-order and we set 1 ≤ α < 2 in this paper, where the fractional-order derivatives
(Dα

xu), (D
α
y u) ∈ RM×N along the x-axis and the y-axis are approximated by the
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{
(Dα

xu)i,j =
∑K−1

k=0 (−1)kCα
k ui−k,j ,

(Dα
y u)i,j =

∑K−1
k=0 (−1)kCα

k ui,j−k.
(5)

In this context, K denotes the quantity of adjacent pixels employed to calculate the fractional-order derivative for
each pixel. The coefficients {Cα

k }
K−1
k=0 are given by Cα

k = Γ(α+1)
Γ(k+1)Γ(α+1−k) with the Gamma function Γ(x). Hence,

the discrete fractional-order TV of u is expressed in terms of

∥∇α∥1 =
∑
i,j

(∣∣(Dα
xu)i,j

∣∣+ ∣∣(Dα
y u)i,j

∣∣) , (6)

where (∇α)∗ = (−1)αdivα is the conjugate operator of the fractional order gradient operator. In the discrete case,
the vector divαp = (p(1), p(2)) ∈ RN×M ×RN×M discrete fractional-order divergence is defined as [6, 17]

(divαp)i,j = (−1)α
K−1∑
k=0

(−1)kCα
k (p

(1)
i+k,j + p

(2)
i,j+k). (7)

Observe that the divergence Eq. (7) is the adjoint of the gradient Eq. (4).

2.3. Recursive Filtering

The first-order recursive filtering was initially introduced by [16]. Denoting I [u] and J [u] are the noisy image and
the denoising image, respectively. Recursive filtering computes J [u] recursively.

J [u] = (1− a)d[u]I [u] + ad[u]J [u− 1] , (8)

where a ∈ [0, 1] is a feedback coefficient, and its implementation in O(N) time is straight forward. Besides the
scalar constant a = exp(−

√
2/σs) is a user defined parameter controlling the relative emphasis of I [u] and J [u],

d[u] =1 +
σs

σr
|I[u]− I[u− 1]|

=1 +
σs

σr
|∇I[u]| ,

(9)

where σs and σr represent the spatial and range parameters, respectively. The rapid iteration of the recursion in Eq.
(8) is attributed to the pre-computed values from Eq. (9) and the independent computation of J [u] for each row.
For gray images, one can sequentially perform Eq. (8) forward and backward in two directions. With color images,
it’s necessary to iterate through this operational sequence for each color channel.

As d increases, ad goes to zero, stopping the propagation chain, thus preserving edges. Furthermore, the
expanded recursion of Eq. (8) also elucidates this issue

J [u] =

n∑
ℓ=0

(
ℓ∏

k=0

ad[u−k+1]

)
(1− ad[u−ℓ])I[u− ℓ]. (10)

2.4. Alternating Direction Method of Mltipliers

The alternative direction method of multipliers is a computational framework for solving optimization problems,
which is to solve the following constrained separable optimization problems

min
u,w

f(u) + g(w)

s.t. Au+Bw = d,

u, w ∈ χi, i = 1, 2,

(11)
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where f(·), g(·) : χi → R are closed convex functions, A, B ∈ Rl×n are linear transforms, χi → R are nonempty
closed convex sets, and d ∈ Rl is a given vector. For problem Eq. (11), we establish the augmented Lagrangian
function

LA(u,w;µ) =f(u) + g(w) + µT (Au+Bw − d) +
λ

2
||Au+Bw − d||2, (12)

where µ ∈ Rl is the Lagrange multiplier and λ > 0 is a penalty parameter which controls the linear constraint. The
objective is to find the saddle point of LA by alternatively minimizing LA with respect to u, w and µ. The problem
Eq. (11) is addressed by presenting the ADMM algorithm as Algorithm 1.

Algorithm 1 ADMM for minimizing the problem Eq. (11).
Input: penalty parameter λ > 0, number of iterations.
Initialize: Initial image u0 = b, counter k = 0, Lagrange multipliers µ.
output: Restored image u.

