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Abstract The field of fuzzy integral equations (FIEs) is significant for modeling complex, time-delayed, and uncertain
physical phenomena. Nevertheless, the majority of current solutions for FIEs encounter considerable challenges, such as the
inability to manage intricate fuzzy functions, stringent assumptions regarding the forms of fuzzy operations utilized, and
numerical instability in extremely nonlinear issues. Moreover, the capability of traditional methods in producing precise or
reliable outcomes for practical applications is limited, and if they can, will incur substantial computing expenses. These
challenges underscore the demand for more effective and efficient methodologies. This study aims to address the demand by
developing two approximate analytical techniques to solve the FIEs namely optimal homotopy asymptotic method (OHAM)
and the multistage optimal homotopy asymptotic method (MOHAM). A novel iteration of fuzzy OHAM and MOHAM
is introduced by integrating the fundamental concepts of these methodologies with fuzzy set theory and optimization
techniques. Then, OHAM and MOHAM are further formulated to solve the second-kind linear Volterra fuzzy integral
equations (VFIEs). These methods are named fuzzy Volterra optimal homotopy asymptotic method (FV-OHAM) and fuzzy
Volterra multistage optimal homotopy asymptotic method (FV-MOHAM), respectively. From two linear examples, FV-
MOHAM and FV-OHAM generated significantly more accurate results than other existing methods. A thorough assessment
is performed to evaluate their effectiveness and practical use, potentially aiding in solving complex problems across several
scientific and engineering fields.
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1. Introduction

Integral equations encompass an unknown function within a definite integral [1]. These equations are closely
related to differential equations. They are used to investigate the properties of equations which can further be
applied to formulate both approximate and numerical solutions [2]. Integral equations provide a flexible approach
for problem-solving by converting problems to integral equations or vice versa [3]. Ordinary and partial differential
equations are frequently employed to tackle initial and boundary value problems [4]. Furthermore, integral
equations are essential in the theoretical and numerical examination of differential equations, with their foundations
based on elementary analysis. The methodology of integral equations is utilized in solving thermal engineering
problems, such as radiative heat transfer and heat conduction [5]. Integral equations arise in several scientific and
technical contexts and can be derived from both starting and boundary value issues. In this study, we are interested
in a class of integral equations called Volterra integral equations. These equations describe systems involving
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memory effects or temporal evolution, such as population dynamics and biological reactions [6]. Recent studies
have proposed algorithms for solving linear and non-linear Volterra integro-differential equations effectively [7].

Fuzzy integral equations (FIEs) are a significant component of fuzzy analytic theory, with extensive applications
in physics, mechanics, medicine, and control engineering [8]. Numerous approaches have been formulated to
solve these problems. These approaches usually convert fuzzy integrals into parametric Riemann integrals [9],
enabling the application of uniform approximation algorithms. This development has facilitated the progress of
soft computing systems designed to address our equations of interest, the second-kind fuzzy Volterra integral
equations (FVIEs) [10]. Some existing numerical methods to solve these equations are as follows: a numerical
approach utilizing the residual minimizing methodology [11], a sixth-order Runge-Kutta method [12], an iterative
numerical method integrating successive approximations using a combination of mixed trapezoidal and midpoint
criteria [13], and an iterative technique using fuzzy Bernstein polynomials [14]. On the other hand, analytical
approximation techniques such as the Adomian decomposition method, variational iteration method, and homotopy
analysis method (HAM) are also extensively utilized to approximate solutions to second-kind FVIEs [15]. HAM
particularly shines in regulating the convergence behaviour of solution series by integrating an auxiliary parameter,
facilitating swift and dependable convergence [16, 17]. The adaptability of HAM and its incorporation with various
approximation methods render it an effective instrument for solving FIEs [18].

The Optimal Homotopy Asymptotic Method (OHAM), an improved version of HAM, is a powerful
approximation technique widely employed in engineering and scientific disciplines. OHAM has been used in
solving elastic stress issues in spinning discs [19], generating analytical solutions for nonlinear oscillators [20],
and tackling time-fractional Navier-Stokes equations in conjunction with the Laplace transform [21], to name a
few. In addition, the multistage optimum homotopy asymptotic method (MOHAM) enhances the usefulness of the
OHAM, especially in addressing fractional optimal control problems [22]. Like OHAM, MOHAM has also been
successfully employed in solving initial-value problems [23]. Notwithstanding these developments, considerable
hurdles persist in implementing OHAM and MOHAM in large-scale or computationally intricate applications.
Current research frequently concentrates on certain issue categories, such as FVIEs, without adequately assessing
the scalability and processing efficiency of the approaches employed. This deficiency obstructs their further use in
actual contexts, especially for extensive FIEs.

This study introduces a rigorous analysis of the fuzzy Volterra optimal homotopy asymptotic method (FV-
OHAM) and the fuzzy Volterra multistage optimal homotopy asymptotic approach (FV-MOHAM). These
methodologies expand the fundamental tenets of OHAM and MOHAM into the fuzzy environment by integrating
sophisticated fuzzy set theory notions and optimization-oriented homotopy techniques. This synthesis improves the
convergence characteristics and numerical results of the original approaches, rectifying the previously discussed
deficiencies in scalability and computational efficiency for extensive FIEs. This paper illustrates, via extensive
numerical investigations and comparative analysis, that FV-OHAM and FV-MOHAM can generate better solutions
compared with other existing method such as HAM and the iterative fuzzy Bernstein polynomials method (IFBPM)
for solving linear FVIEs. Additionally, a theoretical framework is established to guarantee the convergence
of solutions utilizing these methods, while improving computational efficiency in large-scale applications. The
developments in this work are seeking to facilitate their widespread implementation by addressing practical
difficulties across several scientific and technical disciplines.

The choice of FV-OHAM and FV-MOHAM methodologies in this study is strategically motivated by several key
factors. First, these methods provide convergence control through their auxiliary parameters [24], determined by
minimizing the square residual error [25]. These parameters are used to adjust and control the convergence region
and rate of the series solution [26]. The OHAM method is distinguished by providing multiple convergence control
parameters, allowing greater flexibility in adjusting the convergence region [27], unlike traditional perturbation
techniques. Second, they demonstrate remarkable accuracy in handling linear FVIEs, achieving significantly
smaller errors compared to existing methods such as HAM and IFBPM. Third, these approaches maintain consistent
performance across different parameter values while preserving fuzzy properties throughout. Fourth, high accuracy
is achieved with lower-order approximations, resulting in improved computational efficiency. This combination of
theoretical elegance, computational efficiency, and practical applicability makes these methods particularly suitable
for solving FVIEs while addressing the current limitations.
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2. Preliminaries

In this section, we review the fundamental notations of fuzzy set theory to be used throughout this paper.

Definition 2.1
A fuzzy number u is a pair (u, u) of functions u(r), u(r); 0 ≤ r ≤ 1 which satisfies the following requirements:

i. u(r) is a bounded left-continuous non-decreasing function over [0, 1],

ii. u(r) is a bounded left-continuous non-increasing function over [0, 1],

iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1. The set of all fuzzy numbers is denoted
by E1 [28, 29].

For arbitrary fuzzy numbers u = (u, u), v = (v, v) and an arbitrary crisp number k, we define the fuzzy addition
and the scalar multiplication as follows:

i. (u+ v)(r) = (u(r) + v(r)),

ii. (u+ v)(r) = (u(r) + v(r)),

iii. (ku)(r) = ku(r), (ku)(r) = ku(r), k ≥ 0,

iv. (ku)(r) = ku(r), (ku)(r) = ku(r), k < 0.

