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Abstract Tuberculosis (TB), caused by Mycobacterium tuberculosis, stands as one of the most infectious diseases globally,
predominantly affecting the lungs (known as pulmonary tuberculosis). It manifests in two primary forms based on bacterial
drug sensitivity: drug-sensitive TB (DS-TB) and drug-resistant TB (DR-TB). DS-TB remains susceptible to medication,
whereas DR-TB has developed resistance. This study explores a mathematical model explaining the spread of tuberculosis
within a drug-resistant population, proposing optimal control strategies to curb its dissemination through educational
initiatives and enhancements in healthcare facilities. The stability analysis reveals that disease-free equilibrium points are
locally asymptotically stable when R0 < 1, while endemic equilibrium points prevail and are locally asymptotically stable
if R0 > 1. Additionally, sensitivity analysis identifies important parameters within the model. By using the Pontryagin
Maximum Principle, control variables are integrated and numerically solved. Through simulations and cost assessments,
we illustrate the efficacy of employing both control strategies concurrently, effectively reducing the populations susceptible
to exposure, DS-TB, and DR-TB infections.
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1. Introduction

Tuberculosis (TB) spreads through the air when the sufferer coughs, sneezes, or spits. Infection can occur simply
by inhaling some bacteria [1]. The main symptom of TB disease is coughing up phlegm for 2 weeks or more.
TB healing is carried out by undergoing routine treatment until it is complete during 6− 9 of the month with TB
drugs [2]. Drug-resistant TB (DR-TB) spreads in the same way as drug-sensitive TB (DS-TB) spreads, but DR-TB
treatment requires a longer time, 9− 24 months, with strict follow-up from medical personnel. In general, DR-TB
is indeed more dangerous than DS-TB because tuberculosis drugs that are usually given to TB patients can no
longer kill TB bacteria in the patient’s body [3]. According to the CDC, DR-TB can occur due to errors in the use
and management of drugs in people with DS-TB.

It is estimated that a quarter of the world’s population is exposed to TB, but only approximately 5− 15% of them
will exhibit symptoms of active TB disease. The remainder harbor latent TB infections, which are asymptomatic
and non-transmissible, though they may progress to active TB if the immune system weakens. According to global
reports, around 10 million individuals contract TB annually, resulting in 1.5 million deaths. DR-TB cases are on the
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rise, with 157,903 cases detected, including 132,222 MDR/RR-TB cases and 25,681 pre-XDR-TB/XDR-TB cases.
TB control aligns with the Sustainable Development Goals (SDGs), a key global initiative. While annual TB case
numbers are declining, there remains a significant disparity compared to estimates. The WHO Global TB Report
2021 identifies India, Indonesia, and Philippines as having the largest gaps between estimated and reported cases,
with reported numbers accounting for only 24%, 11%, and 8.3% of estimated cases, respectively. Ten countries,
including China, Democratic Republic Congo, and Nigeria, contribute to approximately 70% of the global gap in
DR-TB cases. This gap arises due to underreporting by TB patients and underdiagnosis, often due to limited access
to healthcare or misdiagnosis [1]. Given this substantial gap, a considerable reservoir of undetected TB cases poses
a significant transmission risk. Thus, several TB control strategies can be implemented: administering the BCG
vaccine [4], conducting educational programs to enhance public understanding and mitigate misconceptions about
TB, and improving treatment success rates [5, 6].

In recent decades, mathematical models have played an important role in disease control. There are already
several studies focused on TB that have studied many factors. Agusto et al. [7] have discussed the mathematical
model of the spread of MDR-TB and XDR-TB by paying attention to factors such as loss of follow-up and isolation.
Gao and Huang [8] have discussed optimal control strategies to overcome TB transmission with three forms of
control: vaccination, successful treatment rate, and treatment rate in vulnerable, latent humans and infected with
active TB. Furthermore, Rocha et al. [9] studied the impact of immigrant populations from high-incidence TB
areas on a host country. Das et al. [10] investigated the influence of media awareness programs on the dynamics
of TB transmission. In the same year, Das et al. [11] discussed TB transmission in the presence of reinfection.
Baba et al [12] present a tuberculosis model with saturated incidence rate and time dependent control strategy.
Incorporated in the model is the therapeutic treatments given to infected individuals. Then, Ullah et al. [13]
discussed the application of optimal control in the form of vaccination and treatment in the mathematical model of
TB spread. In the same year, Liu et al. [14] investigated the impact of DOTS (directly observed treatment and short
course) strategies on TB transmission in China and proposed optimal control strategies in the form of treatment
for latent and infected humans. In addition, Abimdame et al. [15] demonstrated a mathematical model of TB
that accounts for exogenous re-infection and incomplete treatment. The analysis reveals that the model exhibits
a backward bifurcation phenomenon, primarily driven by exogenous re-infection. Interestingly, it was shown
that removing incomplete treatment could significantly reduce the backward bifurcation range. In another study,
fractional calculus was applied to model TB transmission dynamics, incorporating the memory effects associated
with the disease spread. Olaniyi et al. [16] use Banach fixed-point theory to prove the existence and uniqueness of
a solution. The fractional-order model also exhibits backward bifurcation, demonstrating the co-existence of stable
TB-free and TB-present equilibria when the reproduction number is below one.