1: For k = 0, compute uk+1, wk+1, µk+1

2: uk+1 = argmin
u

f(u) + λ
2 ||Au+Bwk − d+ µk

λ ||2,

3: wk+1 = argmin
w

g(w) + λ
2 ||Auk+1 +Bw − d+ µk

λ ||2,

4: µk+1 = µk + λ(Auk+1 +Bwk+1 − d),
5: k = k + 1,
6: until a stopping criterion is satisfied.

3. The proposed algorithm

In this part, we first introduce the proposed MR image restoration model and the corresponding solution methods.
Finally, an ADMM solution framework is provided.

3.1. Model

The proposed MR image restoration model is as follows

min
0≤u≤1

∥o⊙ (Hu− b)∥0 + λ1 ∥∇αu∥1 + λ2ϕ(u), (13)

where ∇αu denotes the fractional-order TV. ϕ denotes the recursive filtering. λ1 > 0 and λ2 > 0 represent
regularization parameters.

3.2. Optimization

Using variable splitting, the problem is rephrased as a constrained optimization problem that follows

min
0<u,v≤1

< 1, 1− v > +λ1||x||1 + λ2(z)

s.t.Hu− b = y

v ⊙ |o⊙ y| = 0

∇αu = x, u = z.

(14)
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The corresponding augmented Lagrangian functional is given by

LA(u, v, x, y, z, µv, µx, µy, µz) =< 1, 1− v > +λ1||x||1 + λ2ϕ(z)+ < v ⊙ o⊙ |y|, µv >

+
βv

2
||v ⊙ o⊙ |y|||2+ < Hu− b− y, µy > +

βy

2
||Hu− b− y||2

+ < ∇αu− x, µx > +
βx

2
||∇αu− x||2+ < u− z, µz > +

βz

2
||u− z||2,

(15)

where variables µv, µx, µy, and µz are the Lagrange multipliers associated with the constraints of Eq. (14).
βv, βx, βy, and βz > 0 are the corresponding penalty parameters. We utilize the alternating direction method of
multipliers [18] to solve the proposed model Eq. (15). According to the ADMM scheme, we can alternately solve
for the following problems.

3.2.1. u - subproblem

The u-subproblem is given by

uk+1 = argmin
u

βy

2
||Hu− b− y +

µy

βy
||2 + βx

2
||∇αu− x+

µx

βx
||2 + βz

2
||u− z +

µz

βz
||2. (16)

Based on the first-order optimality conditions, we are tasked with resolving a system of linear equation

u(βyH
TH + βx(∇α)T∇α)+βz) = HT (βy(b+ y)− µy) + (∇α)T (βxx− µx) + βz(z − µ), (17)

where µ = µz

βz
, considering u with periodic boundary constraints. Due to the circulant and circulant blocks (BCCB)

structure, matrices (∇α)T∇α and HTH can be diagonalized by 2D discrete fast Fourier transforms (FFT ).
Therefore, solving for u can be efficiently solved using 2D FFT and 2D FFT inverse operations. The process for
acquiring the optimal u is outlined as follows

uk+1 = F−1

(
F(κ)

F [βyHTH + βx(∇α)T (∇α) + βz]

)
, (18)

where κ = HT (βy(b+ y)− µy) + (∇α)T (βxx+ µx) + βz(z − µ), F and F−1 represent the Fourier transform
and its inverse.

3.2.2. v - subproblem

The v subproblem can be written as

vk+1 = argmin
v

⟨1, 1− v⟩+ < v ⊙ o⊙ |yk|, µv
k > +

βv
k

2
||v ⊙ o⊙ |yk|||2. (19)

The v-subproblem in Eq. (19) is equivalent to

vk+1 = argmin
v

1

2
βvo⊙ yk ⊙ yk ⊙ v2 + v

(
µk
v ⊙ o⊙

∣∣yk∣∣− 1
)
, (20)

therefore, projection method is engaged to find the solution vk+1

vk+1 = min

(
1,max

(
0,−

µk
v ⊙ o⊙

∣∣yk∣∣− 1

βvo⊙ yk ⊙ yk

))
. (21)
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This subproblem mentioned is a projection onto a convex set, ensuring that the pixel values of the restored image
remain within the range of 0 to 1.

