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Bayesian Accelerated Life Testing Models for the Log-normal and Gamma
Distributions under Dual-stresses
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Abstract In this paper, a Bayesian approach to accelerated life testing models with two stressors is presented. Lifetimes
are assumed to follow either a log-normal distribution or a gamma distribution, which have been mostly overlooked
in the Bayesian literature when considering multiple stressors. The generalized Eyring relationship is used as the time
transformation function, which allows for the use of one thermal stressor and one non-thermal stressor. Due to the
mathematically intractable posteriors of these models, Markov chain Monte Carlo methods are utilized to obtain posterior
samples on which to base inference. The models are applied to a real dataset, where model comparison metrics are calculated
and estimates are provided of the model parameters, predictive reliability, and mean time to failure. The robustness of the
models is also investigated in terms of the prior specification. A study on simulated datasets provides further insights into
the models in terms of fit and the accuracy of parameter estimates.
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1. Introduction

In the modern era, many products are designed to last for years. Classical reliability testing to quantify the life
characteristics of products may not be viable in terms of financial and time constraints faced by manufacturers. This
problem has lead to the development of accelerated life testing (ALT), where products are tested under conditions
that are more severe than their normal operating conditions in order to induce early failures. The accelerated failure
data can then be extrapolated, with the use of a time transformation function (TTF) specifying a relationship
between the accelerated stressors and the parameters of the life distribution, to estimate the reliability of the
products under their normal operating conditions. The accelerated testing conditions are obtained by applying or
varying one or more stressors at higher than normal levels. Typically used stressors include temperature, pressure,
voltage, wattage, humidity, cycles, and use rate [11, 5].

The most commonly used TTFs in constant stress ALT experiments are the Arrhenius relationship, inverse
power law, and Eyring relationship. However, these TTFs allow for the use of only one accelerated stressor,
where most products normally operate under various possible stressors. In practice, multiple-stressor models are
necessary and often more relevant, since multiple-stressor ALT experiments can be used to investigate interactions
between stressors, explore various failure modes, and allow for further acceleration compared to single-stressor
experiments – particularly in cases of testing equipment limitations [16]. While multiple-stressor ALT models
have been investigated to some extent in the frequentist setup, they are less common in the Bayesian literature due
to the complexity of these models.
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The exponential and Weibull distributions are the most widely used life distributions in the ALT literature, the
exponential distribution due to its simplicity and the Weibull distribution due to its versatility. While ALT models
on numerous other distributions have been researched, many of these distributions are mostly overlooked in the
Bayesian literature. The log-normal and gamma distributions are widely used in standard reliability analysis (see,
for example, [26]), but these distributions are less common in the Bayesian ALT setup and have not been considered
for multiple-stressor ALT experiments. Some of the main contributions to the Bayesian literature on single-stressor
ALT models using the log-normal distribution or gamma distribution include [4, 14, 13, 9].

In this paper, Bayesian dual-stress ALT models using the log-normal and gamma distributions are developed.
Motivations for the Bayesian paradigm include advances in Markov chain Monte Carlo (MCMC) methods that
enable Bayesian inference for mathematically intractable posteriors, the small sample sizes typically observed in
ALT experiments, and the capacity for incorporating expert knowledge from reliability engineers. The generalized
Eyring relationship is used as the TTF, which accommodates a thermal stressor, a non-thermal stressor, and the
interaction between these stressors. The models are applied to a real dataset, where the robustness given different
flat prior choices is assessed, model comparison metrics are computed, and estimates of the predictive reliability
and mean time to failure (MTTF) are computed. A simulation study is also performed to investigate the accuracy
of parameter estimates obtained via the MCMC simulations.

The paper is organized as follows. The ALT setup, models for the log-normal and gamma life distributions, and
prior specifications are defined in Section 2. In Section 3, the use of the models is demonstrated in an application to
an ALT dataset for some high-reliability device. The log-concavity of the full conditional posteriors is assessed in
the appendix to identify suitable MCMC methods to employ. Posterior samples are obtained via MCMC methods
to perform inference and the robustness of the models is also assessed. A simulation study is conducted in Section
4, with a focus on newly proposed Bayesian log-normal and gamma ALT models. Lastly, concluding remarks are
provided in Section 5.

2. The generalized Eyring ALT models

Consider an accelerated test with two stressors, one thermal and one non-thermal. The generalized Eyring
relationship can be used to extrapolate the life characteristics of the items under consideration, by taking into
account the effect on the time to failure of the thermal stressor, non-thermal stressor, as well as the interaction
between these stressors. Let there be k distinct accelerated levels of the stressors, given by {Ti, Si}, i = 1, . . . , k,
where Ti, i = 1, . . . , k, are the accelerated levels of the thermal stressor and Si, i = 1, . . . , k, are the accelerated
levels of the non-thermal stressor. A constant stress loading with no censoring is assumed, i.e., throughout the ALT
experiment, each item is exposed to the constant application of a specific accelerated level of the stressors until
failure.