From the above discussion, the persistent efforts are imperative to combat TB, particularly DR-TB, given
the ongoing emergence of new resistance variants. Hence, the authors are motivated to delve into mathematical
modeling and control strategies to curb TB transmission within drug-resistant populations, drawing inspiration
from the framework proposed by Liu et al. [14]. The authors differentiate the infected human population into two
compartments based on bacterial drug sensitivity: DS-TB and DR-TB. Additionally, the authors incorporate various
control variables into the mathematical model to address TB spread among drug-resistant populations, including
educational initiatives and efforts to improve TB treatment efficacy.

2. Formulation of a Tuberculosis Model with a Drug-Resistant Population

In this section, a mathematical model of tuberculosis with a drug-resistant population is formulated. The
assumptions used for the model construction are as follows:

1. The vaccinated population (V ) consists individuals who have received successful BCG vaccination, primarily
newborns.

2. The duration of vaccine protection is finite, implying that previously vaccinated individuals can revert to a
susceptible state (S).
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Figure 1. Transmission diagram. Mathematical model diagram of tuberculosis with a drug-resistant population.

3. Individuals exposed to TB cannot transmit the disease; only those infected with TB have the potential for
transmission.

4. The recovered population (R) may become exposed (E) again, as dormant (inactive) MTB bacteria persist
in the body.

The human population is divided into six compartments, which are the susceptible population (S), the vaccinated
population (V ), the exposed population (E), the infected DS-TB population (I1), the infected DR-TB population
(I2), and human populations recovering from tuberculosis (R). The defining parameters can be seen in Table 1.
Based on the assumptions, we can set up the transmission diagram that is shown in Figure 1. From the diagram in
Figure 1, transmission models can be formulated as follows:

dS

dt
= Λ(1− p)− βS(I1 + I2) + kV − dS, (1)

dV

dt
= Λp− (k + d)V, (2)

dE

dt
= βS (I1 + I2)− aE + ε4R, (3)

dI1
dt

= ε1E − bI1, (4)

dI2
dt

= ε3E + ε2I1 − cI2, (5)

dR

dt
= γ1E + γ2I1 + γ3I2 − (d+ ε4)R. (6)

where

a = (ε1 + ε3 + d+ γ1) ,

b = (d+ σ1 + γ2 + ε2) ,

c = (d+ σ2 + γ3) .

Furthermore, for reason of simplicity, S(t), V (t), E(t), I1(t), I2(t), R(t) are written into S, V,E, I1, I2, R with
S, V,E, I1, I2, R ≥ 0. Then defined N(t) as total population at t, with N = S + V + E + I1 + I2 +R ≥ 0. Then,
all parameters are positive, with Λ > 0 and 0 < d, β, σ1, σ2, k, ε1, ε2, ε3, γ1, γ2, γ3 < 1.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



C. ALFINIYAH, WINDARTO, N. A. PERMATASARI, M. FARMAN, N. MILLAH AND AHMADIN 3

Table 1. Parameters. Description of parameters in the model of drug abuse reduction.