3. Analysis of Fuzzy Volterra Integral Equations

An integral equation is a foundational concept in mathematics and physics, expressing a relationship whereby an
unknown function φ(x) appears inside an integral over a specified interval [a, b]. Mathematically, it is represented
as:

φ(x) =

∫ b

a

k(x, t)φ(x) dt, (1)

where k(x, t) is the kernel function that governs the interaction between the values of φ(x) and φ(t) across the
interval [a, b]. A Fredholm integral equation of the second kind extends this framework by incorporating a known
function f(x) and a constant parameter λ ∈ R:

φ(x) = λ

∫ b

a

k(x, t)φ(t) dt+ f(x). (2)

Equation (2) encapsulates integral transformations where φ(x) depends on its integral concerning φ(t) weighted
by k(x, t) coupled with an external forcing term f(x). In contrast, a VIE of the second kind alters the integration
limits to include x as the upper limit:

φ(x) = λ

∫ x

a

k(x, t) dt φ(t) + f(x). (3)

This type of equation often models systems exhibiting memory effects or time-dependent behaviors, where the
integral reflects the cumulative influence of φ(t) up to x. Such integral equations are indispensable in analyzing
dynamic systems in physics, engineering, and biology, offering powerful analytical tools to study phenomena
ranging from wave propagation and diffusion to population dynamics and biochemical kinetics. FIEs innovate
beyond classical forms by integrating fuzzy sets and logic, accommodating uncertainties and vague boundaries
in real-world data. They provide a robust framework for modeling complex systems, capturing the nuanced and
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imprecise nature of real-world phenomena. This extension expands the use of integral equations to handle a broader
range of problems with uncertain or ambiguous information.

The second kind of fuzzy Volterra equation is defined as follows:

ṽ(s) = f̃(s) + λ̃

∫ s

a

k̃(s, t, ṽ(s) dt, (4)

where λ is the fuzzy parameter [30], k̃ represents an arbitrary function referred to as the kernel of the integral
equation (1) defined over square G : [a, b]× [a, b], k̃ = 0, a ≤ s, t ≤ b, s > t, and f̃(s) is a given fuzzy function
of t ∈ [a, b] with ṽ(s) being the unknown fuzzy function to be determined where f̃(s) and k̃ be for crisp variable
s. Using the defuzzification properties and r-cut set of ṽ(s), we have

ṽ(s, r) = f̃(s, r) + λ̃(r)

∫ s

a

k (s, t, ṽ(t, r), r) ds, (5)

such that 
ṽ(s) = ṽ(s; r) = [v(s; r), v(s; r)] ,

k̃(s, ṽ(s)) = k̃(s, ṽ(s; r); r) =
[
k(s, ṽ(s; r); r), k(s, ṽ(s; r); r)

]
,

λ̃ = λ̃(r) =
[
λ(r), λ(r)

]
,

f̃(s) = f̃(s; r) =
[
f(s; r), f(s; r)

]
,

(6)

with 0 ≤ s ≤ 1.
By using equation (3), the solution for equation (1) can be obtained by solving the following two integral

equations: 
x(t; r) = f(t; r) + λ(r)

∫ x

a

k (t, s, v(s; r)) ds,

x(t; r) = f(t; r) + λ(r)

∫ x

a

k (t, s, v(s; r)) ds.

(7)

The fuzzy function k̃ can be written as follows:{
k(s, ṽ(s; r); r) = F [s, v, v]r ,

k(s, ṽ(s; r); r) = G [s, v, v]r .
(8)

By using the extension fuzzy principle:F [s, v, v]r = min
{
k̃ (s, µ̃(r)) : µ̃(r) ∈ ṽ(s; r)

}
G [s, v, v]r = max

{
k̃ (s, µ̃(r)) : µ̃(r) ∈ ṽ(s; r)

} (9)

equation (8) becomes {
k(s, ṽ(s; r); r) = F (s, v(s; r), v(s; r)) = F (s, ṽ(s; r)) ,

k(s, ṽ(s; r); r) = G (s, v(s; r), v(s; r)) = G (s, ṽ(s; r)) .
(10)

This procedure is called the defuzzification technique [31]. The necessary conditions for the existence of a unique
solution to equation (3) are presented and demonstrated by Kaleva [29].

4. Formulation of Fuzzy Optimal Homotopy Asymptotic Method

This section discusses the basic idea of fuzzy OHAM [31]. Its formulation, φ(s; q; r) : [s0, S]× [0, 1] → R,
satisfies the following:

(1− q)
[
L̃ (φ̃(s; q; r))− f̃(s; r)

]
= H̃(q; r)

[
L̃ (φ̃(s; q; r))− k̃ (s, ṽ(s; r))− f̃(s; r)

]
, (11)
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where q ∈ [0, 1] is an embedding parameter. For q ̸= 0, the auxiliary function H̃(q; r) = [H(q; r), H(q; r)] and
φ̃(s; q; r) is the unknown fuzzy function. For q = 0, L̃ = [L,L] = [φ(s; q; r), φ(s; q; r] and φ̃(s; 0; r) = ṽ0(s),
which is the initial guess. For q = 1, φ̃(s; 1; r) = ṽ(s), which is the exact solution. The dynamic of fuzzy OHAM
is given by:

L(v(s; r)−F (s, ṽ(s; r))− f(s; r) = 0, (12)

L(v(s; r)− G (s, ṽ(s; r))− f(s; r) = 0, (13)

(1− q)
[
L(φ(s; q; r))− f(s; r)

]
= H(q; r)

[
L(φ(s; q; r))−F(s, ṽ(s; r))− f(s; r)

]
, (14)

(1− q)
[
L(φ(s; q; r))− f(s; r)

]
= H(q; r)

[
L(φ(s; q; r))− G(s, ṽ(s; r))− f(s; r)

]
, (15)

where the lower and upper fuzzy linear operators are associated with the lower and upper auxiliary fuzzy functions.
The terms φ(s; q; r) and φ(s; q; r) are the lower and upper unknown fuzzy functions, respectively. When q = 0 and
q = 1, we have equation (16) and (17), respectively.

φ(s; 0; r) = v0(s; r), φ(s; 1; r) = v(s; r). (16)

φ(s; 0; r) = v0(s; r), φ(s; 1; r) = v(s; r). (17)

Therefore, when q increases from 0 to 1, the solution φ̃(s; q; r) varies from v0(s; r) to the exact solution. When
q = 0, the lower and upper bounds of zeroth order are:

L(φ(s; 0; r)) = f(s; r), L(φ(s; 0; r)) = f(s; r). (18)

The auxiliary function H̃(q; r) for equations (14) and (15) are:
H(q; r) =

∞∑
j=1

Cj(r)q
j = C1(r)q

1 + C2(r)q
2 + · · · ,

H(q; r) =
∞∑
j=1

Cj(r)q
j = C1(r)q

1 + C2(r)q
2 + · · · ,

(19)

where C̃1(r) =
[
C1(r), C2(r)

]
, C̃2(r) =

[
C2(r), (C2(r)

]
, . . . are the auxiliary convergence constants. Expanding

the solution φ̃(s; q; r) about q by Taylor’s series yields the series approximate solution via fuzzy OHAM:
φ
(
s; q; Cj(r); r

)
= v0(s; r) +

∞∑
j=1

vj
(
s; Cj(r); r

)
qj .

φ
(
s; q; Cj(r); r

)
= v0(s; r) +

∞∑
j=1

vj
(
s; Cj(r); r

)
qj .

(20)

Substituting equations (19) and (20) into equations (14) and (15), and collecting the coefficient of like powers of q
to find the lower and upper bounds lead to a system of linear equations. The system for the zeroth order is given in
Equation (14). The system for the first-order are obtained as follows:

L (v1(s; r))− L (v0(s; r)) + f(s) = C1(r)

(
L(v0(s; r))− λ(r)

∫ t

a

F0 (v0(s; r)) ds− f(s; r)

)
,

L (v1(s; r))− L (v0(s; r)) + f(s) = C1(r)

(
L(v0(s; r))− λ(r)

∫ t

a

F0 (v0(s; r)) ds− f(s; r)

)
.