Suppose that λi is some life measure, then the generalized Eyring relationship incorporating the two stressors is
given by

λi =
1

Ti
exp

(
θ1 +

θ2
Ti

+ θ3Vi +
θ4Vi
Ti

)
,

where θ1, θ2, θ3, and θ4 are unknown parameters, and Vi is a function of the ith level of the non-thermal stressor. The
parameters θ1, θ2, θ3, and θ4 are characteristics of the specific physical or chemical process involved in the failure
mode [5]. The generalized Eyring relationship can also be extended to include additional non-thermal stressors and
their interactions with the thermal stressor.

A common assumption in the literature is that the scale parameter of a life distribution is dependent
on the accelerated stressors, whereas the shape parameter is not (see, for example, [12, 18, 27, 25]). This
reparameterization of the scale parameter aligns with the established understanding of the physics of degradation
and failure mechanisms. The scale parameter of the life distribution should reflect how the expected lifetimes of
items are shortened due to increased stresses. Furthermore, the functional reparameterization allows for a smooth
extrapolation to the normal operating conditions.
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Suppose that ni items are tested at each of the k distinct stressor levels, where a total of n =
∑k

i=1 ni items are
tested in the ALT experiment. Denoting the failure time of the jth item subjected to the ith level of the stressors by
xij , j = 1, . . . , ni, i = 1, . . . , k, the likelihood function of some life distribution is given by

L (x |Ω) =

k∏
i=1

ni∏
j=1

f (xij |Ω) ,

where f(·) is the probability density function (PDF) of the life distribution and Ω = {ω1, ω2, ..., ωp} is the set of
parameters associated with the life distribution.

In the Bayesian ALT paradigm, it is often difficult to specify a joint prior for the model parameters due to
uncertainties on parameter dependencies. It is common to assume that the priors of the parameters ω1, ω2, ..., ωp are
independent (see, for example, [23, 27]). The independence assumption simplifies prior elicitation and allows for
flexibility in the choice of priors for individual model parameters. Furthermore, Bayesian approximation methods
such as MCMC often have to be used in ALT, where independent priors enable easier implementations and more
efficient posterior updating. The joint prior can be written as

π (Ω) = π(ω1)π(ω2) · · ·π(ωp),

where the joint posterior, up to proportionality, is then given by

π (Ω |x ) ∝ L (x |Ω)π (Ω) .

With the ALT setup described, the likelihood functions of the log-normal and gamma distributions under the
generalized Eyring relationship can be defined.

2.1. Log-normal model

Let X be a continuous random variable that follows a log-normal distribution with parameters µ and σ2 (µ ∈ R,
σ2 > 0). The PDF of X is

f
(
x
∣∣µ, σ2

)
=

1√
2πσx

exp

(
− 1

2σ2
(ln (x)− µ)

2

)
, x > 0. (1)

Assuming the log-normal distribution, the parameter µ depends on the level of the stressors, whereas σ2 does not
[17, 19]. The reparameterization of µ given by the generalized Eyring relationship is

µi = − ln(Ti) + θ1 +
θ2
Ti

+ θ3Vi +
θ4Vi
Ti

. (2)

For the lifetime of the jth item subjected to the ith level of the stressors, it follows from (1) and (2) that the
log-normal PDF can be written as

f
(
xij
∣∣θ1, θ2, θ3, θ4, σ2

)
=

1√
2πσxij

exp

(
− 1

2σ2

(
ln (xij) + ln (Ti)− θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

)2
)
.

The likelihood function of the generalized Eyring-log-normal (GELN) model is then given by

L
(
x
∣∣θ1, θ2, θ3, θ4, σ2

)
=
(
2πσ2

)−n
2

(
k∏

i=1

ni∏
j=1

1

xij

)

× exp

(
− 1

2σ2

k∑
i=1

ni∑
j=1

(
ln (xij) + ln (Ti)− θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

)2
)
.
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Table 1. Prior specification in terms of some parameter ω.

