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Abstract Additional methods were suggested to enhance the biased estimation in the multiple linear regression model.
The jackknife-biased estimate approach is essential for addressing high variance and multicollinearity issues. Reduce
the effects of multicollinearity with the Liu estimator: This shrinkage method is attractive on several occasions. This
document aims to derive a Jackknifed Liu-type Gamma estimator (JGLTE) and a Modified Jackknifed Liu-type Gamma
estimator (MJGLTE) when multicollinearity exists. Based on Monte Carlo simulations, the proposed estimate outperforms
the maximum likelihood estimator (MLE) in terms of mean square error (MSE). Finally, we illustrate the performance of
this estimator using real-world data.
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1. Introduction

The explanatory variables in many regression model applications include a built-in correlation. When correlations
are significant, the estimation of the regression parameters becomes unstable, making it challenging to interpret the
estimates of the regression coefficients, and the maximum likelihood (ML) approach becomes more sensitive. It is
difficult to assess the distinct impacts of each explanatory variable in the regression model when multicollinearity is
present. Furthermore, the regression coefficients sample variance will increase, impacting prediction and inference.
The literature has presented a wide range of solutions to the multicollinearity problem.

One of the important application statistics is the gamma regression model (GR), a specific kind of generalized
linear model (GLM). The iterative reweighted least square (IRLS) algorithm should be used fundamental method
Maximum likelihood Estimator (MLE) to estimate the regression coefficients of the GR model [8] [18]. It is tough
to construct a meaningful statistical inference in the presence of multicollinearity since the ML method’s estimated
variance gets inflated. Hoerl and Kennard [10] suggested the ordinary ridge regression approach for the linear
regression model (LRM) in order to address the multicollinearity issue by adding the biasing parameter k that has
the range 0 to ∞. Several ridge parameters were suggested by [17] [18] for the Poisson regression, [25] presented
a novel Jackknife estimator For the Poisson regression [17].

Ridge regression’s disadvantage, according to Liu [11], In order to solve the multicollinearity issue, the Liu
estimator is taken into consideration as a substitute for the ML estimator. Liu estimator’s benefit is that a linear
function of the biased parameter d with a range between 0 to 1. The Liu estimator is useful method for mitigating
bias when dealing with the problem of collinearity among the explanatory variables. Due to the linear nature of
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the variable d, many researchers have chosen to employ the Liu estimator instead of ridge regression [17]. These
researchers have proposed the optimal Liu value for logit regression and negative binomial models. Yang and
Chang [27] proposed a two-parameter estimator that combines the ridge and Liu estimators. There is very little
material available on the Liu estimator for the GLM. [4] suggested a new estimator that blends the (r − k) class
estimator and the Liu estimator. [16] suggested a few biased Liu parameters for negative binomial regression. [26]
have conducted further research on the restricted Liu estimator for the logistic regression model in order to address
the issue of multicollinearity.[3] Proposed a novel estimate that combines the estimator of the (r-(k-d)) class and the
Gamma regression. Liu-type estimator refers to a certain method of estimation. In a Liu-type estimator, employing
a substantial shrinkage value is permissible, as there exists an additional parameter to optimize the estimator for a
good fit. Despite the Liu-type estimator’s commendable characteristics, it exhibits a smaller bias. This bias can be
mitigated by subjecting a biased estimator to a jackknife procedure. The jackknife procedure involves processing
experimental data to generate a statistical estimator for unknown parameters. A truncated sample is employed to
compute a specific function of the estimators. The advantage of the jackknife procedure lies in its ability to yield
an estimator with minimal bias while capitalizing on the advantageous properties of large samples, as highlighted
by [25].

The available literature shows that no researcher recommends the jackknife technique to the gamma Liu-type
estimator. In this article, we applied the JGLTE and MJGLTE. The concept of our proposed estimator is to decrease
the shrinkage parameter, thereby improving the resulting estimator with a minimal amount of bias.