Parameter Description
Λ Natural birth rate
d Natural death rate
β Transmission rate
σ1 Disease-induced death rate due to DS-TB
σ2 Disease-induced death rate due to DR-TB
k Rate of immunity acquisition
p The fraction of BCG vaccinated successfully
ε1 Rate of progression from E to I1
ε2 Rate of progression from I1 to I2
ε3 Rate of progression from E to I2
ε4 Rate of progression from R to E
γ1 Recovery rate of the exposed
γ2 Recovery rate of the infectious with DS-TB
γ3 Recovery rate of the infectious with DR-TB

The disease-free equilibrium of tuberculosis is a condition in which there is no disease of tuberculosis. This
equilibrium is attainable when there is no infected population (I1 = 0 and I2 = 0). Thus, a disease-free equilibrium
is obtained by

E0 = (S, V,E, I1, I2, R) =

(
Λ(k + d(1− p))

d(k + d)
,

Λp

k + d
, 0, 0, 0, 0

)
.

Then the effective reproduction number (R0) will be determined, which represents the expectation of the average
number of new infected individuals due to contact between infected populations and suspected individuals. In this
study, we applied the Next Generation Matrix (NGM) method to get R0 which has been developed by [17] to obtain

R0 =

[
β

(
Λ(k + d(1− p))

d(k + d)

)(
ε1ε2 + ε3b+ ε1c

abc

)]
.

The drug-free equilibrium E0 will be locally asymptotically stable if R0 < 1 and will be unstable when R0 > 1.
While the endemic equilibrium is the condition that there is a tuberculosis patient, as well as the spread of that
disease. Endemic equilibrium E∗ = (S∗, V ∗, E∗, I∗1 , I

∗
2 , R

∗) is obtained when S ̸= 0, V ̸= 0, E ̸= 0, I1 ̸= 0, I2 ̸=
0, R ̸= 0.

Setting the right-hand sides of the model (1)-(6) equals zero. The endemic equilibrium point of the model is

S∗ =
abcd+ ε4 (cε1 (d+ σ1) + (d+ σ2)(ε1ε2 + bε3) + bcd)

β (cε1 + bε3 + ε1ε2) (d+ ε4)
,

V ∗ =
Λp

k + d
,

E∗ = (R0 − 1)

(
1 +

ε4(bcγ1 + cγ2ε1 + γ3bε3 + γ3ε1ε2)

abc (d+ ε4) (R0 − 1)

)
ad (bc)

2
(d+ ε4)

β(abcd+ ε4 (cε1 (d+ σ1) + (d+ σ2)(ε1ε2 + bε3 + bcd)
,

I∗1 =
ε1E

∗

b
,

I∗2 =
E∗

bc
(bε3 + ε1ε2) ,

R∗ =
E∗ (bcγ1 + cγ2ε1 + γ3bε3 + γ3ε1ε2)

bc (d+ ε4)
.
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by the value of a, b and c refer to the equation 1-6.

From the results of analytical calculations the terms are sufficient and the conditions need a non-endemic
equilibrium point E0 will be stable local asymptotic if and only if Ri < 1, with i = 0, 1, 2, 3, 4.

R1 = β

(
Λ(k + d(1− p))

d(k + d)

)(
(ε1b− ε1ε2 + cε3)

abc

)
,

R2 = β

(
Λ(k + d(1− p))

d(k + d)

)(
(ε1 + ε3) (ε4 + d)

bc (ε4 + d) + d (ab+ ac) + ε1ε4 (d+ σ1 + ε2) + ε1ε3 (d+ σ2)

)
,

R3 =

(
1 + K2

abc(1−R0)

)
(b+ c)(

(a+ b+ c+ d+ ε4)
(
1 + K1

abc(1−R0)

)) ,
R4 =

(
A2

1(ε4+d)
abc(1−R0)

(
1− K3

(1−R0)

))
+
(
1 + K2

abc(1−R0)

)2

A1

(
1

b+c

(
1 + K1

abc(1−R0)

))((
1 + K2

abc(1−R0)

)) ,

where

A1 = a+ b+ c+ d+ ε4,

A2 = ab+ ac+ ad+ aε4 + bc+ bd+ bε4 + cd+ cε4 − γ1ε4 − β

(
Λ(k + d(1− p))

d(k + d)

)
(ε1 + ε3) ,

A3 = abc+ abd+ abε4 + acd+ acε4 + bcd+ bcε4 − bγ1ε4 − cγ1ε4 − γ2ε1ε4 − γ3ε3ε4

− β

(
Λ(k + d(1− p))

d(k + d)

)
(cε1 + bε3 + dε1 + dε3 + ε1ε2 + ε1ε4 + ε3ε4) ,

A4 = abcd+ abcε4 − bcγ1ε4 − bγ3ε3ε4 − cγ2ε1ε4 − bγ3ε2ε4

− β

(
Λ(k + d(1− p))

d(k + d)