Prior Domain Hyperparameters PDF

ω ∼ Uniform (a, b) ω ∈ [a, b] b > a ≥ 0 π1 (ω) =
1

b−a

ω ∼ Gamma (a, b) ω ∈ (0,∞) a, b > 0 π2 (ω) =
ωa−1

Γ(a)ba exp
(
−ω

b

)
ω ∼ TN

(
a, b2

)
ω ∈ [0,∞) a ∈ R, b2 ≥ 0 π3 (ω) =

1
bϕ(

ω−a
b )

1−Φ(−µ
b )

2.2. Gamma model

Let X be a continuous random variable that follows a gamma distribution with shape parameter α and scale
parameter β (α > 0, β > 0). The PDF of X is

f (x |α, β ) = 1

Γ (α)βα
xα−1 exp

(
−x
β

)
, x > 0, (3)

where Γ(·) denotes the gamma function. The reparameterization, using the generalized Eyring relationship, of the
scale parameter β is

βi =
1

Ti
exp

(
θ1 +

θ2
Ti

+ θ3Vi +
θ4Vi
Ti

)
. (4)

From (3) and (4), the gamma PDF for the lifetime of the jth item subjected to the ith level of the stressors is given
by

f (xij |α, θ1, θ2, θ3, θ4 ) =
1

Γ (α)

(
Ti exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))α

× xα−1
ij exp

(
−xijTi exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))
.

The likelihood function of the generalized Eyring-gamma (GEG) model is then given by

L (x |α, θ1, θ2, θ3, θ4 ) = (Γ (α))
−n

{
k∏

i=1

ni∏
j=1

(
Ti exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))α

× xα−1
ij exp

(
−xijTi exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))}
.

2.3. Priors

Several priors defined on the positive domain are considered for the model parameters of the GELN and GEG
models. The priors considered are the uniform, gamma, and truncated normal distributions. These priors offer
flexibility in terms of incorporating subjective knowledge into the models. However, the robustness of the models
under flat specifications of these priors is investigated in this paper. The parameterizations of the priors are defined
in Table 1. Note that ϕ(·) and Φ(·) denote the PDF and CDF, respectively, of the standard normal distribution.

In the application that follows, while parameter estimation and model comparison metrics are the main
objectives, the robustness of the GELN and GEG models is also assessed under flat specifications of the priors.
Since no subjective prior knowledge is typically available in ALT experiments, flat priors can be constructed by
allowing for a sufficiently wide domain for the model parameters via suitable choices of the hyperparameters in
Table 1. In order to allow for a fair comparison between the use of the different priors, the hyperparameters are
chosen such that the prior variance of each prior is 10,000,000. This is achieved by setting a = 0 for the uniform
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Table 2. Model specification via prior assignment.

Model Prior Assignment

GELN1 θ1, θ2, θ3, θ4, σ
2 ∼ Uniform(a, b)

GELN2 θ1, θ2, θ3, θ4, σ
2 ∼ Gamma(a, b)

GELN3 θ1, θ2, θ3, θ4, σ
2 ∼ TN(a, b2)

GEG1 α, θ1, θ2, θ3, θ4 ∼ Uniform(a, b)

GEG2 α, θ1, θ2, θ3, θ4 ∼ Gamma(a, b)

GEG3 α, θ1, θ2, θ3, θ4 ∼ TN(a, b2)

prior, a = 1 for the gamma prior, a = 0 for the truncated normal prior, and then solving the prior variance for the
value of b for each prior.

Assigning each prior to all parameters of the GELN and GEG models, the six candidate ALT models given
is Table 2 are considered. It is of course straightforward to consider mixtures of these priors or varying
hyperparameters for the model parameters as well.

The log-concavity of the GELN and GEG likelihood functions, as well as that of the priors, is assessed in
the appendix. Considering the GELN and GEG models given in Table 2, some of the resulting full conditional
posteriors are not log-concave. More specifically, the full conditional posteriors of σ2 in the GELN models are
not log-concave. For these non-log-concave densities, more advanced MCMC methods are required to generate
posterior samples for inference (see the appendix for further discussions).

3. Application

A real ALT dataset, based on the failure times (in hours) of some durable device, is used to demonstrate the
use of the GELN and GEG models. The test data are given in Table 3 and consists of 21 devices, where the
accelerated stressors are temperature (measured in Kelvin) and relative humidity. The normal operating conditions
of the devices are a temperature of Tu = 313K and a relative humidity of Su = 0.5. There are three levels of the
accelerated stressors in the experiment and the ALT experiment is terminated after all devices fail.

It is known that failures in the devices occur mainly due to decreased adhesion between layers of the material
caused by high temperatures, or due to moisture entering the devices through openings created by decreased
adhesion. It has also been noted that the devices are less likely to fail earlier when exposed to high air moisture
levels at low temperatures, or when exposed to high temperatures with little moisture in the air. This makes the
generalized Eyring relationship an ideal choice for the TTF, since it takes into account the effects of the thermal
stressor, non-thermal stressor, and interaction between these stressors.

