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Abstract The purpose of this paper is to explore the mechanisms of data missingness and evaluate various imputation
techniques used to handle missing data. Missing data is a common issue in data analysis, and its treatment is crucial for
accurate modeling and analysis. This paper assesses prevalent imputation methods, including mean imputation, median
imputation, K-Nearest Neighbor imputation (KNN), Classification and Regression Trees (CART), and Random Forest (RF).
These techniques were chosen for their widespread use and varying levels of complexity and accuracy. Simple methods like
mean and median imputation are computationally efficient but may introduce bias, especially when the missingness is not
random. In contrast, more advanced methods like KNN, CART, and RF offer better handling of complex missingness patterns
by considering relationships among variables. This paper aims to provide guidance for data scientists and analysts in selecting
the most appropriate imputation methods based on their data characteristics and analysis objectives. By understanding the
strengths and weaknesses of each technique, practitioners can improve the quality and reliability of their analyses.
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1. Introduction

Ensuring high-quality data is a top priority for scientists and researchers in data science and analysis. The output
accuracy of machine learning algorithms is affected by various aspects, such as variable and algorithm selection,
sampling and training methods, and appropriate testing and validation datasets [3]. Missing data introduces
uncertainty into the analysis process and can negatively impact the accuracy of statistical estimators, leading to
weakened statistical power and potentially misguided conclusions [23, 25].

The most widely accepted method for addressing missing data is missing data imputation, which involves
estimating plausible values to replace the missing ones [17, 19]. This approach ensures that data analysis proceeds
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without losing valuable information due to missing values. The primary goal of imputing missing information is to
reduce bias caused by missing data rather than excluding incomplete cases [5].

2. Methods of Handling Missing Data

According to [20], when the percentage of missing data is less than or equal to 25%, it is recommended to compare
the results both before and after the imputation process.

2.1. Regression Imputation

This technique involves replacing missing values with predicted values generated by regression models using
observed values of other variables. This method assumes a linear relationship between the variables, but in reality,
such relationships are often nonlinear. Regression imputation preserves data structure but may introduce bias [22].

2.2. KNN Imputation

In this method, missing values are replaced by copying values from similar cases in the same dataset, where
similarity is assessed using a distance function. In this method, missing values are replaced by estimating values
derived from the k-nearest neighbors in the same dataset, where similarity between cases is determined using a
distance function (e.g., Euclidean distance). The imputed value is typically calculated as the average (or weighted
average) of the values from the k most similar cases.

2.3. Multiple Imputation

In Multiple Imputation, instead of substituting a single value for each missing value, several plausible values are
credited to account for uncertainty surrounding the actual values. This method generates m complete data sets, each
containing both observed and imputed values. The process involves three steps:

1. Replacing missing data with multiple plausible values to create m complete data sets.
2. Analyzing each of the data sets separately.
3. Combining the results (see [21]).

2.4. CART in MICE

The CART method for imputation is a tree-based approach that does not require the specification of an imputation
model. The CART algorithm essentially creates a binary decision rule by utilizing a variable to split the data into
two nodes at each step. This process is aimed at reducing the variance of the outcome within each node, ultimately
optimizing the decision-making process [2]. The tree grows by further dividing the data until it reaches a stopping
point set by specific parameters. Imputations are then carried out by assigning new subjects to terminal nodes and
sampling the outcomes in those nodes [2].

In our study, we utilized the mice package to implement Classification and Regression Trees (CART), with
default tree-based tuning parameters including a complexity parameter of (E) and a minimum requirement of five
observations in each terminal node [6, 5, 28]. For a more comprehensive understanding of the CART algorithm in
MICE, see [4].

2.5. RF in MICE

The RF imputation method involves building multiple regression trees and randomly drawing imputations from
potential values within each tree. To implement RF, variation is introduced by using bootstrap samples of the
original data along with random input selection to construct each tree [1, 14]. The random input selection limits the
variables used for node splitting to a random subset of all variables. For a detailed explanation of the RF algorithm
in MICE, refer to [6].
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In our study, we utilized the mice package to apply RF in MICE [24], creating 10 trees in each random forest
as per the default setting in the mice function [5]. The number of predictors considered for node splitting is p/3
rounded down to the nearest integer by default [24], where p represents the total number of predictors [5, 28].