3.2.3. y - subproblem

Solving the y-subproblem involves employing a soft thresholding technique coupled with a shrink operator.
The formula is presented as follows

yk+1 = argmin
y

< vk+1 ⊙ o⊙ |y|, µv
k > +

βv
2
||vk+1 ⊙ o⊙ |y|||2+ < Huk+1 − b− y, µy

k > +
βy
2
||Huk+1 − b− y||2,

(22)

Eq. (22) holds equivalence to Eq. (23)

yk+1 = argmin
y

βy

2

∥∥∥∥∥y −
(
Huk+1 − b+

µk
y

βy

)∥∥∥∥∥
2

+
βv

2

∥∥∥∥vk+1 ⊙ o⊙ |y|+ µk
v

βv

∥∥∥∥2 . (23)

By expanding Eq. (23) and discarding the constant terms, we can rewrite Eq. (23) as

yk+1 = argmin
y

1

2

∥∥∥∥∥∥y −
βy(Huk+1 − b+

µk
y

βy
)

βy + βv(vk+1 ⊙ o)2

∥∥∥∥∥∥
2

+
vk+1 ⊙ o⊙ µk

v

βy + βv(vk+1 ⊙ o)2
⊙ |y|. (24)

The optimal solution is obtained by employing a four-dimensional shrinkage operator. Upon simplifying Eq. (24),
we arrive at the following result

yk+1 = shrink

βy(Huk+1 − b+
µk
y

βy
)

βy + βv(vk+1 ⊙ o)2
,

vk+1 ⊙ o⊙ µk
v

βy + βv(vk+1 ⊙ o)2

 , (25)

where shrink(s, γ) = sgn(s)⊙max {∥s∥1 − γ, 0}, and sgn(·) denotes the signum function.

3.2.4. x - subproblem

Variable x in Eq. (26) isupdated by solving the following problem:

xk+1 = argmin
x

βx

2

∥∥∥∥x−
(
∇αuk+1 +

µx

βx

)∥∥∥∥2 + λ1||x||1. (26)

With the aid of the previously mentioned shrinkage operator, the x-subproblem can be directly tackled.

3.2.5. z - subproblem

The z-subproblem is a recursive filtering issue, with the specific form as follows

zk+1 = argmin
z

βz

2
∥z − (u+ µ)∥2 + λ2ϕ(z), (27)
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we define ϑ =
√

λ2

βz
and z̃(k) = u+ µ, substitute it into Eq. (27).

zk+1 = argmin
z

1

2ϑ2

∥∥∥z − z̃(k)
∥∥∥2 + ϕ(z), (28)

where z̃(k) donates the ‘blurry’ image, Eq. (28) minimizes the residue between z̃(k) and the ‘clean’ image z by
employing the prior ϕ(z).

Expanding on this insight, [19] proposed that the ADMM algorithm can be executed without the prior
speciffication of ϕ. Consequently, we may utilize recursive filtering for the resolution of Eq. (28). Denoted by
ϕ

zk+1 = ϕϑ

(
z̃(k)
)
. (29)

Finally, the Lagrange multipliers are updated by the following
µk+1
x = µk

x + βx(∇αuk+1 − xk+1)

µk+1
y = µk

y + βy(Huk+1 − b− yk+1)

µk+1 = µk
z +

(
uk+1 − zk+1

)
µk+1
v = µk

v + βv

(
vk+1 ⊙ o⊙

∣∣yk+1
∣∣) .

(30)

Our method is systematically presented in Algorithm 2.

Algorithm 2 solving the minimization problem Eq. (13).
Input: Regularization parameter λ2 > 0, α, penalty parameters βx, βy, βz, βv > 0, number of iterations.
Initialize: Initial image u0 = b, counter k = 0, Lagrange multipliers µx, µy, µ, µv.
Output: Restored image u.