2. Gamma regression

One way to think about the gamma distribution is as an extension of the exponential distribution, where λ > 0 and
mean 1/λ. The duration until the occurrence of the initial event is denoted by an exponential random variable with
an average of 1/λ. where a Poisson process with mean λ generates events, On the other hand, the waiting period
until the occurrence of the α− th event is represented by the gamma random variable X, such that [12]:

X =

α∑
i

Yi (1)

The Gamma regression (GR) model is used when the dependent variable is positively skewed with its mean
proportional to the dispersion parameter. Assume that Y1, Y2, . . . , Yn are explanatory random variables, and
y1, y1, . . . yn that the probability density function for the matching observations from the gamma distribution
is displayed below:

f (yi;α, ϕ) =
yi

α−1 e−yi/ϕ

Γ (α) (ϕ)
α yi ≥ 0 and α, ϕ > 0 (2)

Where (ϕ) represents a scale parameter and (α) represents a shape parameter that is greater than or equal to zero,
such that:

E (Yi) = µi = αϕ = θi (3)

This is referred to as the canonical parameter as well and:

var (Yi) = αϕ2 = 1/
(
kθi

2
)

where θi = exi
Tβ (4)

Such that:
Xi = (Xi1,Xi2, . . . , Xip)

′
i = 1, 2, . . . ,n j = 1, 2, . . . ,p n > p

Here, n represents the size of the sample, where p denotes the count of explanatory variables. Generally,
to determine the parameters, the maximum likelihood estimate is used. The dependent variable of a random
component in the GLM is frequently the probability density function, which is a member of the distribution’s
exponential family. The gamma density function is a member of the exponential family of distributions, the general
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density of the exponential family may be found using the following formula:

f (y, θ, ϕ) =

{
y θ − b (θ)

α (ϕ)
+ C (y, ϕ)

}
(5)

The symbols ϕ represent the dispersion parameter, represents the location parameter, and b () represents the
cumulant function. The average function yi for the generalized regression model (GR) is defined as:

g (µi) = ln (µi) = X
′

iβ i = 1, 2, ... , n

ηi = ln (µi) = X
′

iβ

Let X be an n× p information matrix with p explanatory variables. Each row xi of X is denoted as X =
[Xi1, Xi2, ..., Xip]. The slope coefficients are represented by the p×1 vector β [6]. The function g (.) is the log
link function used for the GR model, where ηi = g (µi). The log likelihood expression for the GR model can be
represented for Eq :

l (y;µ, φ) =
n∑

i=1

[{
yi
µi − (−ln (µi))

}
(−φ)

−1
+ (1− φ) (φ)

−1
ln (yi)

−ln (φ) (φ)
−1 − lnΓ (φ)

−1
] (6)

Assume that the estimates β̂, µ̂, and φ̂ may be determined via the ML technique by utilizing the Newton–Raphson
iterative method to maximize Equation . The ML estimates can be found by solving:

S (β) =
∂l (µi, φ)

∂β
=

1

α (φ)

(
yi − exp

(
X

′

iβ
))

X
′

i = 0 (7)

where α (φ) = φ and S (β) stands for the vector score. Equation is non-linear; hence the iterative Fisher scoring
method must be used to estimate the unknown parameter. Let β(m) represent the predicted ML of β after m
iterations which can be expressed as:

β(m+1) = β(m) +
{
I
(
β(m)

)}−1

S
(
β(m)

)
(8)

Where:
S (β) =

∂ℓ (β)

∂β

and:

{I (β )}−1
= (−E

(
∂2 ℓ (β) )

∂β∂β′

)−1

Here I
(
β(m)

)
is a p × p Fisher information matrix, S

(
β(m)

)
and I

(
β(m)

)
are evaluated at β(m). Using the

IRLS approach, the ML method is discovered at convergence in deviance for Equation :

β̂MLE = (XTŴX)−1 XTŴẑ (9)

In this case Ŵ = diag
[
µ̂2
1 , µ̂2

2, ... , µ̂
2
n

]
where the adjusted dependent variable is ẑ = η̂i + (yi − µ̂i) /µ̂

2
i

and the estimated mean with a log link function is µ̂i = exp
(
x

′

iβ̂MLE

)
. It is commonly known that β̂MLE

covariance matrix is:

cov
(
β̂MLE

)
=

(
−E

(
∂2 ℓ (β)

∂βi∂βk

))−1

= φ (XTŴX)−1

The (MSE) of (MLE) is given by:

MSE
(
β̂MLE

)
= E

(
β̂MLE − β

)T (
β̂MLE − β

)
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∴ MSE
(
β̂MLE

)
= tr

[
φ (XTŴX)−1

]
= φ

p∑
j=1

1

λj
(10)

where λj is the eigenvalue of the D = XTŴX and tr (.) is the trace of a D. Furthermore, the following is also
taken into consideration for the matrix M eigenvalue decomposition:

D = QTΛQ

such that Λ = diag (λ1, λ2, . . . , λp) and Q is the orthogonal matrix made up of the eigenvectors corresponding
to the eigenvalues of (D). The MSE of the MLE inflates when one or more of the eigenvalues approaches 0, as can
be easily observed, and this has a negative impact on the regression coefficients.