In this application, the Bayesian data analysis software OpenBUGS is used for the MCMC simulations to
generate posterior samples. The convergence of the MCMC chains for the models is first investigated. For each
model, three Markov chains are initialized with different starting values and 50,000 samples are generated. The
trace plots show that good mixing and stationarity of the chains are achieved after a few thousand iterations.
The modified Gelman-Rubin statistic, proposed by [2], indicates stable convergence of the chains before 10,000
iterations. Lastly, the Monte Carlo standard error of each parameter becomes sufficiently small compared to its
mean parameter estimate. Considering the fast convergence of the models, a single Markov chain is initialized for
each model, with a burn-in of 50,000 iterations and 150,000 retained iterations, to generate posterior samples on
which to base inference.
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Table 3. Failure times for 21 devices under accelerated stressors.

# Temperature Humidity Failure time # Temperature Humidity Failure time
1 333 0.9 521 12 353 0.8 504
2 333 0.9 561 13 353 0.9 115
3 333 0.9 575 14 353 0.9 119
4 333 0.9 599 15 353 0.9 150
5 333 0.9 609 16 353 0.9 152
6 333 0.9 684 17 353 0.9 153
7 333 0.9 709 18 353 0.9 155
8 333 0.9 713 19 353 0.9 156
9 353 0.8 345 20 353 0.9 164
10 353 0.8 357 21 353 0.9 199
11 353 0.8 439

The summary statistics for the marginal posteriors of the models under consideration are presented in Table
4. It is clear that both the GELN and GEG models are robust under different choices of flat priors, since very
similar summary statistics are produced for these two models, respectively. However, this result holds for the given
prior specifications, where the use of restrictive subjective priors may significantly influence the posterior samples
generated.

A commonly used measure for model comparison in the Bayesian ALT setup is the deviance information
criterion (DIC) proposed by [24]. The DIC assesses the fit of a model to the data, but also penalizes the model
for complexity in terms of overparameterization. [24] show that the DIC and the Akaike information criterion
(AIC) are approximately equivalent for models with very weak prior information. That is, the guidelines for the
AIC in [3] can be used to decide whether the models considered in this application have substantially different
DIC values. Given the DIC values of the GELN and GEG models in Table 5, all models used in this application
have substantial support and should be considered for making inferences (given the set of candidate models being
compared). The DIC values indicate that the GELN models fit the data slightly better than the GEG models and
very stable DIC values are observed when using the different flat priors.

The fit of the models is further compared by calculating the mean absolute error (MAE) between the predictive
reliability and empirical reliability at the accelerated stress levels. Given the ALT setup described in Section 2, this
MAE can be calculated as

MAE
(
Ω̂
)
=

1

n

k∑
i=1

ni∑
j=1

∣∣∣R̂ni

(
xi(j)

)
−R

(
xi(j)

∣∣∣Ω̂)∣∣∣ , (5)

where R̂ni
(xi(j)) denotes the empirical reliability and R(xi(j)|Ω̂) denotes the predictive reliability given some

parameter estimates Ω̂ = {ω̂1, ω̂2, ..., ω̂p}, both at the jth ordered failure time, xi(1) ≤ xi(2) ≤ · · · ≤ xi(ni), under
the ith accelerated level of the stressors. Table 5 presents the results for the MAE using, respectively for each
candidate model, the posterior means as parameter estimates, which are the Bayes estimates under a squared error
loss. Comparable conclusions regarding model comparison can be made using the MAE, where comparing the
GELN models against the GEG models, there is not a significant difference between the MAE values. Again, the
GELN models have a slightly better fit to the data and consistent MAE values are observed over the different flat
priors.

Bayes factors can also be used for model comparison, but this requires the approximation of the
marginal likelihood when working with mathematically intractable posteriors. [21] discuss several methods for
approximating the marginal likelihood, with specific reference to complex models in the Bayesian ALT setup.

The posterior samples generated via the MCMC simulations can now be used to extrapolate the predictive
reliability under the normal operating conditions. The predictive reliability under the normal operating conditions
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Table 4. Summary statistics for the GELN and GEG models.