1: for k = 0 to number of iterations do
2: // Solve the subproblems:
3: Compute uk+1 according to Eq. (18)
4: Compute vk+1 according to Eq. (19)
5: Compute yk+1 according to Eq. (22)
6: Compute xk+1 according to Eq. (26)
7: Compute zk+1 according to Eq. (28)
8: // Update the Lagrange multipliers:
9: Lagrange multipliers according to Eq. (30)

10: // Check stopping criterion:

11: if ∥uk+1−uk∥
2

∥uk∥2
≤ 1× 10−4 then

12: break
13: end if
14: end for

Additionally, there are two remarks that are worth noting regarding this algorithm.

Remark 1
When α = 1, the fractional-order TV degrades to the conventional TV, then the Eq. (26) reduces to the standard
total variation regularization issue. In the experimental section, we provide an in-depth analysis of how the value
of α impacts the noise reduction capabilities of our proposed model.

Remark 2
When ϕ (u) = ∥u∥TV (the total variation norm), then the Eq. (28) is a canonical total variation-based image
denoising task [20].
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(a) abdomen (b) pelvic (c) sacroiliac

(d) head (e) ankle (f) mrcp

Figure 1. MR images used for the experiments.

4. Numerical Experiments

In this section, we exhibit experimental results that verify the effectiveness of our proposed method for image
restoration. The real MR test images are shown in Fig. 1. The experiment is under Windows 10 and MATLAB
R2019b operating system, and the CPU is i5-8250U. The restored image quality was assessed through the peak
signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) [19]. Higher PSNR and SSIM
values indicate better image quality.

Our experiments employed a relative error-based stopping criterion for the algorithm.

RelError =
∥uk+1 − uk∥

∥uk∥
≤ 1× 10−4, (31)

where uk+1 and uk are the restored image at the current iterate and previous iterate respectively.

4.1. Parameter Selection

The performance of the model is influenced by a number of primary parameters, including the fractional-rder
α, the parameters λ1, λ2, and penalty parameters of βv, βx, βy, and βz , additionally, these parameters must be
meticulously adjusted to achieve higher precision in the outcomes.

Here, we primarily discuss the FOTV term parameter α and the recursive filtering parameter λ2. Firstly, the value
selected for parameter α is crucial importance and the fractional-order α is 1 ≤ α < 2.The parameter λ1 controls the
penalty strength of the FOTV, primarily aimed at mitigating staircase artifacts and enhancing the image restoration
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capability of FOTV, which is the main reason we set λ1 =1 to improve the performance of FOTV. In Fig. 2 the
‘head’ image was processed with a 5× 5 Gaussian blur kernel (σ=5, impulse = 70%) while the ‘abdomen’ image
was subjected to a 7× 7 Gaussian blur kernel (σ=10, impulse = 50%). The figures show the PSNR and SSIM
values increase with the α value. Therefore, for Gaussian blur, a value of α = 1.9 can obtain the best PSNR and
SSIM results.

In Fig. 3, the ‘ankle’ image was processed with a 5× 5 average blur kernel ( impulse = 70%) while the ‘head’
image was subjected to a 7× 7 average blur kernel ( impulse = 50%). Our analysis of the images show that the
optimal values for PSNR and SSIM are achieved at α = 1.3 value, thus our preference for this value in the context
of average blur kernel.

Figure 2. PSNR and SSIM values for images restoration by my method with different α, ‘head’ (5× 5 Gaussian blur kernel,
σ = 10 and impulse = 70%) and ‘abdomen’ (7× 7 Gaussian blur kernel, σ=10 and impulse = 50%).

Figure 3. PSNR and SSIM values for images restoration by my method with different α, ‘ankle’ (5× 5 average blur kernel
and impulse = 70%) and ‘head’ (7× 7 average blur kernel and impulse = 50%).