(21)
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The problem of second-order is defined as follows:

L(v2(s; r))− L(v1(s; r)) = C1(r)L(v1(s; r))− C1(r)λ(r)

∫ t

a

F1(v0(s; r))ds

− C2(r)λ(r)

∫ t

a

F0(v0(s; r))ds− f(s; r),

L(v2(s; r))− L(v1(s; r)) = C1(r)L(v1(s; r))− C1(r)λ(r)

∫ t

a

F1(v0(s; r))ds

− C2(r)λ(r)

∫ t

a

G0(v0(s; r))ds− f(s; r).

(22)

The general form of the governing problem via fuzzy OHAM of kth order:

L(vk(s; r))− L(vk−1(s; r)) = C1(r)L(vk−1(s; r)) +

k−1∑
i=2

Ci(r)
[
L(vk−i(s; r))

− λ(r)
k∑

i=1

∫ s

a

Ci(r)Fk−i(v0(s; r), v1(s; r), . . . , vi(s; r))− f(s; r),

L(vk(s; r))− L(vk−1(s; r)) = C1(r)L(vk−1(s; r)) +
k−1∑
i=2

Ci(r)
[
L(vk−i(s; r))

− λ(r)
k∑

i=1

∫ s

a

Ci(r)Gk−i(v0(s; r), v1(s; r), . . . , vi(s; r))− f(s; r),

(23)

where Fk−i(ṽ0(s; r), ṽ1(s; r), . . . , ṽi(s; r)) and Gk−i(ṽ0(s; r), ṽ1(s; r), . . . , ṽi(s; r)) are the coefficients of the
lower and upper bound of qk, respectively. Dependent on parameter C1(r), C2(r), . . . , Ck(r), at q = 1 we have:

v(s, C1(r), C2(r), . . . ; r) = v0(s; r) +
∞∑
i=1

vi(s, C1(r), C2(r), . . . ; r),

v(s, C1(r), C2(r), . . . ; r) = v0(s; r) +
∞∑
i=1

vi(s, C1(r), C2(r), . . . ; r).

(24)

Approximating the series solution up to the kth term, equation (24) becomes:
v∗(s, C1(r), C2(r), . . . , Ck(r); r) = v0(s; r) +

k∑
i=1

vi (s, C1(r), C2(r), . . . , Ci(r); r) ,

v∗(s, C1(r), C2(r), . . . , Ck(r); r) = v0(s; r) +

k∑
i=1

vi
(
s, C1(r), C2(r), . . . , Ci(r); r

)
.

(25)

5. Formulation of Fuzzy Volterra Optimal Homotopy Asymptotic Method (FV-OHAM).

This section modifies the formulation of OHAM in Section 4 to solve FVIEs. The formulation of FV-OHAM
φ(s; q; r) : [s0, S]× [0, 1] → R satisfies the following [31]-[32]:

(1− q)
[
L̃ (φ̃(s; q; r))− f̃(s; r)

]
= H̃(q; r)

[
L̃ (φ̃(s; q; r))− k̃(s, ṽ(s; r))− f̃(s; r)

]
, (26)
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where q ∈ [0, 1] is an embedding parameter. For q ̸= 0, the auxiliary function H̃(q; r) =
[
H(q; r),H(q; r)

]
and

φ̃(s; q; r) is the unknown fuzzy function. For q = 0, L̃ =
[
L,L

]
=

[
φ(s; q; r), φ(s; q; r)

]
and φ̃(s; 0; r) = ṽ0(s)

which is the initial guess. For q = 1, φ̃(s; 1; r) = ṽ(s), which is the exact solution. The dynamic of FV-OHAM for
solving FVIEs is given by:

L(v(s; r))−F(s, ṽ(s; r))− f(s; r) = 0,

L(v(s; r))− G(s, ṽ(s; r))− f(s; r) = 0,

(1− q)[L(φ(s; q; r))− f(s; r)] = H(q; r)[L(φ(s; q; r))−F(s, ṽ(s; r))− f(s; r)],

(1− q)[L(φ(s; q; r))− f(s; r)] = H(q; r)[L(φ(s; q; r))− G(s, ṽ(s; r))− f(s; r)],

(27)

where the lower and upper fuzzy linear operators are associated with the lower and upper auxiliary fuzzy functions.
The terms

[
φ(s; q; r), φ(s; q; r)

]
are the lower and upper unknown fuzzy functions, respectively. When q = 0 and

q = 1, we have equation (28).

φ(s; 0; r) = v0(s; r), φ(s; 1; r) = v(s; r).

φ(s; 0; r) = v0(s; r), φ(s; 1; r) = v(s; r).
(28)

Therefore, when q increases from 0 to 1, the solution φ̃(s; q; r) varies from ṽ0(s; r) to the exact solution. When
q = 0, the lower and upper bounds of zeroth order are:

L(φ(s; 0; r)) = f(s; r), L(φ(s; 0; r)) = f(s; r). (29)

The auxiliary function H̃(q; r) for equations in (27) are:
H(q; r) =

∞∑
j=1

Cj(r)q
j = C1(r)q

1 + C2(r)q
2 + · · · ,

H(q; r) =
∞∑
j=1

Cj(r)q
j = C1(r)q

1 + C2(r)q
2 + · · · ,

(30)

where C̃1(r) =
[
C1(r), C1(r)

]
, C̃2(r) =

[
C2(r), C2(r)

]
, · · · are the auxiliary convergence constants. Expanding

the solution φ̃(s; q; r) about q by Taylor’s series leads to the series approximate solution via FV-OHAM:
ϕ(s; q; Cj(r); r) = v0(s; r) +

∞∑
j=1

vj(s; Cj(r); r)q
j .

ϕ(s; q; Cj(r); r) = v0(s; r) +

∞∑
j=1

vj(s; Cj(r); r)q
j .

(31)

Substituting equations (30) and (31) into the last two equations of (27), and collecting the coefficient of like powers
of q to find the lower and upper bounds yield a system of linear equations. The system for the zeroth order is given
in equation (27). The system for the first order are as follows:

L(v1(s; r))− L(v0(s; r)) + f(s) = C1(r)

(
L(v0(s; r))− λ(r)

∫ t

a

F0(v0(s; r))ds− f(s; r)

)
,

L(v1(s; r))− L(v0(s; r)) + f(s) = C1(r)

(
L(v0(s; r))− λ(r)

∫ t

a

G0(v0(s; r))ds− f(s; r)

)
.

(32)

Stat., Optim. Inf. Comput. Vol. 13, June 2025



2494 FUZZY VOLTERRA INTEGRAL EQUATION APPROXIMATE SOLUTION

The problem of second-order is defined as:



L (v2(s; r))− L (v1(s; r)) = C1(r)L (v1(s; r))− C1(r)λ(r)

∫ t

a

F1 (v0(s; r)) ds

−C2(r)λ(r)

∫ t

a

F0 (v0(s; r)) ds− f(s; r)

]
,

L (v2(s; r))− L (v1(s; r)) = C1(r)L (v1(s; r))− C1(r)λ(r)

∫ t

a

G1 (v0(s; r)) ds

−C2(r)λ(r)

∫ t

a

G0 (v0(s; r)) ds− f(s; r)

]
.