3. Materials and Methods

The dataset utilized in this study was sourced from the UCI Machine Learning Repository [15], with detailed
descriptions provided in Table 1.

Initially, the four separate datasets in Table 1 were retrieved from the UCI repository. Then different percentages
(10, 20, 30, 40, and 50%) of missing values were introduced to each original dataset. These simulated missing
values were then imputed using different imputation techniques. Mean and median imputation involved calculating
the average and middle value of the incomplete variable, respectively. KNN imputation was conducted using the
VIM package in R, as detailed by [13].

For more complex multiple imputation approaches, such as classification and regression trees and random forest,
the mice package in R was employed, with references provided by [5, 26, 29, 18]. Following imputation, the
performance of each method was analyzed. The performance of imputation methods was evaluated using the mean
normalized RMSE (NRMSE) metric. NRMSE was utilized due to variations in scales among different variables
in the dataset. The mean NRMSE was calculated for each variable in the dataset and served as an assessment
of the overall performance of the imputation methods. R was employed for data manipulation, imputation, and
performance analysis of the various imputation techniques.

Table 1. Detailed Description of the Data Utilized in the Research Analysis

No Dataset Dataset Description
No. of

Instances
No. of

Attributes

1 Wine Dataset These data are the results of a
chemical analysis of wines grown
in the same region in Italy but
derived from three different
cultivars

178 13

3*2 32.5cmHeart Fail-
ure
Clinical Records
Data Set

This dataset contains the medical
records of 299 patients who had
heart failure, collected during
their follow-up period, where
each patient profile has
13 clinical features.

299 13

3*3 32.5cmHepatitis C
Virus (HCV)
for Egyptian
Patients
Data Set

Egyptian patients who underwent
treatment dosages for HCV about
18 months. Discretization should
be applied based on expert
recommendations; there is
an attached file show how

1385 29

3*4 32.5cmConcrete
Compressive
Strength Data Set

Concrete is vital in civil engineering
because of its structural strength.
Factors such as age and composition
of constituents affect its compressive
strength and complicate its analysis.
The compressive strength of concrete
is a highly non-linear function of
age and constituent materials.

1030 9

The wine dataset focuses on the chemical analysis of wines from three different grape cultivars grown in the same
Italian region, offering a relatively small sample size (178 instances) with 13 attributes. The data is likely useful
for studying how the grape variety impacts wine characteristics and composition. The relatively modest number
of instances suggests that the research might be focused on in-depth analysis rather than large-scale predictive
modeling. The heart failure clinical records data set with 299 patient profiles, this dataset provides a clinical context,
offering 13 attributes related to heart failure. It represents a medical domain dataset that can potentially be used
to predict patient outcomes, assess risks, and examine the relationship between clinical features and heart failure
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prognosis. Despite its larger sample size compared to the wine dataset, the number of attributes remains consistent.
The HCV for Egyptian patients contains medical records for 1385 Egyptian patients, making it the largest in the
table. With 29 attributes, the dataset likely provides a deeper level of detail, reflecting the complexity of treatment
regimens for Hepatitis C. The mention of discretization based on expert recommendations suggests the need for
domain expertise in preparing the data for analysis, which highlights the importance of medical context in working
with such datasets. The strength data set contains1030 instances in this dataset relate to concrete, a critical material
in civil engineering, with 9 attributes that help model its compressive strength. The dataset’s focus on non-linear
relationships between factors such as age and material composition make it an important resource for understanding
concrete performance, potentially informing structural engineering practices.

4. Real Data Analysis

We will now assess the effectiveness of the five imputation methods, mean, median, KNN, CART within MICE,
and RF within MICE, that were introduced in the preceding sections. Among these classification methods, three
are categorized as single imputation methods: mean, median, and KNN. The remaining two methods, CART and
RF, belong to the category of multiple assignment methods.

Single imputation methods, such as mean, median, and KNN, replace missing values with a single value without
accounting for the variability or uncertainty inherent in the imputation process. For instance, the mean imputation
method replaces all missing values in a variable with the mean of the observed values, while the median imputation
method uses the median instead. These approaches are straightforward and computationally efficient but may lead
to biased estimates and an underestimation of variance, as they do not reflect the natural variability in the data.
Similarly, KNN imputation identifies the k nearest neighbors based on a distance metric and replaces missing
values with the average (or mode, in the case of categorical variables) of these neighbors. While KNN is more
sophisticated than mean or median imputation, it still provides a single estimate for each missing value, thereby
ignoring the uncertainty associated with the imputation process.