In this paper, the parameters λ2 control the weight and also manage the magnitude of the value ϑ within the
recursive filtering. Therefore, the selection of the λ2 parameter is crucial. In Fig. 4, we conducted experiments with
the Gaussian and average blur kernel. The results show that the optimal effect is achieved with λ2 = 0.001 when
adding a Gaussian blur kernel, and with λ2 = 0.005 when adding an average blur kernel.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 4. Restoration results of different λ2 for ‘abdomen’ (7× 7 Gaussian blur kernel, σ=10 and impulse = 30% ) and
‘pelvic’ (7× 7 average blur kernel and impulse = 30%).

In this experimental section, this process involves adjusting one parameter at a time while maintaining the
remaining parameters at their default values.

4.2. Results and Analysis

The experimental results of our proposed model are compared with three related methods: ℓ0-OGSTV [14],
HNHOTV-OGS [3], and Median Filter (built-in noise reduction technology in MATLAB).

In this experiment, we assumed that the blurring kernel is known. To simulate a noisy blurred image, the original
images are processed with a 5× 5 Gaussian blur kernel with standard deviation σ = 5 and a 7× 7 Gaussian blur
kernel with standard deviation σ = 10. Additionally, average blur kernels of two distinct sizes, 5× 5 and 7× 7 are
applied to the original images. Subsequently, the blurred images are subjected to impulse noise at varying intensity
levels.

For parameters, we fixed λ1 = 1. The other parameters were manually selected to obtain the most satisfactory
restoration quality. The parameters of HNHOTV-OGS and ℓ0-OGSTV are consistent with the original text. To
assess the performance under varying noise conditions, the test images were subjected to three distinct levels of
impulse noise: 30%, 50% and 70% The resulting PSNR and SSIM values, which serve as quantitative measures of
restoration efficacy, are presented in Table 1 through Table 4.

In each table, we can observe when using various intensities of noise and different blur kernels, our method
almost always achieves higher PSNR and SSIM values compared to the other methods. Only in a few specific cases
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

(a5) (b5) (c5) (d5)

(a6) (b6) (c6) (d6)

Figure 5. The (1), (3), and (5) rows show the results after applying a 5× 5 Gaussian kernel (σ = 5, impulse = 30%, 50%, 70%)
to the ‘mrcp’ image. The (2), (4), and (6) rows display the corresponding enlarged image segments. Columns (a1)-(a6) show
the noisy versions, (b1)-(b6) are restored with HNHOTV-OGS, (c1)-(c6) with ℓ0-OGSTV, and (d1)-(d6) with our method.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

(a5) (b5) (c5) (d5)

(a6) (b6) (c6) (d6)

Figure 6. The (1), (3), and (5) rows show the results after applying a 7× 7 average blur kernel ( impulse = 30%, 50%, 70%)
to the ‘sacroiliac’ image. The (2), (4), and (6) rows display the corresponding enlarged image segments. Columns (a1)-(a6)
show the noisy versions, (b1)-(b6) are restored with HNHOTV-OGS, (c1)-(c6) with ℓ0-OGSTV, and (d1)-(d6) with our
method.
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Table 1. Deblurring results for PSNR and SSIM values with 5× 5 Gaussian blur kernel (σ=5).

Noise level Image Restoration
Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 28.14/0.756 35.69/0.899 37.09/0.939 38.23/0.958
pelvic 27.52/0.855 37.62/0.938 37.94/0.937 38.81/0.957
sacroiliac 27.90/0.758 35.86/0.912 36.23/0.912 37.01/0.935
head 24.14/0.828 34.95/0.904 36.85/0.971 37.18/0.978
ankle 23.53/0.788 33.30/0.876 35.09/0.956 35.15/0.963
mrcp 28.62/0.873 35.72/0.877 37.88/0.932 39.47/0.960