3. Gamma Liu estimator

The popular estimator Liu has gained recognition and is used in generalized linear models. The gamma dependent
variable was taken into consideration by [13] the authors when examining the Liu gamma estimator’s performance
using both real data applications and Monte Carlo simulations. The gamma Liu estimator (GLE) is defined as:

β̂Liu = (D + I)−1
(D + dI) β̂MLE (11)

Where T Liu = (D + I)−1
(D + dI) and biased Liu 0 < d < 1. The GLE’s bias vector and covariance matrix can

be obtained respectively:

bGLE = bias
(
β̂Liu

)
= − (1− d) (D + I)−1

βbGLE = bias
(
β̂Liu

)
= − (1− d) (D + I)−1

β

cov
(
β̂Liu

)
= φ T LiuD−1TLiu

T

The following MMSE and MSE functions can be obtained, respectively, by using the covariance and bias of GLE:
MMSE

(
β̂Liu

)
= cov

(
β̂Liu

)
+ bGLEbGLE

T= φ T LiuD−1TLiu
T + (1−?)

2
(D + I)−1

ββ (D + I)−1

MSE
(
β̂Liu

)
= tr

[
MMSE

(
β̂Liu

)]
= φ

p∑
j=1

(λj+d)2

λj(λj+1)2
+ (d− 1)

2
p∑

j=1

α2
j

(λj+1)2

4. Gamma Liu-type estimator

Introduced a novel biased estimator known as the Liu-type estimators (LTE) [14], The following gamma Liu-type
estimator (GLTE) is given:

β̂GLTE = T −1
k T dβ̂MLE (12)

Where −∞ < d < ∞, K > 0, T −1
k = (D +KI) , T d = (D − dI), we obtain the bias vector and covariance of

GLTE as:
bias

(
β̂GLTE

)
= − (d+K)Υ−1

K β

cov
(
β̂GLTE

)
= φ T LTED−1TLTE

T

As a result, the MMSE and MSE functions of GLTE are calculated as follows:

MMSE
(
β̂GLTE

)
= cov

(
β̂GLTE

)
+ bGLTEbGLTE

T (13)

MSE
(
β̂GLTE

)
= tr

[
MMSE

(
β̂GLTE

)]
(14)
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= φ

p∑
j=1

(λj − d)
2

λj (λj +K)
2 + (d+K)

2
p∑

j=1

α2
j

(λj +K)
2 (15)

The optimal value of dj can be found by setting equation (15) to zero and solving for dj , which may then be shown
as:

dj =
ϕ
∑p

j=1
1

(λj+κ)2
− κ

∑p
j=1

α2
j

(λj+κ)2

ϕ
∑p

j=1
1

λj(λj+κ)2
+
∑p

j=1

α2
j

(λj+κ)2

5. First Proposed Estimator: Jackknifed Liu-type Gamma Estimator (JGLTE)

To solve the bias in the ridge estimator, [24] proposed the Jackknife technique for the linear regression model. Many
articles, including those by [1], [25], [2], and [7], have proposed many jackknife estimators. In this section, the
jackknife Liu-type Estimator of the JGLTE model is proposed. Let Λ = diag (λ1, ..., λp) and Q = (q1, ..., qp),
respectively, be the matrices of eigenvalues and eigenvectors of D = X′ŴX , such that D = T ΛT ′ , where T is
an orthogonal matrix and Λ is a diagonal matrix. Consequently, the GMLE model in Eq.(5) can be re-written as:

τ̂GMLE = Λ−1 STV̂ẑ (16)

β̂GMLE = Qτ̂GMLE (17)

In [14], a new estimator is proposed for τ . This estimator is biased and is called Liu-type estimator (LTE), and
is defined as follows:

τ̂GLTE (K, d) = (Λ +KI)−1
(Q′y − dτ̂GMLE)

τ̂GLTE (K, d) = (Λ +KI)−1 (
Q′y − dΛ−1Q′y

)
=

[
I − (Λ +KI)−1

(K + y)
]
τ̂GMLE

= L (K, d) τ̂GMLE

Where L (K, d) = (Λ +KI)−1
(Λ− dI), τ̂GLTE has a bias vector defined as bias:

bias (τ̂GLTE) = (L (K, d) − I) τ

and a covariance matrix
cov (τ̂GLTE) = σ2 L (K, d) Λ−1L (K, d)

A jackknifed form of τ̂GLTE can be proposed by utilizing the works of [9], [24], [21] and [15]. The jackknife
approach was established in [23] and [23] to lower the bias value. With a few notable exceptions, balanced models
can be fitted using the jackknife approach, according to [9]. Following several algebraic operations, the jackknifed
estimator is obtained by removing the i− th observation (qi , yi):

τ̂GLTE (K, d) =
(
Q

′

−i Ŵ−iQ−i +KI
)−1 (

Q
′

−i Ŵ−iQ−i − dI
)(

Q
′

−i Ŵ−iQ−i

)−1

Q
′

−iy−i

=
(
A−Q

′

−i Ŵ−iQ−i +KI
)−1

(Q′y − qiyi)

=

(
A−1 +

A−1qiwiq
′

iA−1

1− qiA−1qi

)

= A−1 Q′y −A−1qiyi

[
A−1qiwiq

′

iA−1

1− q
′
iA−1qi

Q′y − A−1qiwiq
′

iA−1

1− q
′
iA−1qi

qiyi

]
Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. ALGBOORY, A. ALKHATEEB AND Z. ALGAMAL 5

= τ̂GLTE (K, d) +A−1qiyi

[
1− q

′

iA−1qi
1− q

′
iA−1qi

]
+

A−1qiwiq
′

i

1− q
′
iA−1qi

τ̂GLTE(K, d)

= τ̂GLTE (K, d)−A−1qi
A−1qi

(
yi − q

′

i τ̂GLTE (K, d)
)

1− q
′
iA−1qi

= τ̂GLTE (K, d)− A−1qiei
1− ξi

(18)

where q
′

i is the i-th row of the matrix Q, ei = yi − q
′

i τ̂GLTE (K, d) is the Liu-type residual,
Q

′

−i Ŵ−iQ−i = Q′ŴQ− qiwiq
′

i, Q
′

−iy−i = Q′y − qiyi, ξi = q
′

iA−1qi is the distance factor andA−1 =

(Λ +KI)−1 (I − dΛ−1
)
= L (K, d) Λ−1. Due to the non-zero value of ξi, which indicates an imbalance in the

model, we employ the weighted jackknife approach. Weighted pseudo values are defined as follows:

Zi = τ̂GLTE (K, d) + n (1− ξi) [(τ̂GLTE (K, d))− (τ̂GLTE (K, d))]

The weighted jackknifed estimator of τ is obtained as:

τ̂JGLTE (K, d) =
1

n

n∑
i=1

Zi = τ̂GLTE (K, d) +A−1
n∑

i=1

qiei

Since:
n∑

i=1

qiei =

n∑
i=1

qi

(
yi − q

′

i τ̂GLTE (K, d)
)

=
(
I − A−1

)
Q′y

it follows that:
τ̂JGLTE (K,d) = τ̂GLTE (K,d) +A−1Q′y −A−1ΛA−1Q′y

=
(
2I − A−1Λ

)
τ̂GLTE (K,d)

However, since I − A−1Λ = I − (Λ +KI)−1
(Λ− dI) = I − L (K,d)

we obtain:
τ̂JGLTE (K,d) = (2I − L (K,d)) τ̂GLTE (K,d)

= (2I − L (K,d))L (K,d) τ̂MLE

The bias part and the variance of τ̂JGLTE (K,d) are obtained as, respectively:

bias (τ̂JGLTE (K,d)) = − (I − L (K,d))
2
τ,

and a covariance matrix

cov (τ̂JGLTE (K,d)) = σ2
[
(2I − L (K,d))L (K,d)Λ−1L (K,d)