)
(bdε3 + bε3ε4 + cdε1 + dε1ε2 + ε1ε2ε4 + cε1ε4) ,

K1 =
ε4

abc (ε4 + d)
(bcγ1 + bγ3ε3 + cγ2ε1 + γ3ε1ε2) ,

K2 = ab2 + (ac+ ad+ cε4 + bc+ bd+ bε4 + cd+ (ε1 + ε3 + d)) (b+ c)

− β

(
Λ(k + d(1− p))

d(k + d)

)
(ε1 (d+ σ1 + γ2) + cε3) ,

K3 = bc (ε4 + d) + d (ab+ ac) + ε1ε4 (d+ σ1 + ε2) + ε1ε3 (d+ σ2)− β

(
Λ(k + d(1− p))

d(k + d)

)
(ε1 + ε3) (ε4 + d) .

by the value of a, b and c refer to the equations 1-6.
Moreover, the endemic equilibrium point will be analyzed through numerical simulation by using a phase field

because it is difficult to do analytically, The parameter values and initial values are presented in Tables 2 and 3.
Modeling and verification are crucial processes as they ensure the model’s accuracy and assess whether it possesses
the desired characteristics [18].
Based on Figure 2, it is seen that at the moment when the initial value is given, the population graph tends
to converge to a single point I1; I2 = (5, 61× 105; 1, 081× 106). This means that the overall dynamics of each
population on the mathematical model of TB spread in the presence of drug-resistant populations move close to the
endemic equilibrium point E1 = (8, 813× 105; 2, 381× 106; 4, 669× 106; 5, 61× 105; 1, 081× 106; 7, 87× 105).
In addition, using the given parameter values, the effective reproduction number R0 = 3, 4885 > 1, which is greater
than 1, is obtained.
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Table 2. Parameter value of the spread of tuberculosis with drug-resistant population model

Parameter Unit Value Source
Λ person

year 450862, 2 [19]
d year−1 1

73,5 Assumed
β year−1 0, 0000003 Assumed
σ1 year−1 0, 365 [7]
σ2 year−1 0, 009 Assumed
k year−1 0, 25 [14]
p - 0, 6 [13]
ε1 year−1 0, 2351 [13]
ε2 year−1 0, 08 Assumed
ε3 year−1 0, 013 [7]
ε4 year−1 0, 5 [11]
γ1 year−1 0, 6683 [14]
γ2 year−1 1, 5 [7]
γ3 year−1 0, 075 Assumed

Table 3. Initial value

Variable Initial value
1 2 3

S(0) 9× 106 6× 104 9× 103

V (0) 4× 106 2, 5× 104 1× 104

E(0) 1, 2× 106 1× 105 1, 3× 104

I1(0) 5× 105 1, 2× 105 5× 103

I2(0) 1× 105 5, 5× 104 2× 103

R(0) 1× 105 8× 103 9, 5× 103

Figure 2. The phase field of mathematical model of the spread of tuberculosis with drug-resistant population
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6 TUBERCULOSIS MODEL WITH DRUG-RESISTANT POPULATION

3. Parameter Sensitivity Analysis

We analyze parameter sensitivity to investigate the role of each parameter in terms of the stability of the non-
endemic and endemic equilibrium points through the sensitivity index (em) of each parameter. The parameter
values used to calculate the sensitivity index refer to the Table 2. We chose to use parameter values from established
references instead of deriving them from real-world data to maintain the accuracy and reliability of our model.
By relying on widely accepted and validated values from the literature, we can confidently develop a model
that accurately represents the dynamics of drug-resistant tuberculosis. This approach allowed us to gain a better
understanding of the stability characteristics of the endemic equilibrium in the context of drug-resistant TB. Then,
the parameter sensitivity index is formulated as follows, and the calculation results can be seen in Table 4,

em =

(
∂R0

∂m

)
m

R0
,

m : Parameter to be analyzed
em : Sensitivity index of parameter m.