50 abdomen 23.70/0.673 29.49/0.735 36.64/0.938 37.26/0.950
pelvic 23.61/0.770 28.80/0.680 37.48/0.941 37.55/0.953
sacroiliac 23.94/0.680 30.90/0.803 35.72/0.913 36.07/0.925
head 21.39/0.744 30.25/0.764 35.68/0.969 35.82/0.974
ankle 21.35/0.707 28.44/0.670 33.61/0.950 33.65/0.955
mrcp 23.82/0.786 27.82/0.593 37.80/0.939 38.58/0.959

70 abdomen 13.42/0.288 17.18/0.198 35.21/0.930 35.27/0.932
pelvic 13.51/0.278 16.14/0.071 35.21/0.940 34.89/0.942
sacroiliac 13.82/0.245 15.07/0.087 34.27/0.904 34.22/0.902
head 13.00/0.333 17.00/0.291 33.45/0.962 33.50/0.964
ankle 13.07/0.297 16.93/0.220 30.69/0.933 30.86/0.935
mrcp 13.33/0.313 17.24/0.105 36.50/0.948 36.62/0.954

Table 2. Deblurring results for PSNR and SSIM values with 7× 7 Gaussian blur kernel (σ=10).

Noise level Image Restoration
Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 26.93/0.686 34.98/0.894 35.55/0.917 36.20/0.937
pelvic 26.70/0.825 36.40/0.932 36.18/0.916 36.82/0.943
sacroiliac 27.05/0.714 34.74/0.897 34.67/ 0.887 35.12/0.910
head 22.50/0.765 34.00/0.905 34.98/0.962 35.00/0.967
ankle 22.49/0.732 32.15/0.880 33.10/0.938 32.82/0.944
mrcp 27.28/0.835 35.49/0.891 36.15/0.907 37.43/0.944

50 abdomen 23.30/0.616 31.99/0.800 34.92/0.910 35.46/0.928
pelvic 23.32/0.745 31.11/0.791 35.73/0.921 36.08/0.940
sacroiliac 23.63/0.642 33.16/0.865 34.18/0.880 34.36/0.899
head 20.59/0.691 31.46/0.802 34.11/0.957 33.89/0.961
ankle 20.79/0.660 29.43/0.740 31.91/0.931 31.62/0.935
mrcp 23.41/0.755 30.77/0.727 35.90/0.914 36.78/0.943

70 abdomen 13.40/0.266 18.67/0.228 34.07/0.904 34.08/0.909
pelvic 13.50/0.268 17.20/0.086 34.56/0.924 34.46/0.929
sacroiliac 13.80/0.230 16.60/0.139 33.30/0.876 33.34/0.881
head 12.93/0.308 19.47/0.355 32.49/0.948 32.01/0.945
ankle 13.02/0.275 20.02/0.291 30.08/0.917 29.77/0.915
mrcp 13.31/0.300 19.28/0.141 35.17/0.926 35.43/0.941
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Table 3. Deblurring results for PSNR and SSIM values with 5× 5 average blur kernel.

Noise level Image Restoration
Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 28.30/0.753 35.54/0.897 36.92/0.937 37.31/0.950
pelvic 28.13/0.854 37.70/0.940 37.90/0.936 38.80/0.956
sacroiliac 28.18/0.756 35.95/0.913 36.26/0.913 37.07/0.933
head 24.08/0.825 34.92/0.899 36.89/0.971 37.02/0.977
ankle 23.70/0.786 33.33/0.873 35.27/0.955 35.32/0.964
mrcp 28.70/0.871 35.64/0.876 37.81/0.927 39.63/0.964

50 abdomen 23.73/0.671 29.25/0.733 36.70/0.939 36.40/0.942
pelvic 23.76/0.770 27.93/0.651 37.35/0.941 37.65/0.952
sacroiliac 24.00/0.678 29.79/0.776 35.94/0.917 36.17/0.925
head 21.35/0.742 29.89/0.751 35.82/0.969 35.69/0.973
ankle 21.42/0.705 28.55/0.673 33.56/0.950 33.68/0.955
mrcp 23.81/0.785 27.29/0.571 37.82/0.939 38.66/0.961