′
(2I − L (K,d))

]′

The MSEMs of the jackknifed Gamma Liu-type estimator (JGLTE) and the Gamma Liu-type estimator (GLTE)
are given as follows [5]:

MSEM (τ̂JGLTE (K, d)) = cov (τ̂JGLTE (K, d)) + bias (τ̂JGLTE (K, d)) bias (τ̂JGLTE (K, d))
′

= σ2 (2I − L (K, d))L (K, d) Λ−1L (19)

MSEM (τ̂JGLTE (K, d)) = σ2L (K, d) Λ−1L (K, d)
′
+ (L (K, d) − I) ττ ′(L (K, d− I)
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6. Second Proposed Estimator: Modified Jackknifed Liu-type Gamma Estimator (MJGLTE)

In this section, we propose a new estimator for τ . The proposed estimator is designated as the modified jackknifed
Gamma Liu-type estimator (MJGLTE) denoted by τ̂MJGLTE (K, d) [20]:

τ̂MJGLTE (K,d) =
[
I − (K + d)

2
(Λ +KI)−2

] [
I − (K + d) (Λ +KI)−1

]
τ̂MLE

The expressions of bias are:

bias (τ̂MJGLTE (K,d)) = − (K + d) (Λ +KI)−1 H (Λ +KI)−1
τ

and a covariance matrix:
cov (τ̂MJGLTE (K,d)) = σ2ΨΛ−1Ψ′

The mean squared error matrix (MSEM) of the Modified jackknifed Gamma Liu-type estimator (MJGLTE) are
given as follows:

MSEM (τ̂MJGLTE (K,d)) = σ2ΨΛ−1Ψ′ (K + d)
2
(Λ +KI)−1 H (Λ +KI)−1

ττ ′
[
(Λ +KI)−1 H (Λ +KI)−1

]′

Such that:

H = I + (K + d) (Λ +KI)−1 − (K + d)
2
(Λ +KI)−2

= I + L (K,d)− L (K,d)
2

And
Ψ = (2I − L (K,d))L (K,d)

2

7. Monte Carlo Simulation

A Monte Carlo simulation establishes the performance evaluations of GLTE under varying multicollinearity levels
[28, 29] by using RStudio 2024.12.1 Build 563.

7.1. Simulation Design

The response variable of n observations follow gamma regression model [13, 30], as following:

y ∼ Gam

(
ϑ2

ν
,
ν

ϑ

)
Here ϑ = exp (X ′β) , νdenotes ϑ, the parameter vector β = [β1, β2, ..., βp] is equal

∑p
j=1 β

2
j = 1 and off course

the explanatory variables is defined as:

Xij =
(
1− ℓ2

)1/2 wij + ℓwip

where ℓ is the relation between the explanatory variables and w′
ijs are independent standard normal pseudo-

random numbers.
Where β̂ is the estimated coefficient for the estimator used. For the value of κ, the best method was used as:

K = max

(
1

ωj

)
, j = 1, 2, ..., p

Where ωj =
√

σ̂
/
α̂2
j

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Table 1. when n=100

MSE Method ρ = 0.90 ρ = 0.95 ρ = 0.99

p = 4 MLE 0.08516720 0.16412397 0.83767855
LIU 0.07756584 0.13800186 0.52542411
GLTE 0.06755732 0.10765406 0.30920398
JGLTE 0.07981816 0.13473082 0.38039059
MJGLTE 0.06629650 0.10474486 0.29282898

p = 8
MLE 0.10238572 0.21984955 1.00893942

LIU 0.08719720 0.16742328 0.55313540
GLTE 0.06596976 0.10556239 0.25002168
JGLTE 0.08521492 0.14050221 0.47008751
MJGLTE 0.06216450 0.09920032 0.19574131

Table 2. when n=200

MSE Method ρ = 0.90 ρ = 0.95 ρ = 0.99

p = 4 MLE 0.03849833 0.08054200 0.41612926
LIU 0.03667397 0.07353502 0.30235040
GLTE 0.03414572 0.06434660 0.19760315
JGLTE 0.03780903 0.07571560 0.24362274
MJGLTE 0.03390618 0.06320418 0.19585618

p = 8
MLE 0.04580515 0.09693123 0.46570838

LIU 0.04213151 0.08271436 0.29893149
GLTE 0.03634023 0.06270486 0.15593178
JGLTE 0.04338668 0.08102833 0.21866854
MJGLTE 0.03529622 0.05901512 0.14167689