Model Parameter Mean Standard
Deviation

2.5th
Percentile

Median 97.5th
Percentile

θ1 1.0601 0.9880 0.0277 0.7545 3.7040
θ2 3.8649 1.0115 1.2220 4.1200 5.1650

GELN1 θ3 1.7191 1.3711 0.0599 1.4060 5.0710
θ4 2.1296 1.5507 0.0896 1.8480 5.7620
σ2 0.3745 0.1543 0.1796 0.3413 0.7621
θ1 1.1123 1.0392 0.0293 0.7820 3.9160
θ2 3.8136 1.0580 1.0390 4.0890 5.1610

GELN2 θ3 1.7335 1.3865 0.0600 1.4100 5.1070
θ4 2.1175 1.5516 0.0881 1.8250 5.7530
σ2 0.3765 0.1552 0.1803 0.3430 0.7670
θ1 1.0923 1.0343 0.0274 0.7633 3.9230
θ2 3.8411 1.0539 1.0260 4.1250 5.1570

GELN3 θ3 1.7268 1.3650 0.0596 1.4240 5.0640
θ4 2.0831 1.5163 0.0868 1.8110 5.6620
σ2 0.3746 0.1540 0.1802 0.3413 0.7649
α 3.3907 1.0011 1.7160 3.2960 5.6040
θ1 0.9544 0.8836 0.0267 0.6847 3.3520

GEG1 θ2 3.0863 0.8552 0.8821 3.2580 4.3290
θ3 1.4715 1.2163 0.0485 1.1790 4.5340
θ4 1.7481 1.3841 0.0631 1.4300 5.1380
α 3.4095 1.0232 1.7230 3.3050 5.7100
θ1 0.9508 0.8759 0.0260 0.6850 3.3070

GEG2 θ2 3.0884 0.8465 0.9121 3.2620 4.3320
θ3 1.4586 1.2272 0.0471 1.1510 4.5530
θ4 1.7402 1.3621 0.0636 1.4400 5.0700
α 3.3907 1.0011 1.7160 3.2960 5.6040
θ1 0.9544 0.8836 0.0267 0.6847 3.3520

GEG3 θ2 3.0863 0.8552 0.8821 3.2580 4.3290
θ3 1.4715 1.2163 0.0485 1.1790 4.5340
θ4 1.7481 1.3841 0.0631 1.4300 5.1380

Table 5. Model comparison metrics for the candidate models.

Models
GELN1 GELN2 GELN3 GEG1 GEG2 GEG3

DIC 278.7 278.8 278.8 280.4 280.6 280.4
MAE 0.3084 0.3085 0.3085 0.3324 0.3327 0.3324

is given by

R (xu |x ) =
∫
R (xu |Ω)π (Ω |x ) dΩ, (6)

where R (xu |Ω) is the reliability function at time xu under the normal operating stress levels Tu and Su, and Ω is
the set of parameters associated with the reliability function. R (xu |x ) can be estimated as follows:

1. Sample a value for each parameter in Ω from the posterior.
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2. Repeat Step 1 many times, say M times, to generate the posterior samples Ω(m) =
{
ω
(m)
1 , ω

(m)
2 , ..., ω

(m)
p

}
,

m = 1, ...,M .
3. Estimate the integral in (6) by the Monte Carlo average

R (xu |x ) ≈
1

M

M∑
m=1

R
(
xu

∣∣∣Ω(m)
)
,

which is the expected reliability at time xu under the normal operating conditions.
4. Repeat Step 3 for a range of values of xu to obtain predictive reliability estimates, under the normal operating

conditions, for a range of lifetimes.

The predictive reliability of the GELN and GEG models, for 0 ≤ xu ≤ 50000 under the normal operating
conditions of Tu = 313K and Su = 0.5, is displayed in Figure 1. While there is a notable difference in the predictive
reliability between the GELN and GEG models, each model produces robust results under the different flat priors
considered. Given that both model comparison metrics indicate that the GELN models have a slightly better fit than
the GEG models, more confidence might be placed on the estimates produced by the GELN models.

The B10 life, which is the lifetime by which only 10% of population is expected to have failed, is a typical
measure used in reliability analysis to determine warranty periods or the maximum service life before the
replacement of products, components, or systems (see, for example, [6, 10]). The predictive B10 life under the
normal operating conditions is around 2,230 hours for the GELN models and around 1,300 hours for the GEG
models. When considering a warranty on this device, the manufacturer would typically set a warranty period that
is significantly shorter than the B10 life in order to limit warranty replacements. As an example, suppose that this
specific device is used on average for 4 hours per day and that the B10 life using the GEG model is considered.
The B10 life translates to 325 use days, meaning that a manufacturer might set only a 6-month warranty so that
substantially fewer than 10% of the devices incur warranty replacements.

Since the devices may function under stressors varying slightly from the normal operating conditions, it is
important to investigate the sensitivity of the devices under slightly accelerated stressors. To assess this sensitivity,
let us consider estimates of the MTTF under the normal operating conditions versus slightly accelerated stressors.
Table 6 provides the MTTF estimates for the GELN1 and GEG1 models, given temperatures in the range (313K,
318K) and relative humidities in the range (0.50, 0.55). The results are displayed only for these two models, since
the GELN and GEG models are robust with regards to the choice the different flat priors. It is clear that a deviation
from the normal operating conditions can affect the MTTF to a great extent, where substantially earlier failures
may occur due to the interactive impact when both stressors are accelerated.