70 abdomen 13.42/0.287 16.94/0.189 35.43/0.932 34.49/0.920
pelvic 13.52/0.277 15.65/0.061 35.06/0.941 35.34/0.943
sacroiliac 13.82/0.245 14.83/0.075 34.48/0.906 34.23/0.902
head 13.00/0.332 17.19/0.295 33.58/0.963 33.25/0.962
ankle 13.08/0.296 16.81/0.209 30.87/0.935 30.99/0.935
mrcp 13.33/0.313 17.38/0.101 36.61/0.948 36.74/0.956

Table 4. Deblurring results for PSNR and SSIM values with 7× 7 average blur kernel.

Noise level Image Restoration
Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 26.89/0.684 34.92/0.892 35.32/0.912 35.53/0.927
pelvic 26.68/0.824 36.45/ 0.932 36.08/0.913 37.15/0.944
sacroiliac 27.03/0.712 34.81/ 0.898 34.21/0.866 35.42/0.910
head 22.45/0.763 34.09/0.906 35.32/0.961 35.00/0.964
ankle 22.46/0.730 32.26/0.880 33.36/0.937 33.38/0.946
mrcp 27.24/0.833 35.48/0.892 35.65/0.890 37.77/0.951

50 abdomen 23.29/0.614 32.03/0.801 35.03/0.912 34.76/0.917
pelvic 23.31/0.744 31.08/0.788 35.93/0.922 36.36/0.941
sacroiliac 23.62/0.641 33.13/0.865 34.24/0.882 34.68/0.900
head 20.57/0.689 31.40/0.795 34.24/0.956 33.84/0.958
ankle 20.77/0.658 29.47/0.737 32.17/0.931 32.17/0.937
mrcp 23.40/0.754 30.57/0.721 35.89/0.909 37.04/0.948

70 abdomen 13.39/0.266 18.76/0.229 34.21/0.908 33.38/0.921
pelvic 13.50/0.267 17.09/0.084 34.78/0.925 34.85/0.943
sacroiliac 13.80/0.230 16.45/0.137 33.43/0.877 34.48/0.883
head 12.93/0.307 19.64/0.356 32.58/0.947 32.03/0.945
ankle 13.02/0.274 19.80/0.290 30.23/0.918 30.08/0.917
mrcp 13.31/0.300 19.16/0.135 35.40/0.927 35.67/0.944

Stat., Optim. Inf. Comput. Vol. 13, January 2025



N. WEI, W. XUE, X. GU AND X. QI 153

does ℓ1-OGSTV perform slightly better. From Table 1 to Table 4, it can be observed that our method performs well
when relatively low levels of noise. Despite a modest reduction in denoising efficacy compared to ℓ0-OGSTV under
conditions of high-density noise, it continues to deliver superior PSNR and SSIM values.

For the Fig. 5 and Fig. 6, we present the outcomes of three distinct denoising models applied to MR images.
The image ‘mrcp’ is subjected to Gaussian blur ( 5 × 5 kernel, standard deviation = 5) and 30%, 50%, and 70%
impulse noise. The image ‘sacroiliac’ is treated with average blur and 30%, 50%, and 70% impulse noise. Upon
careful examination of the denoising results depicted in Fig. 5 and Fig. 6, along with the corresponding magnified
regions, it can be concluded that the HNHOTV-OGS method exhibits perceptible blocky artifacts at low noise
levels. Moreover, under high noise conditions, the method’s denoising performance deteriorates significantly, with
blocky artifacts becoming particularly pronounced. The main competition for our technique is the ℓ0-OGSTV
model, which effectively eliminates impulse noise and mitigates staircase effects through the application of the
ℓ0-norm. Observing Fig. 5 and Fig. 6 under the condition of 30% impulse noise, it is evident that our method
demonstrates superior performance in detail recovery compared to other methods.

Despite the introduction of varying degrees of Gaussian and average blur kernels, our approach consistently
outperforms its counterparts, maintaining an advantage in yielding better restoration outcomes. This consistent
superiority underscores the robustness and effectiveness of our method in handling images with moderate noise
levels, leading to improved visual quality and more accurate preservation of fine details.