(33)

The general form of the governing problem via FV-OHAM of kth order:



L (vk(s; r))− L
(
vk−1(s; r)

)
= C1(r)L

(
vk−1(s; r)

)
+

k−1∑
i=2

Ci(r)
[
L
(
vk−i(s; r)

)
−λ(r)

k∑
i=1

∫ s

a

Ci(r)Fk−i (v0(s; r), v1(s; r), . . . , vi(s; r))− f(s; r)

]

L (vk(s; r))− L (vk−1(s; r)) = C1(r)L (vk−1(s; r)) +
k−1∑
i=2

Ci(r)
[
L (vk−i(s; r))

−λ(r)
k∑

i=1

∫ s

a

Ci(r)Gk−i (v0(s; r), v1(s; r), . . . , vi(s; r))− f(s; r)

]
(34)

where Fk−i(ṽ0(s; r), ṽ1(s; r), . . . , ṽi(s; r)) and Gk−i(ṽ0(s; r), ṽ1(s; r), . . . , ṽi(s; r)) are the coefficients of the
lower and upper bound of qk, respectively. Dependent on parameter C1(r), C2(r), . . . , Ck(r) and at q = 1 we have:


v (s, C1(r), C2(r), . . . ; r) = v0(s; r) +

∞∑
i=1

vi (s, C1(r), C2(r), . . . ; r) ,

v
(
s, C1(r), C2(r), . . . ; r

)
= v0(s; r) +

∞∑
i=1

vi
(
s, C1(r), C2(r), . . . ; r

)
.

(35)

Approximating the series solution up to the k-th term, Equation (35) becomes:


v∗ (s, C1(r), C2(r), . . . , Ck(r); r) = v0(s; r) +

k∑
i=1

vi (s, C1(r), C2(r), . . . , Ci(r); r) ,

v∗
(
s, C1(r), C2(r), . . . , Ck(r); r

)
= v0(s; r) +

k∑
i=1

vi
(
s, C1(r), C2(r), . . . , Ci(r); r

)
.

(36)
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6. Convergence Analysis of FV-OHAM

Let the residual error be R̃ = [R,R]. Substituting equation (34) into equations (8) and (9) yields [27]:

R (s, C1(r), C2(r), . . . , Ck(r); r) =

f (s, C1(r), C2(r), . . . , Ci(r); r) + λ(r)

∫ b

a

K(s, t)vn (t, C1(r), C2(r), . . . , Ck(r)) dt,

R
(
s, C1(r), C2(r), . . . , Ck(r); r

)
=

f
(
s, C1(r), C2(r), . . . , Ci(r); r

)
+ λ(r)

∫ b

a

K(s, t)vn
(
t, C1(r), C2(r), . . . , Ck(r)

)
dt.

(37)

For R̃ = 0, ṽn is the exact solution. To determine the auxiliary constants, C̃1(r), C̃2(r), . . . , C̃k(r), the least squares
method is applied on the interval s ∈ [s0, S]:

M (s, C1(r), C2(r), . . . , Ck(r); r) =

∫ s

s0

R2 (s, C1(r), C2(r), . . . , Ck(r); r) ds,

M
(
s, C1(r), C2(r), . . . , Ck(r); r

)
=

∫ s

s0

R
2 (

s, C1(r), C2(r), . . . , Ck(r); r
)
ds,

(38)

where s0 and s are set based on the given problem, M̃ = [M,M ], and the optimal values for
C̃1(r), C̃2(r), . . . , C̃k(r) can be determined for all r ∈ [0, 1] by the following:

∂M̃

∂C̃1

=
∂M̃

∂C̃2

= · · · = ∂M̃

∂C̃k

= 0. (39)

These parameters will be used in the OHAM series solution in equation (21) for each r. This process revolves
around minimizing the residual equations. These convergence parameters will then be used to approximate the
analytical solution for the FVIEs. Therefore, to find an approximate solution of the FVIE by OHAM, the following
steps are followed:

1.Step 1: Select integers a, b, and n, where [a, b] is the interval and n is the number of iterations.

Step 2: Set x̃0(s, r) = f(s, r) as an initial approximation.

Step 3: Calculate the iterations xi(s, r) in Equation (2) for all i = 1, 2, . . . , n.

Step 4: Compute the partial sum x̃n(s, r) =
∑n−1

i=0 Xi(s, r).

Step 5: If R̃ = 0 in equations (22− 32), then ṽ produces the exact solution.

Step 6: Determine the optimal values of C̃i for i = 0, . . . , n by applying the least squares minimization
approach in equation (25).

Step 7: Compute the absolute error of each root |vvexact(s, r)− vn(s, r)|.

7. Formulation and Analysis of the Fuzzy Volterra Multistage Optimal Homotopy Asymptotic Method (FV-
MOHAM)

MOHAM addresses the limitation of applying OHAM over a single large time interval, where accuracy and
convergence often degrade for highly nonlinear or complex problems. When OHAM is applied over a large time
interval [s0, S][s0, S][s0, S], the solution may not converge well or may become inaccurate. MOHAM addresses
the limitation by subdividing the time interval [s0, S] into N sub-intervals [s0, s1], . . . , . . . , [sn−1, S]), where each
sub-interval employs OHAM. An initial estimation of the solution over the subsequent interval is indicated by the
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solution at the terminal point in each sub-interval. This process continues until the predefined time S is reached. FV-
MOHAM is implemented similarly to FV-OHAM with minor adjustments. The general initial condition is assumed
to be v0,i (si) = γi, i = 1, . . . , n. Therefore, the formulation of the FV-MOHAM equation in each sub-interval
is as follows [27, 33]:

(1− q)
[
L̃i(φ̃i(s; q; r))− f̃(s; r)

]
= H̃i(q; r)

[
L̃(φ̃i(s; q; r))− k̃i(s, ṽi(s; r))− f̃(s; r)

]
. (40)

Hence, the dynamic of FV-MOHAM is:

Li(vi(s; r))−Fi(s, ṽi(s; r))− f(s; r) = 0,

Li(vi(s; r))− Gi(s, ṽ(s; r))− f(s; r) = 0,

(1− q)
[
Li(φi

(s; q; r))− f(s; r)
]
= Hi(q; r)

[
Li(φi

(s; q; r))−Fi(s, ṽi(s; r))− f(s; r)
]
,

(1− q)
[
Li(φi(s; q; r))− f(s; r)

]
= Hi(q; r)

[
Li(φi(s; q; r))− Gi(s, ṽi(s; r))− f(s; r)

]
.

(41)

When q = 0 and q = 1, we respectively have:

φ
i
(s; 0; r) = v0,i(s; r), φ

i
(s; 1; r) = vi(s; r),

φi(s; 0; r) = v0,i(s; r), φi(s; 1; r) = vi(s; r),
(42)

where the lower and upper bounds of the zeroth order respectively are:

Li(φi
(s; 0; r)) = f(s; r),Li(φi(s; 0; r)) = f(s; r), (43)

and the auxiliary function H̃i(q; r) for equations (37) and (38) are:
Hi(q; r) =

∞∑
j=1

Cj,i(r)q
j = C1,i(r)q

1 + C2,i(r)q
2 + · · · ,

Hi(q; r) =
∞∑
j=1

Cj,i(r)q
j = C1,i(r)q

1 + C2,i(r)q
2 + · · · .

(44)

The series approximate solutions of FV-MOHAM then become:
φ
i

(
s; q;Cj,i(r); r

)
= v0,i(s; r) +

∞∑
j=1

vj,i(s;Cj,i(r); r)q
j ,

φi

(
s; q;Cj,i(r); r

)
= v0,i(s; r) +

∞∑
j=1

vj(s;Cj(r); r)q
j .

(45)

Substituting equations (44) and (45) into the last two of equation (41) and collecting the coefficient of like powers
of q yield a system of linear equations. The zeroth-order system is given in equation (41) whereas the first is as
follows:

Li

(
v1,i(s; r)

)
− Li

(
v0,i(s; r)

)
+ f(s) = C1,i(r)

(
Li

(
v0,i(s; r)

)
− λ(r)

∫ t

a

F0,i

(
v0,i(s; r)

)
ds− f(s; r)

)
,

Li (v1,i(s; r))− Li (v0,i(s; r)) + f(s) = C1,i(r)

(
Li (v0,i(s; r))− λ(r)

∫ t

a

G0,i (v0,i(s; r)) ds− f(s; r)

)
.