Table 4 presents positive or negative values for the sensitivity index. A positive sensitivity index signifies that
the R0 value increases following an increase in the parameter value, while a negative sensitivity index indicates a
decrease in the R0 value post parameter increase. For instance, the sensitivity index of β is 1, implying that a 10%
increase in the transmission rate of tuberculosis disease leads to a corresponding 10% increase in the R0 value, and
conversely, a 10% decrease in β results in a 10% decrease in R0. Similarly, a 10% increase or decrease in the value
of γ3 corresponds to a similar change in R0. However, if the recovery rate of the exposed (γ1) increases by 10%,
the R0 value decreases to 4.76%. The analysis also applies to other parameters.

Figure 3 illustrates the impact of changes in the parameters β, γ3, and γ1 on the populations of humans infected
with drug-sensitive tuberculosis (DS-TB), denoted as I1, and drug-resistant tuberculosis (DR-TB), denoted as I2.
An increase in the values of the transmission rate, β, and the progression rate from latent to active DR-TB, γ3,
is observed to correlate with a rise in the number of individuals infected with both DS-TB and DR-TB. This
correlation can be attributed to the positive sensitivity indexes associated with β and γ3, indicating that higher
values of these parameters tend to drive an increase in the infected populations. The positive sensitivity index
implies that the populations of I1 and I2 are directly proportional to the magnitude of β and γ3; thus, as these
parameters increase, the number of infections rises accordingly.

Table 4. Index of Parameter Sensitivity

Parameter (m) Sensitivity Index R0 = 3, 4885
m− 10% m− 5% m+ 5% m+ 10%

Λ 1 3,1396 3,3141 3,6629 3,8374
d −1, 1789 3,9466 3,7053 3,2929 3,1156
β 1 3,1397 3,3141 3,6629 3,8374
σ1 −0, 1158 3,5297 3,5089 3,4685 3,4488
σ2 −0, 0607 3,50989 3,4992 3.4779 3.46752
k 0,0681 3,4624 3,4761 3,4999 3.5104
p −0, 0774 3,5155 3,5020 3,4750 3,4615
ε1 0,3684 3,3566 3,4234 3,5519 3,6138
ε2 0,2544 3,3994 3,4440 3,5328 3,5769
ε3 0,3648 3,3611 3,4248 3,5521 3,6156
ε4 −0, 7186 3,7586 3,6185 3,3675 3,2546
γ1 −0, 4757 3,6682 3,5748 3,4086 3,3344
γ2 −0, 5060 3,67975 3,5803 3,4035 3,3246
γ3 1 3,1396 3,3141 3,6629 3,8374
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Figure 3. The effect of transmission rate (β), treatment success rate for DS-TB (γ1), and treatment success rate for DR-TB
(γ3) on the population of DS-TB infected (I1) and the population of DR-TB infected (I2). The variations in these parameters
illustrate their impact on the dynamics of TB infection. Other parameter values are provided in Table 2
.
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Figure 4. Sensitivity analysis of the transmission rate (β) with respect to the effective reproduction number (R0). (a)
Sensitivity of R0 to β for three different values of the treatment success rate for DS-TB (γ1). (b) Sensitivity of R0 to β
for three different values of the treatment success rate for DR-TB (γ3). These analyses highlight the influence of treatment
success rates on TB transmission dynamics. All parameter values are provided in Table 2.

On the other hand, a reduction in the value of γ1, which represents the recovery rate from DS-TB, results in a
significant increase in both DS-TB and DR-TB infections. This trend can be attributed to the negative sensitivity
index of the parameter γ1, which indicates that a lower recovery rate leads to a higher burden of infection. The
negative sensitivity index suggests that the populations of I1 (infected with DS-TB) and I2 (infected with DR-TB)
are inversely related to γ1. In simpler terms, when the recovery rate from DS-TB decreases, fewer individuals
recover from the infection, leading to a prolonged presence of infected individuals in the population. This, in turn,
causes a subsequent increase in the number of infected individuals in both DS-TB and DR-TB categories, which
increases the overall transmission dynamics. The interplay among parameters such as β (transmission rate), γ3
(recovery rate for DR-TB), and γ1 emphasizes their critical roles in controlling the spread of tuberculosis within
the population. To control the disease effectively, these parameters must stay balanced, as even small changes can
greatly affect its spread.