To demonstrate the significant superiority of the proposed model in image restoration, we employed the edge
preservation index (EPI) to evaluate the performance of HNHOTV-OGS, OGSTV, and our proposed model in terms
of detail recovery. Fig. 7 illustrates the restoration outcomes under two distinct blurring conditions: one with a 5×5
Gaussian blur kernel with a standard deviation of 5 and an impulse noise level of 50%, and the other with a 5×5
average blur kernel under the same impulse noise condition. The numerical results clearly indicate that our model
outperforms the other two methods across both Gaussian and average blurring scenarios, consistently achieving
superior restoration in every trial.

Figure 7. EPI values of HNHOTV-OGS, OGSTV and Proposed restoration results when 5× 5 Gaussian blur kernel (σ = 5
and impulse = 50%) and 5× 5 average blur kernel (impulse = 50%)

4.3. Verify the Effectiveness of the Method

To verify the effectiveness of our method in eliminating staircasing artifacts using fractional-order regularization,
and further reducing noise and enhancing texture through recursive filtering, the following sections will validate
these capabilities. Our proposed method is called FOTVF Eq. (13), and the model that removes the third term
ϕ(u)) from FOTVF is named as FOTV. The model is effectively resolved by employing the ADMM algorithm.
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Furthermore, the parameters are meticulously aligned with prior uses to ensure continuity and comparability in our
analytical framework.

Fig. 8 illustrates the comparative evaluation of the PSNR and SSIM values for the FOTVF and FOTV models
at 5× 5 Gaussian blur kernel (standard deviation = 5 and impulse = 40%), and Fig. 9 shows the restoration
performance for the ’ankle’ image, applying the consistent Gaussian blur parameters, including expanded image
areas for closer inspection. Fig. 10 illustrates the comparative evaluation of the PSNR and SSIM for the FOTVF
and FOTV models at 5× 5 average blur kernel (impulse = 60%), and Fig. 11 shows the restoration performance
for the ’head’ image, applying the consistent average blur parameters, including expanded image areas for
closer inspection. The absence of the third term in FOTV causes a substantial drop in both PSNR and SSIM
measurements. Furthermore, these figures clearly indicate that the restoration efficacy achieved by the FOTV is less
than satisfactory. In contrast, the FOTVF model not only effectively mitigates staircase artifacts but also achieves
higher PSNR and SSIM values.

Figure 8. PSNR and SSIM values of FOTVF item and FOTV restoration results when 5× 5 Gaussian blur kernel (σ = 5 and
impulse = 40%)

5. Conclusion

We proposed a MR image restoration model that combines regularization and filtering methods, aiming at
effectively removing impulse noise and staircasing artifacts present in MR images. We demonstrated the
effectiveness of using the ℓ0-norm as a data fidelity term to eliminate impulse noise, while incorporating fractional-
order total variation and recursive filtering as penalty terms to mitigate staircasing artifacts and preserve important
edges. We solved the proposed model using the alternating direction method of multipliers. In experiments
involving Gaussian and average blurring, our method outperformed three other methods in terms of PSNR and
SSIM across various levels of blur and noise.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 9. The first line is the recovered results for ‘ankle’ with 5× 5 Gaussian blur kernel (σ = 5 and impulse = 40%), while
the second line shows the fragments corresponding to the zoomed images. (a1)-(a2) blurry image, (b1)-(b2) FOTV restored,
(c1)-(c2) FOTVF restored.

Figure 10. PSNR and SSIM values of FOTVF item and FOTV restoration results when 5× 5 average blur kernel (impulse =
60%)
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Figure 11. The first line is the recovered results for ‘head’ with 5× 5 average blur kernel (σ = 5 and impulse = 60%), while
the second line shows the fragments corresponding to the zoomed images. (a1)-(a2) blurry image, (b1)-(b2) FOTV restored,
(c1)-(c2) FOTVF restored.
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