(46)
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The general form of the governing problem via FV-OHAM of kth order is:

L (vk(s; r))− Li

(
vk−1,i(s; r)

)
= C1,i(r)Li

(
vk−1,i(s; r)

)
+

k−1∑
j=2

Cj,i(r)
[
Li

(
vk−j,i(s; r)

)
− λ(r)

k∑
j=1

∫ s

a

Cj,i(r)Fk−j,i

(
v0,i(s; r), v1,i(s; r), . . . , vj,i(s; r)

)
− f(s; r)],

Li (vk,i(s; r))− Li (vk−1,i(s; r)) = C1,i(r)Li (vk−1,i(s; r)) +

k−1∑
j=2

Cj,i(r) [ Li

(
vk−j,i(s; r)

)
− λ(r)

k∑
j=1

∫ s

a

Ci(r)Gk−j,i (v0,i(s; r), v1,i(s; r), . . . , vj,i(s; r))− f(s; r) ] ,

(47)

where Fk−j,i (ṽ0,i(s; r), ṽ1,i(s; r), . . . , ṽj,i(s; r)) and Gk−j,i (ṽ0,i(s; r), ṽ1,i(s; r), . . . , ṽj,i(s; r)) are the coeffi-
cients of the lower and upper bound of qk, respectively. Dependent on parameter C1,i(r), C2,i(r), . . . , Ck,i(r),
at q = 1 we have:

vi(s, C1,i(r), C2,i(r), . . . ; r) = v0,i(s; r) +
∞∑
j=1

V j,i(s, C1,i(r), C2,i(r), . . . ; r),

vi(s, C1,i(r), C2,i(r), . . . ; r) = v0,i(s; r) +
∞∑
j=1

vj,i(s, C1,i(r), C2,i(r), . . . ; r).

(48)

Approximating the series solution up to the kth term yield:
v∗,i(s, C1,i(r), C2,i(r), . . . , Ck,i(r); r) = v0,i(s; r) +

k∑
j=1

vj,i(s, C1,i(r), C2,i(r), . . . , Cj,i(r); r),

v∗,i(s, C1,i(r), C2,i(r), . . . , Ck,i(r); r) = v0,i(s; r) +
k∑

j=1

vj,i(s, C1,i(r), C2,i(r), . . . , Cj,i(r); r).

(49)

The residual error R̃i can then be computed as follows:
Ri

(
s, Cj,i(r); r

)
= f(s, Cj,i(r); r) + λ(r)

∫ b

a

K(s, t)vn,i(t, Cj,i(r)dt,

Ri

(
s, Cj,i(r); r

)
= f(s, Cj,i(r); r) + λ(r)

∫ b

a

K(s, t)vn,i(t, Cj,i(r)dt.

(50)

For R̃i = 0, ṽ∗,i yields the exact solution. To determine the auxiliary constants C̃j,i, the least squares method is
applied on the interval s ∈ [s0, S] :

M i

(
s, Cj,i(r); r

)
=

∫ si+h

si

R2
(
s, Cj,i(r); r

)
ds,

M i

(
s, Cj,i(r); r

)
=

∫ si+h

si

R
2 (

s, Cj,i(r); r
)
ds,

(51)

where h is the length of the sub-interval [si, si+1), and n = S/h is the number of sub-intervals. Equation (46)
can now be solved at i = 1, . . . , n and j = 1, . . . , k by altering the starting estimate γ i in each subinterval from
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its predecessor. The unidentified convergence control parameters Cj,i can be determined by solving the following
system of equations:

∂M̃i

∂C̃1,i

=
∂M̃i

∂C̃2,i

= · · · = ∂M̃i

∂C̃k,i

= 0. (52)

Therefore, the approximate analytical solution for the FVIE is:

ṽ(s) =


ṽ1(s), s0 ≤ s ≤ s1

ṽ2(s), s1 ≤ s ≤ s2

. . . . . . . . .

ṽn(s), sn−1 ≤ s ≤ S

(53)

In this way, the analytical solution can correctly be derived for the initial value issue at high values of S. FV-
MOHAM reduces to the conventional FV-OHAM when i = 0. FV-MOHAM offers an easy method of regulating
and modifying the convergence zone via the auxiliary function Hi(q) and several convergent control parameters
Cj,i. However, this approach primarily addresses the challenge of locating an approximation for a problem with a
vast domain. According to Gomes et al. [26], both series in equations (32) and (48) converge for each r-level set
core which corresponds to the solution of equation (4).

8. Examples

In this section, two second-kind linear FVIEs are solved using FV-OHAM and FV-MOHAM. The corresponding
execution, results, and analysis are presented. The absolute error, Ẽr, and the mean error, M̃Er, are defined as
follows:

Ẽr(t, r) = |X̃X(t; r)− X̃(t; r)| =

{
|XX(t; r)−X(t; r)|
|XX(t; r)−X(t; r)|,

(54)

M̃Er(t, r) =
Er(t, r) + Er(t, r)

2
, (55)

where X̃(t; r) refers to the exact solution of the given problem, and X̃X(t; r) is the approximate solution generated
by the FV-OHAM and FV-MOHAM corresponding to the given problem for r ∈ [0, 1]. Throughout this paper, X
represents the exact solution whereas x, X , and X denote the approximate, upper exact, and lower exact solutions,
respectively.

8.1. Example 1

Consider the following linear FVIE [33]:

x̃(t) = f̃(t) +

∫ t

0

e(t−s)x̃(s)ds, (56)

where

f̃(t; r) = (cos t) [r, 2− r]. (57)

The exact solution is given by

X̃(t; r) = [r, 2− r](
3

5
cos t+

1

5
sint+

2

5
e2t). (58)
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To determine the lower bound of the residual error and solve Example 1 using FV-OHAM with the sixth iteration,
the initial approximations for all r ∈ [0, 1] are first chosen based on the method analysis in sections 4 and 5. The
FV-OHAM formulation for equation (56) is:

H(x) = (1− p)[x(t)− x̃0(t)] + p[x(t)− [r, 2− r] cos t− λ

∫ t

0

e(t−s)x̃(s)ds] = 0, (59)

where p ∈ [0, 1] is an embedding parameter, x̃0(t) is the zeroth approximation solutions. The expansion of x̃ in
powers of p,

x̃(t) = x̃0(t) + px̃1(t) + p2x̃2(t) + . . . . . . . . . . . . . . .+ pnx̃n(t), (60)

is substituted into Equation (59),

H(x, p) = (1− p)

[
n∑

i=0

pix̃i(t)− x̃0(t)

]
+ p

[
n∑

i=0

pix̃i(t)− [r, 2− r] cos t−

λ

∫ t

a

e(t−s)
n∑

i=0

pixi(s)ds

]
= 0.

(61)

Therefore, the zeroth, first, and m-th order approximations can be determined and are presented in equations (62),
(63), and (64), respectively.

x̃(t)0 = [r, 2− r] cos t, (62)

x̃1(t) = [r, 2− r]

[
−C1

∫ t

0

(t− s)x̃0(s)ds

]
= [r, 2− r][2et cos t− 2 cos t], (63)

x̃m(t) = [r, 2− r][(1 + C1)x̃m−1(t) +
m−1∑
k=1

Ckx̃m−k(t)−
m∑

k=1

c1,k

∫ t

0

e(t−s)x̃m−k(s)ds]. (64)

As discussed in sections 4 and 5, the convergence control parameters for FV-OHAM for this example were
calculated and tabulated in tables 1 and 2 for different values of r ∈ [0, 1] and t = π

8 . The parameters were then
used to generate the sixth-order approximate solutions for Example 1. Table 3 presents the numerical and exact
solutions, whereas figures 1 and 2 display their two- and three-dimensional plots, respectively. Lastly, Table 4
records the absolute and mean errors of the results.