In contrast, multiple imputation methods like CART and RF within MICE account for the uncertainty in
the imputation process by generating multiple plausible values for each missing data point. CART, when used
within the MICE framework, employs classification and regression trees to predict missing values based on
relationships between variables. This approach leverages the hierarchical structure of decision trees to model
complex interactions and non-linear relationships in the data. On the other hand, RF within MICE extends this
concept by utilizing random forests, which are ensembles of decision trees. Random forests improve upon single
decision trees by reducing overfitting and increasing predictive accuracy through bootstrap aggregation and feature
randomness. Both CART and RF within MICE generate multiple imputed datasets, each reflecting a different
possible realization of the missing data, thereby providing a more comprehensive representation of the uncertainty
in the imputation process.

For a more in-depth understanding of these multiple imputation methods, particularly their implementation
within the MICE framework. By evaluating these methods across different scenarios and datasets, researchers can
better appreciate their strengths and limitations, ultimately guiding the selection of the most appropriate imputation
strategy for a given problem. To assess the efficiency of various imputation techniques, we measure the normalized
root-mean-square error (NRMSE) for each variable in the dataset by utilizing the following formula:

NRMSE =

√√√√mean
(
(original value − imputed value)2

)
max(original value)− min(original value)

where the original value represents the actual data point, and the imputed value is the estimated value following
imputation. Next, the Mean of NRMSE is calculated using the following formula:
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Mean NRMSE =
1

n

n∑
i=1

NRMSE,

where ’n’ represents the total number of variables included in the dataset. A reduction in the mean NRMSE
value suggests that the imputation methods performed better.

Tables 2–5 display the average values of NRMSE for all datasets at various levels of missing data ratio. The
calculations are based on different imputation techniques. In the following tables, each row represents a specific
method used, while each column displays the corresponding percentage of missing data. The bold value signifies
the lowest Mean NRMSE, indicating the most effective imputation method for that particular dataset. The data
demonstrates a correlation between the proportion of missing values and the average NRMSE, showing that as the
former rises, so too does the latter.

Table 2. Mean NRMSE for Wine dataset.

2*
Method Used for
Data Imputation Percent of Imputed Data

10 20 30 40 50

Mean Imputation 0.330121 0.47373 0.57983 0.675876 0.761662
Median Imputation 0.337515 0.481549 0.58874 0.690914 0.78079
KNN Imputation 0.202615 0.29687 0.366345 0.429708 0.487329
RF 0.318207 0.467305 0.578709 0.683289 0.768588
CART 0.267979 0.397142 0.48866 0.575026 0.661217

Table 3. Mean NRMSE for Heart dataset.

2*
Method Used for
Data Imputation Percent of Imputed Data

10 20 30 40 50

Mean Imputation 3.0634 4.40625 5.51389 6.279098 6.977441
Median Imputation 3.073493 4.427702 5.53078 6.303146 6.999989
KNN Imputation 3.200358 4.643237 5.769631 6.578572 7.349563
RF 4.18258 6.05988 7.637643 8.828734 9.857851
CART 4.421592 6.30822 7.727376 8.846299 10.07321

Table 4. Mean NRMSE for HCV dataset.

2*
Method Used for
Data Imputation Percent of Imputed Data

10 20 30 40 50

Mean Imputation 20.32316 28.90146 35.36952 40.8536 45.72216
Median Imputation 20.45093 29.07397 35.5861 41.10005 46.05424
KNN Imputation 20.11328 28.65974 35.07199 40.51636 45.41055
RF 25.86595 36.93773 45.19835 52.24019 58.51024
CART 25.91126 36.82787 45.07719 52.18786 58.30611
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Table 5. Mean NRMSE for Concrete dataset.