Based on this explanation, it is evident that the β and γ3 parameters are fundamental to the mathematical
modeling of tuberculosis with drug resistance, as reflected in their notably higher absolute sensitivity index values
compared to other parameters. The transmission rate (β) governs the speed at which the infection spreads among
individuals, while the cure rate for DR-TB infection (γ3) plays a crucial role in determining how quickly infected
individuals recover or transition into a non-infectious state. Both parameters are central to the dynamics of TB
dissemination, and their variations have profound effects on the disease burden. The simulation results, which
show the impact of β and γ3 on the effective reproduction number (R0), are illustrated in Figure 4. This figure
highlights how changes in these parameters can either increase or decrease the likelihood of sustained transmission
within the population. By understanding the dynamics of parameters with both positive and negative sensitivity
indexes, we can create better and more focused intervention strategies. For instance, enhancing recovery rates for
both DS-TB and DR-TB or reducing transmission rates through improved public health measures could help lower
the overall burden of tuberculosis, especially within high-risk populations. Recognizing the sensitivity of these
parameters is key to optimizing interventions and ensuring that control measures are both effective and sustainable
in the long term.

4. Application of Optimal Control

The educational program, denoted by u1, is designed to target susceptible individuals within the population. By
raising awareness and disseminating knowledge about TB transmission, symptoms, and preventive measures, this
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program aims to reduce the susceptibility of individuals to TB infection. Concurrently, efforts to enhance TB
treatment success, denoted by u2, involve a multifaceted approach. This includes bolstering the infrastructure and
resources dedicated to TB treatment, such as providing comprehensive facilities and improving service quality for
individuals diagnosed with TB. By ensuring timely diagnosis, access to medication, and adherence to treatment
protocols, these efforts seek to mitigate the spread of TB within the population.

dS

dt
= Λ(1− p)− (1− u1)βS(I1 + I2) + kV − dS, (7)

dV

dt
= Λp− (k + d)V (8)

dE

dt
= (1− u1)βS (I1 + I2)− a1E + ε4R, (9)

dI1
dt

= ε1E − (d+ σ1 + γ2 + ε2 + u2ω2)I1, (10)

dI2
dt

= ε3E + ε2I1 − (d+ σ2 + γ3 + u2ω3) I2, (11)

dR

dt
= a2E + (u2ω2 + γ2)I1 + (u2ω3 + γ3)I2 − a3R. (12)

where a1 = (ε1 + ε3 + d+ γ1 + u2ω1) ; a2 = (u2ω1 + γ1) and a3 = d+ ε4. Then ω1, ω2, ω3 are success treatment
rate of the exposed, the human population infected of DS-TB and DR-TB, respectively.

The success rate of DS-TB treatment is higher than the success rate of DR-TB treatment. Then, the treatment
success rate of individuals exposed to TB is higher than the success rate of DR-TB treatment. It can be assumed

ω2 > ω3 and ω1 > ω3. (13)

Moreover, treatment for individuals exposed to TB is not yet available evenly in some developing countries, so it
can be assumed

ω2 > ω1. (14)

From 13 and 14, we derive
ω2 > ω1 > ω3.

For the optimal control in this study, a cost function was devised to minimize the human population exposed to
TB, as well as those infected with DS-TB and DR-TB, while also minimizing the cost associated with implementing
control measures. Therefore, the cost function can be formulated as follows:

The performance index (MinJ (u1, u2)) that can be formed based on the above explanation is as follows:∫ tf

0

(
A1E +A2I1 +A3I2 +

B1

2
(u1)

2
+

B2

2
(u2)

2

)
dt

where 0 ≤ u1, u2 ≤ 1 and A1, A2, A3, B1, B2 > 0. A1, A2, A3 are a weighting constant of E, I1 ,I2. Meanwhile,
B1 and B2 are weighting constants of u1 and u2 that have a range of 0 ≤ u1, u2 ≤ 1 indicating that the control
administration effort has a chance of success between 0 and 1. Optimal control time out is at an interval t0 ≤ t ≤ tf
that expresses the time of observation made, which is the time when the control is given to the end time of the
control. The quadratic function of the control cost is adopted, as stated in [20, 21, 22].