Table 1. Optimal convergence parameters of the sixth-order FV-OHAM for the lower solution of Example 1 at selected
values of r ∈ [0, 1] and t = π

8 .

r C1 C2 C3 C4 C5 C6

0 -1 0 0 0 0 0

0.2 -1.06375297327059 0.0254386028843473 -0.0084311631572610 0.000609600820668207 0.000248232291041695 -0.0000374937122596450

0.4 -1.06375297325867 0.0254386029035415 -0.0084311631637278 0.000609600819894774 0.000248232291769420 -0.0000374937123439563

0.6 -1.06375297314049 0.0254386027787727 -0.0084311631172603 0.000609600816778696 0.000248232289245485 -0.0000374937108210759

0.8 -1.06375297331381 0.0254386028935962 -0.0084311631511059 0.000609600817764054 0.000248232291209059 -0.0000374937121480797

1 -1.06375297236219 0.0254386028384862 -0.0084311632746214 0.000609600853995687 0.000248232293860045 -0.0000374937137037805
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Table 2. Optimal convergence parameters of the sixth-order FV-OHAM for the upper solution of Example 1 at selected
values of r ∈ [0, 1] and t = π

8 .

r C1 C2 C3 C4 C5 C6

0 -1.06375297286719 0.0254386028446668 -0.0084311632067809 0.00060960083641758 0.000248232292178112 -0.00003749371266644

0.2 -1.06375297330467 0.0254386029801644 -0.0084311632038488 0.00060960082872342 0.000248232291739776 -0.00003749371162798

0.4 -1.06375297314607 0.0254386028935392 -0.0084311631776690 0.00060960082412600 0.000248232292166044 -0.00003749371270290

0.6 -1.06375297329602 0.0254386029448837 -0.0084311631891171 0.00060960082393238 0.000248232293193404 -0.00003749371262592

0.8 -1.06375297315491 0.0254386028081106 -0.0084311631235094 0.00060960081510175 0.000248232290095667 -0.00003749371082786

1 -1.06375297285611 0.0254386029862732 -0.0084311632434452 0.00060960082922808 0.000248232296712564 -0.00003749371302230

Table 3. Sixth order FV-OHAM numerical and exact solutions for Example 1 at t = π
8 .

r X lowerOHAM xlowerOHAM XupperOHAM xupperOHAM

0 0 0 3.0163528525499923 3.0163527684815534

0.2 0.3016352852549993 0.3016352768481554 2.714717567294993 2.7147174916333983

0.4 0.6032705705099985 0.6032705536963108 2.413082282039994 2.413082214785243

0.6 0.9049058557649978 0.9049058305444662 2.1114469967849945 2.111446937937087

0.8 1.206541141019997 1.2065411073926215 1.8098117115299952 1.8098116610889319

1 1.5081764262749962 1.5081763842407767 1.5081764262749962 1.5081763842407767

30

25

20

15

10

05

02 04 06 08 10
r

t

Figure 1. The approximate solutions (upper and lower) for Example 1 using sixth-order FV-OHAM at t = π
8 and the exact

solutions.
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Figure 2. Three-dimensional plots of the approximate solutions (upper and lower) for Example 1 using sixth-order FV-
OHAM at t = π

8 and the exact solutions.

Table 4. The absolute and mean errors of the sixth-order FV-OHAM for Example 1.

r Er(t, r) Er(t, r) M̃E(t, r)

0 0 8.40684× 10−8 4.203450× 10−8

0.2 8.40684× 10−9 7.56616× 10−8 4.203442× 10−8

0.4 1.68137× 10−8 6.72548× 10−8 4.203430× 10−8

0.6 2.52205× 10−8 5.88479× 10−8 4.203425× 10−8

0.8 3.36274× 10−8 5.04411× 10−8 4.203425× 10−8

1 4.20342× 10−8 4.20342× 10−8 4.203420× 10−8

Applying the FV-MOHAM at j = 1, the initial approximation is taken as:

X̃(t)1,0 = 0. (65)

The corresponding homotopy is constructed as follows:

x̃(t)1,1 = (c1,1,1 + c1,2,1t+ c1,3,1t
2)[x̃(t)0 − r(cos(t))−

∫ t

0

e(t−s)x̃(s)1,0ds]

= (c1,1 + c1,2t+ c1,3t
2)(−r(cos(t))), (66)
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whereby the first approximation is

H̃(t)1,1 = x̃(t)1,0 + x̃(t)1,1 = (c1,1,1 + c1,2,1t+ c1,3,1t
2)(−r(cos(t))), (67)

with residual function,

R1,1 = x̃(t)1,1 − r(cos(t))−
∫ t

0

e(t−s)x̃(s)1,1ds. (68)

By solving for the coefficients and completing the solution with the same steps for j = 2, 3, 4, 5, results from FV-
MOHAM can be generated. The convergence control parameters for FV-MOHAM are presented in tables 5 and 6,
the sixth-order numerical and exact solutions are in Table 7, and the absolute and mean errors of the results are in
Table 8. Figures 3 and 4 display the two- and three-dimensional plots of the results, respectively.

Table 5. Optimal convergence parameters of the sixth-order FV-MOHAM for the lower solution of Example 1 at r ∈ [0, 1].

j Cj
11 Cj

12 Cj
13 Cj

21 Cj
22 Cj

23

1 -1 0 0 0 0 0

2 -1.004997109552217 0.0001268063881206017 -0.000001231528837 −3.737701136× 10−8 8.020468757× 10−10 −1.27250165× 10−12

3 -1.004668947226675 0.0001171112073488369 -0.000001065122970 −3.911179170× 10−8 8.2817171242× 10−10 −2.06948873× 10−12

4 -1.002938912798394 0.0000070824541371671 0.000001977238771 −1.026760703× 10−7 2.3695470747× 10−9 −3.60044560× 10−11

5 -1.001360191781939 0.0000477260843769630 -0.000001297485588 3.9804360648× 10−8 −2.0931484101× 10−9 5.97316394× 10−11

Table 6. Optimal convergence parameters of the sixth-order FV-MOHAM for the upper solution of Example 1 at r ∈ [0, 1].

j C
j

11 C
j

12 C
j

13 C
j

21 C
j

22 C
j

23

1 -1.00124633946281 0.00004722258490787 -0.00000156979876 5.9143337456× 10−8 −2.72804467008× 10−9 7.113291090× 10−11

2 -1.00244251140493 0.00002471881194694 0.0000011725124923 −8.584147276× 10−8 1.8974134438167× 10−9 −2.32234533× 10−11

3 -1.00493826643921 0.00012518137905866 -0.000001202220626 −3.794406538× 10−8 8.152356580547× 10−10 −1.53621470× 10−12

4 -1.00132606066623 -0.00000474402396247 0.0000020583380585 −1.264650605× 10−7 3.2864927602941× 10−9 −5.18421316× 10−11

5 -1.0024763958790825 0.000017489196760851178 0.000001555524722068963 −1.028328420× 10−7 2.4882302221067× 10−9 −3.54804048× 10−11

Table 7. Sixth order FV-MOHAM numerical and exact solutions for Example 1 with h = 0.1, t = π
8 , and r ∈ [0, 1].