The MTTF results under slightly accelerated stressors can also be used to inform design margins for planning
future accelerated tests on this particular device. The degree of acceleration can provide an indication of the
accelerated stress levels at which more devices can be tested, given a budgeted time for testing, to obtain additional
failure data for reliability analysis.

4. Simulated data study

In this simulation study, an ALT experiment using two stressors, temperature and relative humidity, is considered.
The newly defined GELN and GEG models are further explored through the use of simulated datasets. The
generalized Eyring-Weibull (GEW) and generalized Eyring-Birnbaum-Saunders (GEBS) models, introduced in
[22] and [20], respectively, are also included in this study. The normal operating conditions are assumed to be a
temperature of Tu = 325K and a relative humidity of Su = 0.3.

Six accelerated stress levels are considered, which are the distinct temperature-humidity pairs {Ti, Si} =
{(350, 0.5); (350, 0.7); (375, 0.5); (375, 0.7); (400, 0.5); (400, 0.7)}. Equal sample sizes are considered per stress
level, specifically ni = {5, 10, 15, 25, 50, 100}, i = 1, ..., k. Two parameterization cases are considered. Case 1:
The GELN model with parameters θ1 = 4, θ2 = 2, θ3 = 1, θ4 = 2, σ2 = 0.25 is the true model. Case 2: The
GEG model with parameters α = 2, θ1 = 7, θ2 = 2, θ3 = 1, θ4 = 1 is the true model. These parameter values
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Figure 1. Predictive reliability of the GELN and GEG models under the normal operating conditions.

Table 6. MTTF under slightly accelerated stressors.

Relative Humidity
Model Temperature 0.50 0.51 0.52 0.53 0.54 0.55

GELN1

313 18907 16808 14975 13372 11965 10729
314 18446 16401 14616 13054 11683 10478
315 17998 16006 14267 12745 11409 10234
316 17564 15623 13929 12445 11143 9997
317 17142 15252 13600 12154 10885 9768
318 16733 14891 13281 11872 10634 9545

GEG1

313 10091 9145 8305 7555 6885 6285
314 9886 8961 8139 7405 6750 6163
315 9686 8781 7977 7259 6618 6043
316 9491 8606 7819 7117 6489 5927
317 9301 8436 7665 6978 6364 5813
318 9116 8269 7516 6843 6241 5702

are arbitrary and the study can be repeated for any other parameter values, or data can be simulated from any of
the other ALT models. A single ALT dataset is generated for each sample size, respectively for each case, from the
specified ALT model. Using these generated datasets, the GELN, GEG, GEW, and GEBS models are implemented
in OpenBUGS to generate posterior samples for inference. A flat gamma prior, Gamma(1, 0.0001), is used for all
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Table 7. MAE comparison for the candidate models.

Models
Case ni GELN GEG GEW GEBS

5 0.1326 0.1445 0.1451 0.1309
10 0.0659 0.0751 0.0741 0.0656

Case 1 15 0.0560 0.0677 0.0758 0.0569
(GELN) 25 0.0542 0.0625 0.0708 0.0549

50 0.0465 0.0557 0.0653 0.0477
100 0.0258 0.0328 0.0485 0.0267
5 0.1636 0.1794 0.1702 0.1581
10 0.1224 0.1285 0.1241 0.1225

Case 2 15 0.0737 0.0830 0.0824 0.0708
(GEG) 25 0.0561 0.0524 0.0536 0.0682

50 0.0407 0.0291 0.0302 0.0527
100 0.0317 0.0279 0.0298 0.0435

models throughout the simulation study. Similar to the real ALT application in Section 3, a single Markov chain is
initialized for each model, with a burn-in of 50,000 iterations and 150,000 retained iterations.

First, the fit of the four ALT models is compared for the two cases using the MAE defined in (7). Only the
MAE is considered in the simulation study, due to it being a more interpretable fit measure which considers the
discrepancy between the empirical reliability and predictive reliability at the accelerated stress levels. [27] state
that life distributions commonly used to model fatigue data can fit the central region relatively well, where all
the candidate models may be reasonable in terms of goodness-of-fit for small sample sizes. Furthermore, both the
Weibull and Birnbaum-Saunders distributions are relatively flexible in terms of their shape, meaning that deviations
from the true model may be expected for small sample sizes.