Based on Pontryagin’s Maximum Principle [23], the first step carried out in the analysis of the optimal control
problem is to form a Hamiltonian (H) function, that is:

H = A1E +A2I1 +A3I2 +
B1

2
(u1)

2
+

B2

2
(u2)

2
+ θT (t) (f (x (t) , u (t) , t))

(f (x (t) , u (t) , t)) is the right segment model of TB spread in the presence of a drug-resistant population
accompanied by a control variable, while θT (t) is co-state variable.
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Furthermore, in order to obtain optimal conditions, the Hamiltonian function above must meet stationary
conditions, namely ∂H

∂u1
= 0 and ∂H

∂u2
= 0. So that the optimal controllers u1 and u2 are obtained

u∗
1 = min

{
1,max

(
0,

βS(I1 + I2)(θ3 − θ1)

B1

)}
,

u∗
2 = min

{
1,max

(
0,

ω1E (θ3 − θ6) + ω2I1 (θ4 − θ6) + ω3I2(θ5 − θ6)

B2

)}
.

The controller forms of u∗
1 and u∗

2 depend on state and co-state variables. The state equations are as follows:

dS

dt
=

∂H

∂θ1
= Λ(1− p)− (1− u1)βS(I1 + I2) + kV − dS

dV

dt
=

∂H

∂θ2
= Λp− (k + d)V

dE

dt
=

∂H

∂θ3
= (1− u1)βS (I1 + I2)− (ε1 + ε3 + d+ γ1 + u2ω1)E + ε4R

dI1
dt

=
∂H

∂θ4
= ε1E − (d+ σ1 + γ2 + ε2 + u2ω)I1

dI2
dt

=
∂H

∂θ5
= ε3E + ε2I1 − (d+ σ2 + γ3 + u2ω) I2

dR

dt
=

∂H

∂θ6
= (u2ω1 + γ1)E + (u2ω + γ2) I1 + (u2ω + γ3) I2 − (d+ ε4)R.

(15)

Meanwhile, the co-state equations are as follows :

θ̇1 = −∂H

∂S
= dθ1 − [(1− u1)β(I1 + I2)(θ3 − θ1)

θ̇2 = −∂H

∂V
= (θ2 − θ1) k + dθ1

θ̇3 = −∂H

∂E
= −A1 + θ3d+ ε1(θ3 − θ4) + ε3(θ3 − θ5) + γ1(θ3 − θ6)+u2ω1(θ3−θ6)

θ̇4 = −∂H

∂I1
= −A2 + θ4 (d+ σ1) + (1− u1)βS (θ1 − θ3) + (θ4 − θ5) ε2+u2ω2(θ4−θ6)

θ̇5 = −∂H

∂I2
= −A3 + θ5 (d+ σ2) + (1− u1)βS (θ1 − θ3) + u2ω3(θ5−θ6)

θ̇6 = −∂H

∂R
= θ6 (d+ ε4) + ε4θ3.

(16)

Based on the description above, to get the values of S, V,E, I1, I2 and R from the optimal form u∗
1 and u∗

2 then
it is necessary to solve the non-linear state and co-state equations. The non-linear equation system is hard to be
solved analytically, so it will be solved numerically.

5. Numerical Results

The numerical simulation involves comparing a mathematical model of tuberculosis spread without control
variables to one integrating control variables. The aim is to assess the effectiveness of the control efforts in
achieving the objectives outlined by the presented cost function. For solving the optimal control strategy, we
employ the fourth-order Runge-Kutta (RK4) scheme. Initially, we utilize the forward RK4 technique to solve
the state system. Subsequently, the backward RK4 scheme is applied to solve the co-state system. The initial
values for all population compartments in this simulation are set as follows: S(0) = 9, 000, V (0) = 10, 000,
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E(0) = 13, 000, I1(0) = 5, 000, I2(0) = 2, 000, and R(0) = 9, 500, with the simulation conducted from t0 = 0
to tf = 10. Parameter values in this numerical simulation correspond to those listed in Table 2, with weighting
constants set as A1 = A2 = A3 = 1 and B1 = 2, B2 = 20. The subsequent results provide a comparison of the
mathematical model of TB spread within a drug-resistant population, both with and without control variables.

a.
0 2 4 6 8 10

t (year)

1

1.5

2

E

10
4

Without control

Control u
1

Control u
2

Control u
1
 and u

2

b.
0 2 4 6 8 10

t (year)

1000

2000

3000

4000

5000

I 1

Without control

Control u
1

Control u
2

Control u
1
 and u

2

c.
0 2 4 6 8 10

t (year)

500

1000

1500

2000

2500

I 2

Without Control

Control u
1

Control u
2

Control u
1
 and u

2

Figure 5. Comparison between the number population (a) Exposed E, (b) Infected of DS-TB I1, (c) Infected of DR-TB I2
without and with control. All parameter values are in Table 2. For this simulation, we imposed ω1 = 0.8, ω2 = 0.9, ω3 = 0.7
that refer to the inequality 13 and 14.