r XMOHAM xMOHAM XMOHAM xMOHAM

0 0 0 3.0163528525499923 3.016352852782677

0.2 0.3016352852549993 0.3016352852782677 2.714717567294993 2.714717567504409

0.4 0.6032705705099985 0.6032705705565354 2.413082282039994 2.4130822822261417

0.6 0.9049058557649978 0.9049058558348032 2.1114469967849945 2.1114469969478735

0.8 1.206541141019997 1.2065411411130709 1.8098117115299952 1.809811711669606

1 1.5081764262749962 1.5081764263913384 1.5081764262749962 1.5081764263913384
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Table 8. The absolute and mean errors of the sixth-order FV-MOHAM for Example 1 with h = 0.1, t = π
8 , r ∈ [0, 1].

r Er(t, r) Er(t, r) M̃E(t, r)

0 0 2.32685× 10−10 1.1634250× 10−10

0.2 2.32684× 10−11 2.09416× 10−10 1.1634220× 10−10

0.4 4.65369× 10−11 1.86148× 10−10 1.1634245× 10−10

0.6 6.98054× 10−11 1.62879× 10−10 1.1634220× 10−10

0.8 9.30738× 10−11 1.39611× 10−10 1.1634240× 10−10

1 1.16342× 10−10 1.16342× 10−10 1.1634200× 10−10

Figure 3. The approximate solutions (upper and lower) for Example 1 using sixth-order FV-MOHAM with t = π
8 , h = 0.4,

and r ∈ [0, 1] together with the exact solutions.

08
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00
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00

Figure 4. Three-dimensional plots of the approximate solutions (upper and lower) for Example 1 using sixth-order FV-
MOHAM with t = π

8 , h = 0.4, and r ∈ [0, 1] together with the exact solutions.
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Table 9 provides a comparison of the mean errors of the sixth-order solutions for Example 1 by FV-OHAM,
FV-MOHAM, and HAM. The table presents the mean error at t = π

8 for all three methods over the same range of
r ∈ [0, 1], offering a clear comparison of their performance. Results form Taylor method and variational iteration
method (VIM) are also included. From the table, the numerical results computed using sixth-order FV-MOHAM
and FV-OHAM significantly outperform those obtained using the sixth-order HAM, Taylor method and VIM at
the same values of r ∈ [0, 1] and t = π

8 . The table shows that both FV-MOHAM and FV-OHAM provide highly
accurate solutions, but FV-MOHAM shows a clear superiority in reducing numerical errors over the entire range
of r.

Table 9. Mean errors of results from the sixth-order FV-OHAM, FV-MOHAM, and HAM, together with Taylor method and
VIM for Example 1 at t = π

8 for r ∈ [0, 1].
.

r FV-OHAM FV-MOHAM HAM [27] Taylor [27] VIM [27]

0 4.203450× 10−8 1.1634250× 10−10 4.05033280470× 10−7 3.4210× 10−6 8.4600× 10−6

0.2 4.203442× 10−8 1.1634220× 10−10 4.05033280304× 10−7 3.0790× 10−6 7.6100× 10−6

0.4 4.203430× 10−8 1.1634245× 10−10 4.05033280359× 10−7 2.7360× 10−6 6.7700× 10−6

0.6 4.203425× 10−8 1.1634220× 10−10 4.05033280637× 10−7 2.3950× 10−6 5.9300× 10−6

0.8 4.203425× 10−8 1.1634240× 10−10 4.05033280359× 10−7 2.0520× 10−6 5.0700× 10−6

1 4.203420× 10−8 1.1634200× 10−10 4.05033280581× 10−7 1.7104× 10−6 4.2400× 10−6

While FV-OHAM remains accurate, FV-MOHAM has a higher ability to improve accuracy due to its use of multi
stages providing additional improvements to the solutions compared to FV-OHAM. FV-MOHAM applies multiple
iteration strategies to improve the accuracy of the solutions. The equation is divided into multiple sub-intervals,
which helps in providing more stable and accurate solutions. On the other hand, FV-OHAM relies only on one
stage, which makes it less capable in improving solutions compared to FV-MOHAM. As for the HAM method, it
produces significantly larger errors, which reflects its lower accuracy when solving linear FVIE of second kind.
The Taylor method and the VIM also fall short in terms of the mean errors. The VIM may provide relatively
accurate solutions using order higher than six but it is more time-consuming and less efficient compared to both
FV-OHAM and FV-MOHAM. Overall, for Example 1, FV-MOHAM generated the most accurate results compared
to FV-OHAM, HAM, Taylor method, and VIM.

8.2. Example 2

Consider the following linear Volterra–Hammerstein integral equation [34]:

X̃(t) = g̃(t) +

∫ t

0

t cos(s− t)X̃(s)ds, (69)

where

g̃(t; r) = 2t(r5 + 2r)(3− 3 cos(t)− t2), (70)

g̃(t; r) = 2t(6− 6r3)(3− 3 cos(t)− t2), (71)

and the exact solution,

[X̃(t; r), X̃(t; r)] = [t3(r5 + 2r), t3(6− 6r3)]. (72)
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To determine the lower bound of the residual error and solve Example 2 using FV-OHAM with the fourth
iteration, the initial approximations for all r ∈ [0, 1] are first chosen based on the method analysis in sections 3 and
5. The FV-OHAM formulation for equation (69) is:

H(X) = (1− P )[X̃ −X0(t)] + P [X − [(r5 + 2r), (6− 6r3)](2t(3− 3 cos(t)− t2))

− λ

∫ t

0

(t cos(s− t))X̃(s)ds] = 0. (73)

The expansion of X̃(t) in powers of p,

X̃(t) = X̃0(t) + P̃X1(t) + P̃ 2X2(t) + · · ·+ P̃nXn(t) (74)

is substituted into Equation (73),

H(X,P ) = (1− P )[

n∑
i=0

P̃ iXi(t)− X̃0(t)] + P [

n∑
i=0

P̃ iXi(t)− [(r5 + 2r), (6− 6r3)](2t(3− 3 cos(t)− t2))

− λ

∫ t

a

(t cos(s− t))
n∑

i=0

P iXi(s)ds] = 0. (75)

Therefore, the initial, first, and m-th order approximations can be determined and are presented in equations (76),
(77), and (78), respectively.

X̃(t)0 = [(r5 + 2r), (6− 6r3)](2t(3− 3 cos (t)− t2)). (76)

X̃1(t) = −C1

∫ t

0

(t cos(s− t))X̃0(s)ds. (77)

x̃m(t) = (1 + C1)x̃m−1(t) +
m−1∑
k=1

Ckx̃m−k(t)−
m∑

k=1

c1,k

∫ t

0

(t cos (s− t))x̃m−k(S)ds. (78)

As discussed in sections 3 and 5, the convergence control parameters for FV-OHAM for this example were
calculated and tabulated in tables 10 and 11 for different values of r ∈ [0, 1] on interval 0 ≤ t ≤ 0.5. These
parameters were then used to generate the fourth-order approximate solutions for Example 2. Tables 12 and 13
displays the numerical solutions and their errors while Figure 5 plots the approximate and exact solutions.

Table 10. Optimal convergence parameters of the fourth-order FV-OHAM method for the lower solution of Example 2 at
selected values of r ∈ [0, 1], and t = 0.5.

.
r C1 C2 C3

0 -1 0 0

0.1 -0.47669646109559977 -0.30071701013081420 0

0.2 -0.55155272972664440 -0.21040081566865340 0

0.3 -0.51259522865766590 -0.24900211629660518 0

0.4 -0.46021287825845597 -0.31410403377279655 0

0.5 -0.51259522865766590 -0.24900211629660518 0
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Table 11. Optimal convergence parameters of the fourth-order FV-OHAM method for the upper solution of Example 2 at
selected values of r ∈ [0, 1], and t = 0.5.