Table 7 displays the MAE results for both cases over the different sample sizes, using the posterior means
of the parameters for each respective model as parameter estimates. The smallest MAE for each sample size is
highlighted. For Case 1, it can be noted that the GELN and GEBS models have very similar MAE values, with
the GELN model exhibiting the slightly better fit for sample sizes larger than 15 per stress level. For Case 2, the
GEBS and GELN models fit the simulated datasets better for small sample sizes, whereas the GEG model shows
the better fit for sample sizes larger than 25 per stress level.

Parameter estimation for the GELN and GEG models is further investigated by comparing the true parameter
values to estimates obtained from the posterior samples generated via MCMC simulations. The discrepancy
between the true values and estimates can be measured in terms of the relative absolute deviation (RAD) for
each parameter. For a parameter ω, the RAD can be computed as

RAD (ω̂) =

∣∣∣∣ ω̂ − ω

ω

∣∣∣∣ ,
where ω̂ is an estimate for the parameter ω. Table 8 shows the RAD for each parameter of the GELN and GEG
models, respectively for Case 1 and Case 2, over the different sample sizes. Since the parameter deviations are
measured in relative terms, the mean RADs over the five parameters of the models are also calculated for each
sample size. It is clear that the mean RADs of both the GELN and GEG models generally decrease as the sample
size increases. Overall, the parameters directly linked to the stressors, i.e., θ2, θ3, and θ4, seem to have higher
RADs, indicating that they are more difficult to accurately estimate. Repeating this ALT experiment numerous
times would provide summary information on the accuracy of the estimates over the sample sizes.
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Table 8. RAD of the parameters for the GELN and GEG models.

Parameters for GELN model
ni σ2 θ1 θ2 θ3 θ4 Mean
5 0.0450 0.2709 0.5014 0.6380 0.2416 0.3394
10 0.1928 0.1107 0.2672 0.4885 0.3087 0.2736
15 0.1593 0.0237 0.0520 0.5516 0.2175 0.2008
25 0.0344 0.0137 0.0331 0.3573 0.1308 0.1139
50 0.0985 0.0049 0.0934 0.2814 0.3065 0.1569

100 0.0170 0.0980 0.1681 0.3032 0.1011 0.1375
Parameters for GEG model

ni α θ1 θ2 θ3 θ4 Mean
5 0.2291 0.1569 0.3985 0.1377 0.1127 0.2070
10 0.1035 0.0441 0.2488 0.4763 0.1495 0.2044
15 0.0100 0.0969 0.2911 0.0801 0.1975 0.1351
25 0.0381 0.0460 0.1457 0.2320 0.0459 0.1015
50 0.0087 0.0844 0.1681 0.1076 0.2497 0.1237

100 0.0104 0.0701 0.2067 0.2114 0.0352 0.1068

5. Conclusions

In this paper, Bayesian dual-stress ALT models are proposed where lifetimes are assumed to follow either a
log-normal distribution or gamma distribution. The generalized Eyring relationship is used as the TTF, which
can be used to investigate the acceleration of life under one thermal stressor, one non-thermal stressor, and the
interaction between these stressors. Several priors are considered to assess the robustness of the models. Due to
the mathematically intractable posteriors, the log-concavity of the models is assessed and MCMC methods are
employed to generate posterior samples on which to base inference.

The use of the GELN and GEG models is demonstrated in an application to a real dataset, with temperature
and relative humidity as the accelerated stressors. Summary statistics on the marginal posteriors are provided, as
well as estimates of the MTTF under slightly accelerated stressors and the expected reliability under the normal
operating conditions. The model comparison metrics, summary statistics, and estimates show that both the GELN
and GEG models are robust under different choices of flat priors. According to the DIC and MAE values, the
GELN model has a slightly better fit to the data compared to the GEG model. The two models produce notably
different estimates of the MTTF and predictive reliability, and both models show that the devices are sensitive to
slightly accelerated stressors. The models are further investigated using simulated datasets from the GELN and
GEG models. It is found that the GELN and GEG models have the best fit for these simulated datasets, respectively
when the data is generated from the GELN and GEG models. The MCMC method also generally provides more
accurate parameter estimates as the sample size increases.

The specification of the GELN and GEG models allows for a diverse range of subjective priors, should a
reliability engineer want to incorporate prior expert knowledge. However, the use of subjective priors should to be
handled with great care, since these complex models may be sensitive to the use of constrained or strong subjective
priors.
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Appendix

In this appendix, the log-concavity of the full conditional posteriors of the GELN and GEG models is assessed to
determine which MCMC techniques are appropriate to use. Due to the mathematically intractable posteriors of the
models, MCMC methods that require specification of the full conditional posteriors up to at least proportionality
only, are considered. Some of these MCMC methods, such as adaptive rejection sampling introduced by [7], can
only sample from log-concave densities. In the case of non-log-concave densities, more advanced MCMC methods
such as adaptive rejection Metropolis sampling [8] or slice sampling [15] can be used.