Table 3. when n=500

MSE Method ρ = 0.90 ρ = 0.95 ρ = 0.99

p = 4 MLE 0.01531791 0.02920502 0.16033022
LIU 0.01503117 0.02814826 0.13525437
GLTE 0.01461999 0.02671485 0.10536677
JGLTE 0.01527313 0.02887990 0.13292834
MJGLTE 0.01460074 0.02660643 0.10202614

p = 8 MLE 0.01764312 0.03650899 0.17693787
LIU 0.01703358 0.03405376 0.13726153
GLTE 0.01600047 0.03007160 0.09073022
JGLTE 0.01746795 0.03515101 0.11852901
MJGLTE 0.01589131 0.02939902 0.08635068
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As the sample size has direct effect on the prediction accuracy, three representative values of the sample size are
considered: Which are 100, 200 and 500. Besides, two numbers of the explanatory variables are taken as p = 4 and
p = 8 because it can be seen that as the number of the explanatory variables rises, the MSE increases. Also because
of interesting in the effect of multicollinearity, in which the degrees of correlation considered to be more Table 1:
MSE when n=100

MSE is calculated as MSE = (yi − ȳ)
2 Where yi is the i− th observation and ȳ is the mean of the observed

values. The table below shows the MSE of each replication after running the simulation for 50 cycles.

Figure 1. comparison between the methods when p=4.

Figure 2. comparison between different sample space when n=100 and n=500 and p=4.

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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7.2. Simulation Results

The simulation data in Tables 1–3 demonstrate that MJGLTE estimator achieves the lowest MSE among the
presented estimators. MJGLTE estimator demonstrates lower MSE than all other presented methods throughout
its applications. The MLE produces the highest amount of MSE among all evaluated estimators.

The MSE for all the estimators grows when p and q increase while the estimators benefit from larger n. The best
performance emerges from gamma Liu-type estimator while gamma Liu estimator and gamma ridge estimator and
MLE estimator rank successively behind it.
The study results in Tables 1 to 3 show that gamma Liu-type estimator achieves superior MSE performance
compared with other considered estimators. The simulation outcomes accorded with the mathematical proofs from
the theoretical section.

8. A real application: dataset of hydrocarbon escape

In this section, the performance of the suggested estimator is assessed on a real application. For this purpose, we
examine a hydrocarbon dataset, obtained from [22]. During the pumping of petrol, hydrocarbons get released
into the atmosphere once they are in the tanks. To prevent the emission causing pollution in the atmosphere
various equipments are fitted for the absorption of vapours. To assessing the efficacy of the strategy, 32 laboratory
experiments were performed without the devices. There were four explanatory variables (x1= hydrocarbon escaping
(in oF), x2=temperature (in oF), x3=the initial pressure (in pounds per square inch) and x4=the petrol pumped (in
pounds per square inch)) that are involved in this laboratory experiment and the response variable (y=the quantity
(in grams)).

The test of sufficiency of the gamma distribution on the response variable (y=the quantity (in grams)) was done
with the help of the Kolmogorov Smirnov goodness-of-fit test. The value of test statistic D was about 0.101,
whereas p-value was about 0.864, and it was greater than accepted level of significance (0.05). In response, to the
next null hypothesis:
H0 : The response variable follows Gamma dist.
H1 : The response variable doesn’t follow Gamma dist.
From above, the data follow a gamma distribution cannot be rejected, supporting the validity of the assumption

of using the gamma regression model in this research.