2*
Method Used for
Data Imputation Percent of Imputed Data

10 20 30 40 50

Mean Imputation 1.067511 1.509434 1.847977 2.13922 2.396204
Median Imputation 1.149679 1.62484 1.989871 2.303988 2.581315
KNN Imputation 0.437119 0.642189 0.811931 0.980262 1.154321
RF 0.733182 1.085787 1.384627 1.655033 1.939051
CART 0.527952 0.787808 1.013739 1.238703 1.47805

To evaluate the consistency of the results for each imputation method concerning different levels of missing
data, we have compared each technique based on Mean NRMSE values The average NRMSE values are arranged
in ascending order to achieve this goal, with the lowest value assigned the highest rank. Tables 6–10 present
the rankings of imputation methods for different percentages of missing data in four distinct datasets. The tables
demonstrate the performance of various imputation methods on specific datasets with a particular level of missing
data, enabling a comparison of imputation method consistency across datasets with the same amount of missing
data. In each table, the final row presents Kendall’s test statistics, which evaluate the agreement among the ranks
of imputation methods across varied datasets. Still, the proportion of missing data remains constant. The results
indicate that the performance of imputation methods is influenced by the data structure and variables being imputed.

Table 6. Rank of imputation method for 20% missing data for each dataset

Imputation Method Wine Heart HCV Concrete

Missing Percentage of Data: 20%
Mean Imputation 4 1 2 4
Median Imputation 5 2 3 5
KNN Imputation 1 3 1 1
RF 3 4 5 3
CART 2 5 4 2

Kendall’s Statistics: W = 0.010, Chi-sq = 0.150, p-value = 0.985

Table 7. Rank of imputation method for 20% missing data for each dataset

Imputation Method Wine Heart HCV Concrete

Missing Percentage of Data: 20%
Mean Imputation 4 1 2 4
Median Imputation 5 2 3 5
KNN Imputation 1 3 1 1
RF 3 4 5 3
CART 2 5 4 2

Kendall’s Statistics: W = 0.010, Chi-sq = 0.150, p-value = 0.985
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Table 8. Rank of imputation method for 30% missing data for each dataset

Imputation Method Wine Heart HCV Concrete

Missing Percentage of Data: 30%
Mean Imputation 4 1 2 4
Median Imputation 5 2 3 5
KNN Imputation 1 3 1 1
RF 3 4 5 3
CART 2 5 4 2

Kendall’s Statistics: W = 0.883, Chi-sq = 0.220, p-value = 0.001

Table 9. Rank of imputation method for 40% missing data for each dataset

Imputation Method Wine Heart HCV Concrete

Missing Percentage of Data: 40%
Mean Imputation 3 1 2 4
Median Imputation 5 2 3 5
KNN Imputation 1 3 1 1
RF 4 4 5 3
CART 2 5 4 2

Kendall’s Statistics: W = 0.051, Chi-sq = 0.618, p-value = 0.892

Table 10. Rank of imputation method for 50% missing data for each dataset

Imputation Method Wine Heart HCV Concrete

Missing Percentage of Data: 50%
Mean Imputation 3 1 2 4
Median Imputation 5 2 3 5
KNN Imputation 1 3 1 1
RF 4 4 5 3
CART 2 5 4 2

Kendall’s Statistics: W = 0.005, Chi-sq = 0.070, p-value = 0.995

Tables11–14 present the ranking of each imputation technique for a specific dataset across different proportions
of missing values. The purpose of this analysis is to assess the consistency in the performance of each imputation
technique as the rate of missing data varies. The final row in each table includes Kendall’s te

st statistics, which evaluate the agreement among the ranks of imputation techniques for a given dataset with
varying levels of missing data.

To assess the reliability of each imputation approach, we have developed the following null and alternative
hypotheses. Kendall’s W test statistics are used to test the hypotheses related to the degree of concordance in
rankings. The coefficient of concordance, denoted as W, ranges from 0 to 1. A value of 0 suggests no agreement
in ranking, whereas a value of 1 signifies perfect agreement. The statistical significance of Kendall’s W can be
determined using a chi-square test with n− 1 degrees of freedom.
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For example, in Table11 (Wine dataset), the W statistic is 0.883 with a p-value of 0.001, suggesting strong
agreement in rankings across the different proportions of missing data. Similarly, Table 12 (Heart dataset) shows
a perfect agreement with W = 1 and a p-value of 4.99E-4. This indicates that the ranking of imputation methods
remains stable regardless of the proportion of missing data for these datasets.