A twice differentiable function f(x) is log-concave if the second derivative of ln(f(x)) is non-positive on the
domain of x (see, for example, [1]), thus if

∂2 ln (f (x))

∂x2
≤ 0 ∀x.

Since the product of two log-concave functions is again log-concave, it is sufficient to assess only the log-
concavity of the likelihood functions with respect to each parameter as well as the log-concavity of the priors.
From this, the log-concavity of the GELN and GEG models, using any of the specified priors, directly follows.

GELN model

Let ℓ1 denote the log-likelihood function of the GELN model, that is

ℓ1 = ln

((
2πσ2

)−n
2

(
k∏

i=1

ni∏
j=1

1

xij

))
− 1

2σ2

k∑
i=1

ni∑
j=1

(
ln (xij) + ln (Ti)− θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

)2

.

The second derivatives of ℓ1 with respect to θ1, θ2, θ3, θ4, and σ2 are, respectively,

∂2ℓ1
∂θ21

= − n

σ2
,

∂2ℓ1
∂θ22

= − 1

σ2

k∑
i=1

ni
T 2
i

,

∂2ℓ1
∂θ23

= − 1

σ2

k∑
i=1

niV
2
i ,

∂2ℓ1
∂θ24

= − 1

σ2

k∑
i=1

niV
2
i

T 2
i

,

∂2ℓ1

∂ (σ2)
2 =

n

2 (σ2)
2 − 1

(σ2)
3

k∑
i=1

ni∑
j=1

(
ln (xij) + ln (Ti)− θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

)2

.

Since n, ni > 0 and σ2 > 0, it is clear that the contributions of L(x|θ1, θ2, θ3, θ4, σ2) to the full conditional
posteriors of θ1, θ2, θ3, and θ4 are log-concave over their respective domains. However, the contribution of
L(x|θ1, θ2, θ3, θ4, σ2) to the full conditional posterior of σ2 is only log-concave where

σ2 ≤ 2

n

k∑
i=1

ni∑
j=1

(
ln (xij) + ln (Ti)− θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

)2

.
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GEG model

Let ℓ2 denote the log-likelihood function of the GEG model, that is

ℓ2 = −n ln (Γ (α)) + α

k∑
i=1

ni∑
j=1

ln (Ti)− α

k∑
i=1

ni

(
θ1 +

θ2
Ti

+ θ3Vi +
θ4Vi
Ti

)

+ (α− 1)

k∑
i=1

ni∑
j=1

ln (xij)−
k∑

i=1

ni∑
j=1

(
xijTi exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))
.

The second derivatives of ℓ2 with respect to θ1, θ2, θ3, θ4, and α are, respectively,

∂2ℓ2
∂θ21

= −
k∑

i=1

ni∑
j=1

(
xijTi exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))
,

∂2ℓ2
∂θ22

= −
k∑

i=1

ni∑
j=1

(
xij
Ti

exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))
,

∂2ℓ2
∂θ23

= −
k∑

i=1

ni∑
j=1

(
xijTiV

2
i exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))
,

∂2ℓ2
∂θ24

= −
k∑

i=1

ni∑
j=1

(
xijV

2
i

Ti
exp

(
−θ1 −

θ2
Ti

− θ3Vi −
θ4Vi
Ti

))
,

∂2ℓ2
∂α2

= −nψ1 (α) ,

where ψ1(α) = ∂2/∂α2(ln(Γ(α))) is the trigamma function. Since n, Ti > 0 and ψ1(α) > 0 for α > 0, the
contributions of L(x|α, θ1, θ2, θ3, θ4) to the full conditional posteriors of θ1, θ2, θ3, θ4, and α are log-concave
over their respective domains.

Priors

For a uniform prior between a and b on a parameter ω, we have that

∂2 ln (π1 (ω))

∂ω2
= 0,

so that π1(ω) is log-concave over its domain.
If a parameter ω has a gamma prior with shape parameter a and scale parameter b, then

∂2 ln (π2 (ω))

∂ω2
=

1− a

ω2
,

so that π2(ω) is only log-concave over its domain if a ≥ 1.
Suppose that a parameter ω has a truncated normal prior on [0,∞) with location parameter a and scale parameter

b2. We then have that
∂2 ln (π3 (ω))

∂ω2
= − 1

b2
,

so that π3(ω) is log-concave over its domain.
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