Table 4. Kolmogorov–Smirnov test of the gamma distribution on the response variable

Test Statistic
(D)

p-
value

Decision

0.101 0.864 Fail to reject the null hypothesis (Fits
Gamma)

The issue of multicollinearity between the explanatory variables present in real data was diagnosed by computing
the variance inflation factors (VIF). The findings were as follows: the VIF values of the variables x1, x3 and x4
were large (which is larger than 10) and indicate the multicollinearity issue. The application of the suggested
estimator, MJGLTE is hence applicable in rectifying this issue and the approach is useful in enhancing the precision
of the statistical estimation of the model. The value of the condition number for the design matrix containing
the explanatory variables (x1 to x4), the CN=

√
λmax/λmin is 660.51. Since this value significantly exceeds the

acceptable limit of 30, it is a strong indication multicollinearity problem.
Table 6 compares three well-known statistical estimators, MLE, LIU and GLTE, alongside the proposed

estimators JGLTE and MJGLTE, focusing on the mean squared error and the estimated regression coefficient
values. It is noted that the proposed method MJGLTE, outperformed the other four methods due to its lower mean
squared error, making it more accurate than the other estimators. Meanwhile, the MLE method performed the
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Table 5. Variance Inflation Factors (VIF) for the explanatory variables

variables X1 X2 X3 X4
VIF 12.99 4.72 71.30 61.93

Table 6. The study provides estimates for parameters and relative efficiency rates between various estimation methods

Estimators MLE LIU GLTE JGLTE MJGLTE
MSE 0.331602 0.267362 0.192884 0.207127 0.186817
β̂1 -0.0176951 -0.017695 -0.01769 -0.017695 -0.0176950
β̂2 0.0498453 0.0498328 0.049814 0.049845 0.0498142
β̂3 0.7581212 0.7205976 0.6646805 0.746604 0.65458316
β̂4 -0.3883334 -0.241706 -0.023204 -0.0450221 -0.0026902

worst, indicating that it is the least accurate in the presence of multicollinearity. It was also found that the b1 and
b2 estimators were very close across all estimators, as they were least affected by multicollinearity, and their effect
remained constant regardless of the estimation method used. However, we observed significant variations in both
the b3 and b4 values, with b3 yielding the highest value (0.75812) when using MLE, while the lowest value (0.6488)
was obtained when using MJGLTE. This indicates that b3 is very sensitive to the estimator’s method, indicating a
high correlation between the estimators. From the b4 value, it was noted that the MLE method yielded a positive
value (0.3883), while LIU yielded a negative value (0.2604). The GLTE, JGLTE, and MJGLTE methods reduced
the coefficient to near zero, indicating the unimportance of this variable in the model and that the MLE method
overestimates the coefficients when multicollinearity is present. The high correlation between the independent
variables makes their estimates unstable when using the MLE method and has a high MSE compared to other
modified methods that gave the lowest MSE at the expense of adding a small bias to stabilize these variables.
Both MJGLTE and GLTE achieved the best performance because they combine Liu-type and Ridge techniques to
balance bias and variance.

Table 7. Performance Analysis Based on MSE

Estimators MSE Rank Improvement Over MLE
MLE 0.331602 5 -
LIU 0.267362 4 19.3726%
GLTE 0.192884 2 41.8326%
JGLTE 0.207127 3 37.5374%
MJGLTE 0.186817 1 43.98%

Table 7 also shows that the GLTE, JGLTE, and MJGLTE methods achieved a significant 41%, 37% and 43%
respectively improvement in accuracy compared to the MLE method, while the LIU estimator achieved only a 19%
improvement, making it the least efficient of the other modified estimators.
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9. Conclusion

In this paper, we address the problem of multicollinearity in the Gamma regression model by combining the Liu-
type and Jackknife estimators and propose a new estimator. Theoretically, we observed that the estimator MJGLTE
outperform the other estimators. In addition, simulation and real-world application were conducted to examine the
performance of the estimators. According to the simulation results, it was concluded that the proposed estimators
MJGLTE have better performance than MLE, LIU, GLTE and JGLTE. Moreover, in the application of real data, it
can be observed that the proposed estimator outperforms and by 43.98% for the MLE. Therefore, we recommend
using the estimator MJGLTE in case of high or severe multicollinearity problem among the explanatory variables
in the Gamma regression model.
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19. K. Månsson and G. Shukur, A Poisson ridge regression estimator, Economic Modelling, vol. 28, no. 4, pp. 1475–1481, 2011.
20. A. A. Mohammed and F. S. M. Batah , Modified Jackknife Estimator in Linear Regression Model, Journal of Survey in Fisheries

Sciences , vol. 10, no. 3s, pp. 4570-4581, 2023.
21. H. Nyquist, Applications of the jackknife procedure in ridge regression, Computational Statistics & Data Analysis, vol. 6, no. 2, pp.

177–183, 1988.
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