Figure 5 illustrates that implementing both the educational campaign (u1) and enhancing treatment facilities
(u2) concurrently leads to a significant decrease in the populations of exposed individuals (E), those infected with
DS-TB (I1), and those infected with DR-TB (I2) compared to scenarios without control strategies. Without control,
the total populations of E, I1, I2 exhibit continuous increase. However, upon the application of controls u1 and u2,
these populations show a consistent decline, gradually approaching zero.

Furthermore, it can be seen from Table 5 that the application of controls u1 and u2 simultaneously is the most
effective in reducing the population humans were exposed (E) by 73%, the human population infected with DS-TB
(I1) by 80% and the human population infected with DR-TB (I2) by 93%. Also, the application of both control
simultaneously gives the smallest cost value compared to the application of control u1 or u2 alone.
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Table 5. Comparison of total population E, I1, I2 with and without control strategies

Condition Total population up to year 10 Cost value
E I1 I2

No Control 19.400 2.156 2228 −
Control u1 6.725 819 1946 113147.34399912
Control u2 5.880 483 145 73311.35638514
Control u1 and u2 5.198 430 131 70309.02795641

6. Conclusion

This paper presents an analysis of tuberculosis spread within a drug-resistant population. The model reveals two
equilibria: disease-free and endemic equilibrium. The disease-free equilibrium is locally asymptotically stable
when the effective reproduction number is below one. Additionally, we conduct sensitivity analysis on model
parameters to identify the most influential factors driving tuberculosis transmission.

Optimal controls are then implemented in the form of a societal education campaign and enhancements in TB
treatment facilities. Results from numerical simulations demonstrate a significant reduction in the populations
of exposed individuals (E), those infected with drug-susceptible tuberculosis (DS-TB) (I1), and those infected
with drug-resistant tuberculosis (DR-TB) (I2) when both controls are applied simultaneously. This suggests that
a comprehensive approach, combining public awareness and improved healthcare infrastructure, is crucial for
effectively controlling the spread of tuberculosis in drug-resistant populations.

In future studies, the mathematical model of tuberculosis could be expanded to include the smoker population
as well as fractional-order dynamics [24]. With smoking habits on the rise globally, there is a growing concern
about their impact on the dynamics of tuberculosis transmission. Smoking has been shown to weaken the immune
system, making individuals more susceptible to infection [25]. In addition to including the smoker population,
the use of fractional-order models could provide further insights into the memory and hereditary effects often
observed in epidemiological processes. Traditional integer-order models assume that disease dynamics depend
only on current states, whereas fractional-order models allow for a more comprehensive representation of how past
states influence present and future trends. This approach is particularly useful in modeling infectious diseases like
TB, where latent infections, delayed immune responses, and prolonged treatment regimens introduce significant
temporal dependencies. Fractional calculus could help capture these complexities and refine predictions regarding
TB spread under various intervention scenarios.

By integrating both smoking behavior and fractional-order dynamics, future studies could offer a more nuanced
understanding of how lifestyle factors and long-term disease memory contribute to tuberculosis transmission. This
addition would not only improve model accuracy but also help identify high-risk populations that require targeted
interventions, such as smoking cessation programs and specialized TB treatment strategies. Moreover, the global
existence of weak solutions for this coupled fractional system can be established [26], allowing researchers to
explore a broader range of epidemiological variables and transmission pathways [27]. Particular attention should be
given to critical risk factors identified by medical professionals, such as co-infections (e.g., TB-HIV comorbidity),
socioeconomic determinants, and healthcare accessibility.

The findings of this study carry significant implications for public health policy and practice, particularly in the
context of combating tuberculosis (TB) and its drug-resistant strains. By identifying optimal control strategies,
our results underscore the importance of integrating targeted interventions, such as treatment adherence programs
and preventive measures, into comprehensive TB control frameworks. These strategies can help reduce the
prevalence of drug-resistant TB while mitigating its transmission within communities. Policymakers could leverage
these insights to allocate resources more effectively and design evidence-based interventions tailored to specific
population dynamics. Furthermore, the study emphasizes the critical need for ongoing research to refine control
strategies and address emerging challenges in TB management, ultimately supporting the global effort to achieve
TB elimination targets.
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