.

r C1 C2 C3

0 -1.08472971176231670 -0.001818326205830011 0

0.1 -0.86479788665404440 -0.011783106983511564 0

0.2 -0.60537179349533940 -0.153801796343688820 0

0.3 -0.59993337053279270 -0.161471060045731900 0

0.4 -0.46713338890094924 -0.306385035384228230 0

0.5 -0.48186648012081740 -0.295300195952291460 0

Table 12. Fourth-order lower FV-OHAM solution for Example 2 at t = 0.5 for all r ∈ [0, 1] and their errors.
.

r X lowerOHAM X lowerOHAM Er(t, r)

0 0 0 0

0.25 0.0626220703125 0.06262207463774630 2.1584101445894× 10−9

0.5 0.1289062500000 0.12890625890343096 4.3168295412585× 10−9

0.75 0.2171630859375 0.21716310093674593 6.4752241158997× 10−9

1 0.3750000000000 0.37500002590089010 8.6336311339854× 10−9

Table 13. Fourth-order upper FV-OHAM solution for Example 2 at t = 0.5 for all r ∈ [0, 1] and their errors.
.

r XupperOHAM XupperOHAM Er(t, r)

0 0.7500000518017 0.7500000518017802 0

0.25 0.7441406250000 0.7441406763970788 2.15841× 10−9

0.5 0.7031250000000 0.7031250485641689 4.31682× 10−9

0.75 0.5917968750000 0.5917969158748422 6.47522× 10−9

1 0.3750000000000 0.3750000259008901 8.63363× 10−9

Applying the FV-MOHAM at j = 1, the initial approximation is taken as:

X̃(t)1,0 = 0. (79)

The corresponding homotopy is constructed as follows:

X̃(t)1,1 = (C1,1,1 + C1,2,1t+ C1,3,1t
2)[X̃(t)0 − r((2t(3− 3 cos(t)− t2)))−

∫ t

0

(t cos(s− t))X̃(s)1,0ds]

= ((C1,1 + C1,2t+ C1,3t
2)(−(r5 + 2r)(2t(3− 3 cos(t)− t2))), (80)
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–exact solution
–approximate solution

Figure 5. The approximate solutions (upper and lower) for Example 2 using fourth-order FV-OHAM at t = 0.5 and
r ∈ [0, 1] with the exact solution.

whereby the first approximation is

H̃(t)1,1 = X̃(t)1,0 + X̃(t)1,1 = (C1,1,1 + C1,2,1t+ C1,3,1t
2)(−(r5 + 2r)((2t(3− 3 cos(t)− t2))), (81)

with residual error,

R1,1 = X̃(t)1,1 − (r5 + 2r)((2t(3− 3 cos(t)− t2)))−
∫ t

0

(t cos(s− t))X̃(s)1,1ds. (82)

By solving for the coefficients and completing the solution with the same steps for j = 2, 3, 4, 5, results from FV-
MOHAM can be generated. The numerical solutions and their errors are tabulated in tables 14 and 15 whereas the
graphs of the approximate and exact solutions are displayed in Figure 6.

Table 14. Fourth order lower FV-MOHAM solution for Example 2 at t = 0.5 for all r ∈ [0, 1] and their errors.
.

r X lowerMOHAM X lowerMOHAM Er(t, r)

0 0 0 0

0.25 -0.04380029841095035 -0.04380029841114186 7.695255× 10−11

0.5 -0.08760059682190069 -0.08760059682228372 1.582790× 10−10

0.75 -0.13140089523285105 -0.13140089523342558 2.682690× 10−10

1 -0.17520119364380138 -0.17520119364456743 4.604490× 10−10

Table 15. Fourth order upper FV-MOHAM solution for Example 2 at t = 0.5 for all r ∈ [0, 1] and their errors.
.

r XupperMOHAM XupperMOHAM Er(t, r)

0 0.75000000000000000 0.7500000000000000 0

0.25 0.7441406250000000 0.7441406259118488 3.82929× 10−11

0.5 0.7031250000000000 0.7031250008615894 7.65857× 10−11

0.75 0.5917968750000000 0.5917968757251710 1.14879× 10−10

1 0.37500000000000000 0.3750000004595143 1.53171× 10−10

Tables 16 and 17 provide a comparison between the results of the fourth-order FV-OHAM, fourth-order FV-
MOHAM, and eighth-order IFBPM for Example 2. From Table 16, fourth-order FV-MOHAM remains most
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–exact solution
–approximate solution

Figure 6. The approximate solutions (upper and lower) for Example 2 using the fourth-order FV-MOHAM at t = 0.5 and
r ∈ [0, 1] with the exact solution.

accurate in terms of the lower error compared to the other two. While both FV-OHAM and FV-MOHAM produced
errors in the range of at most 10−9, the higher-order IFBPM is hovering around 10−3 and 10−4. Table 17 illustrates
the same behavior in terms of the upper error. FV-OHAM exhibits satisfactory performance, with marginally greater
errors than those of FV-MOHAM. Nonetheless, IFBPM continues to perform the worst in terms of the lower and
upper errors. The comparison between the two tables confirm the efficacy and reliability of FV-MOHAM and
FV-OHAM in reducing numerical errors, with FV-MOHAM consistently attaining the highest level of accuracy.
The results underscore the efficacy of FV-MOHAM and FV-OHAM in addressing Example 2 with both lower and
higher solutions, rendering them superior alternatives to IFBPM in terms of accuracy.

Table 16. Lower errors of results from the fourth-order FV-OHAM, fourth-order FV-MOHAM, and eighth-order IFBPM for
Example 2 at t = 0.5 for r ∈ [0, 1].

.
r FV −OHAMEr(t,r) FV −MOHAMEr(t,r) IFBPMEr(t,r) [28]

0.25 2.15841× 10−9 7.695255× 10−11 4.27470× 10−4

0.5 4.31682× 10−9 1.582790× 10−10 8.79930× 10−4

0.75 6.47522× 10−9 2.682690× 10−10 1.48240× 10−3

1 8.63363× 10−9 4.604490× 10−10 2.55980× 10−3

Table 17. Upper errors of results from the fourth-order FV-OHAM, fourth-order FV-MOHAM, and eighth-order IFBPM for
Example 2 at t = 0.5 for r ∈ [0, 1].

.
r FV −OHAMEr(t,r)

FV −MOHAMEr(t,r)
IFBPMEr(t,r) [28]

0.25 2.15841× 10−9 0 5.0769× 10−3

0.5 4.31682× 10−9 3.82929× 10−11 4.7996× 10−3

0.75 6.47522× 10−9 7.65857× 10−11 4.0397× 10−3

1 8.63363× 10−9 1.14879× 10−10 2.5598× 10−3

9. Conclusion

This research presents FV-OHAM and FV-MOHAM as novel analytical approximation techniques specifically
developed to address FIEs. These approaches exhibit enhanced performance by delivering solutions as polynomial
functions, accurately encapsulating the convergence of the series solution. A case study on VFIEs substantiates
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the effectiveness of FV-OHAM and FV-MOHAM, underpinned by a convergence analysis. Furthermore, a second-
order linear VFIE test problem is addressed to further demonstrate the correctness and efficacy of the proposed
methods. The numerical findings demonstrate that both FV-OHAM and FV-MOHAM surpass HAM, Taylor
method, VIM, and IFBPM in terms of accuracy and computing economy. FV-MOHAM routinely surpasses FV-
OHAM, exhibiting enhanced accuracy and stability. The adaptability of these methods renders them suitable for
several domains, including physics and engineering, where precision and dependability are crucial. Due to its
robust performance, FV-MOHAM is especially adept at tackling real-world engineering challenges, while both
approaches exhibit potential for solving higher-dimensional and more intricate problems, Future research directions
could extend these methods to nonlinear FIEs, and systems of second and nth-order FVIEs.
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