Table 13 (HCV dataset) and Table 14 (Concrete dataset) show similar results, with W values close to 1 and
significant p-values, further supporting the robustness of the rankings across datasets. The consistent high Kendall’s
W statistics across all datasets point to a strong consensus in the performance of the imputation methods. Despite
the overall high consistency in rankings, it is important to note that the performance of the imputation methods
varied across different datasets. This variation is likely due to factors such as the structure of the data, variable types,
and specific study design. For instance, when datasets included time-dependent variables, imputation methods were
generally less effective, highlighting the need for specialized techniques for handling such data.

Table 11. Rank of imputation method for Wine dataset for different percentages of imputed data.

Imputation Method 10% 20% 30% 40% 50%

Dataset Name: Wine
Mean Imputation 4 4 4 3 3
Median Imputation 5 5 5 5 5
KNN Imputation 1 1 1 1 1
RF 3 3 3 4 4
CART 2 2 2 2 2

Kendall’s Statistics: W = 0.883, Chi-sq = 17.657, p-value = 0.001

Table 12. Rank of the Performance of Imputation Methods on Heart Dataset Across Various Imputed Data Percentages

Imputation Method 10% 20% 30% 40% 50%

Dataset Name: Heart
Mean Imputation 1 1 1 1 1
Median Imputation 2 2 2 2 2
KNN Imputation 3 3 3 3 3
RF 4 4 4 4 4
CART 5 5 5 5 5

Kendall’s Statistics: W = 1, Chi-sq = 20, p-value = 4.99E-4

Based on the test statistics, it is evident that the W statistics (located in the last row of Tables 11–14) are close
to 1, with p-values significant at a 5% level of significance, leading to the rejection of the null hypothesis in
all cases. This suggests that the rank of the imputation method is not influenced by the proportion of missing
values, indicating an agreement in rankings among different imputation methods. However, varying rankings of
imputation methods across different datasets indicate that performance is contingent on factors such as the structure
of observations, type of variables, and study design. Our study revealed that imputation methods were found to be
less effective when applied to datasets containing time-dependent variables.

For datasets without these variables, the KNN imputation method showed the lowest Mean NRMSE, highlighting
its superior performance compared to other methods. It is important to note that there is no one-size-fits-all
approach to imputation methods, as performance can vary depending on the specific characteristics of the dataset.
As a result, we recommend using a combination of KNN and Mean imputation methods to enhance imputation
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Table 13. Rank of imputation method for HCV dataset for different percentages of imputed data.

Imputation Method 10% 20% 30% 40% 50%

Dataset Name: HCV
Mean Imputation 2 2 2 2 2
Median Imputation 3 3 3 3 3
KNN Imputation 1 1 1 1 1
RF 4 5 5 5 5
CART 5 4 4 4 4

Kendall’s Statistics: W = 0.962, Chi-sq = 15.4, p-value = 0.004

Table 14. Rank of imputation method for Concrete dataset for different percentages of imputed data

Imputation Method 10% 20% 30% 40% 50%

Dataset Name: Concrete
Mean Imputation 4 4 4 4 4
Median Imputation 5 5 5 5 5
KNN Imputation 1 1 1 1 1
RF 3 3 3 3 3
CART 2 2 2 2 2

Kendall’s Statistics: W = 1, Chi-sq = 20, p-value = 4.99E-4

accuracy by averaging imputed values from both methods, we can create a more accurate replacement for missing
data, improving the overall reliability of the dataset.

The results presented in Tables 11–14 provide valuable insights into the performance of various imputation
methods across multiple datasets and varying proportions of missing data. Our analysis consistently shows that
the KNN imputation method ranks the highest across all datasets, regardless of the proportion of missing data.
This suggests that KNN is a robust method that performs well in diverse scenarios, especially when dealing with
datasets that lack time-dependent variables.

In contrast, mean imputation and median imputation generally rank lower, with the mean imputation method
showing some improvement at higher missing data percentages, particularly in the Wine dataset. The CART and
RF imputation methods exhibit moderate performance in most datasets, with CART slightly outperforming RF in
the Wine and Concrete datasets. However, their rankings are often more variable compared to KNN, indicating that
these methods may be more sensitive to the structure of the data. In general, the ranking of imputation methods
remains consistent across different proportions of missing data, which is supported by Kendall’s W statistics, with
values approaching 1 in all cases. This strong agreement in rankings suggests that the proportion of missing data
does not significantly impact the relative effectiveness of the methods, supporting the reliability of these rankings
across varying conditions.

Moreover, the Kendall’s W statistics, combined with significant p-values (e.g., p-value = 0.001 for the Wine
dataset), allow us to confidently reject the null hypothesis, confirming that the rankings of imputation methods are
statistically consistent. This finding highlights that certain imputation methods, particularly KNN, provide stable
performance across different datasets, and the rankings are not likely influenced by the percentage of missing
data. However, our analysis also reveals that the imputation methods are not universally effective across all types
of datasets. For example, in datasets that include time-dependent variables, imputation methods, including KNN,
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performed less effectively. This suggests that for such datasets, specialized imputation techniques may be required.
The results also indicate that no single imputation method is universally the best. Therefore, a hybrid approach,
combining the strengths of different methods such as KNN and Mean imputation, may provide more accurate and
reliable imputation outcomes.

5. Conclusion

In this paper, we have provided a comprehensive review of the effect of missing data rates and mechanisms on
the performance of various imputation methods, with a particular focus on the MICE-CART framework. Our
analysis highlights the complexity of handling missing data and underscores the importance of selecting appropriate
imputation strategies based on the nature of the missingness, MCAR, MAR, or Missing Not at Random (MNAR).

We found that while simpler imputation methods like mean and median imputation are computationally efficient,
they often fail to capture underlying patterns in the data, leading to biased or imprecise imputations. In contrast,
more sophisticated methods like K-Nearest Neighbors (KNN) and Classification and Regression Trees (CART),
particularly when implemented through MICE, provide more accurate imputations in scenarios involving complex
missingness patterns. The MICE-CART approach, combining the flexibility of multiple imputation with the
predictive power of decision trees, emerged as one of the most reliable strategies, especially in cases of high
missing data rates and non-random missingness. However, we also discussed the trade-offs involved in using these
advanced methods, including computational complexity and the need for careful model tuning.

The effectiveness of imputation techniques, particularly MICE-CART, also depends on the characteristics of the
dataset, such as size, variable types, and the missing data mechanism. Selecting an imputation method requires
a nuanced understanding of the data’s missingness mechanism and the computational resources available. We
encourage data practitioners to consider the MICE-CART framework for more robust imputation in complex
real-world datasets and to carefully assess the trade-offs between accuracy and complexity when choosing
imputation strategies.

Below are some potential future points:

• Extend the study by comparing the performance of MICE-CART with other advanced imputation techniques
such as deep learning-based methods as the KNN, or MICE with different algorithms (e.g., Random Forests,
Bayesian Ridge Regression).

• Investigate how different characteristics of datasets (e.g., size, dimensionality, correlation structure, and
distribution) influence the effectiveness of MICE-CART under varying missing rates and mechanisms.

• Explore the performance of MICE-CART in scenarios where missingness mechanisms are more complex,
such as Missing Not At Random (MNAR) or a combination of Missing At Random (MAR) and MNAR.
Develop strategies to improve its robustness in these cases.

• Assess the applicability of MICE-CART in real-time or streaming data environments where data arrives
continuously and missing values need to be handled dynamically.

• Study the scalability of MICE-CART with large datasets and propose modifications to enhance computational
efficiency without sacrificing accuracy.

• Examine how MICE-CART imputed data affects the performance of various machine learning models,
including both traditional (e.g., logistic regression, support vector machines) and modern deep learning
models (e.g., neural networks).

• Investigate hybrid approaches that combine MICE-CART with other techniques, such as ensemble learning
or domain-specific knowledge, to improve imputation accuracy and reliability.

• Develop new evaluation metrics or refine existing ones to better assess the quality of imputed data in terms
of preserving statistical properties, relationships between variables, and predictive performance.

• Conduct sensitivity analyses to determine how sensitive the results are to changes in parameters such as tree
depth, number of iterations, or sample size within the MICE-CART framework.
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• Tailor MICE-CART for specific domains like healthcare, finance, or environmental science, where missing
data patterns and implications may vary significantly.

• Explore methods to quantify uncertainty in imputed values produced by MICE-CART and evaluate how this
uncertainty propagates through subsequent analyses or predictions.
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