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Numerical Solution of the Lotka-Volterra Stochastic Differential Equation
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Abstract This paper presents the modeling of the stochastic differential equation of Lotka-Volterra and introduces the
application of two numerical methods to approximately obtain the solution to this stochastic model. The methods used
to solve the stochastic differential equation are the Euler-Maruyama method and the Milstein method. Additionally, a
methodology will be presented to obtain the parameters of the predator-prey model equation based on empirically obtained
data from observations conducted over a fixed period of time.
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I. Introduction

One of the most significant challenges in fields such as science and industry lies in studying the behavior of a
quantity underlying systems governed by random factors. The concept of an ”underlying quantity” refers to an
object whose value is known in the present but is subject to changes in the future. Common examples include
the count of cancer cells, stock prices, values of minerals and oil, among others. These systems are generally
represented by differential equations which, when affected by random disturbances like system volatility, become
stochastic differential equations. Since it is difficult to find explicit solutions for certain stochastic differential
equations, deterministic approaches are adapted to the stochastic context.

A scalar stochastic differential equation (SDE) is presented in the following form:

dXt = a(t,Xt)dt+ b(t,Xt)dWt, X0 = x0, (1)

where t ∈ [0, T ], and a, b are scalar functions. The unknown is the process Xt, while the coefficients a and b are
the trend coefficient and diffusion coefficient, respectively. The diffusion coefficient is accompanied by a Wiener
process.

It is common to rewrite the equation in its integral form:

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs. (2)

The first term is a Riemann integral, while the second is a stochastic Itô integral.
The first integral of (2) is a Riemann integral, while the second is a stochastic Itô integral. The solution Xt is a

random variable for each t.
Processes of the form (2) are called Itô processes, and just as in the deterministic case, in order for them to have

a solution, the coefficients must meet some conditions.
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I.1. Existence and uniqueness theorem for stochastic differential equations

Given the following conditions:

1. Continuity Condition: The coefficients in the stochastic differential equation (1) must be measurable and
continuous functions t and x for all t in an interval I = [0, T ] and for almost all x ∈ R.

2. Linearity Condition: The SDE must be linear in x in the sense that a(t, x) and b(t, x) must be linear
functions in x. This means that for every fixed t, a(t, x) and b(t, x) must be linear in x.

3. Lipschitz Condition: There are constants L and K such that:

• For a(t, x): |a(t, x)− a(t, y)| ≤ L|x− y|
• For b(t, x): |b(t, x)− b(t, y)| ≤ K|x− y|

4. Integrability Condition: The integral of b(t, x) squared with respect to x must be bounded at [0, T ]:∫ T

0

|b(x, t)|2dx < ∞

Then, under these conditions, there exists a unique solution Xt for the SDE (1) in the interval I = [0, T ] in a
suitable probability space [1, 2].

It is important to note that specific conditions may vary depending on the context and the nature of the SDE. This
theorem provides a solid foundation for the existence and uniqueness of solutions for SDE under certain conditions
of regularity and boundedness of the coefficients.

Definition 1: A numerical method is said to have strong order of convergence equal to r if there exists a constant
C such that:

E{Xn −X(t)} ≤ C∆tr (3)

For any choice t = n∆t ∈ [0, T ] and ∆t small enough [3, 5].

Definition 2: A numerical method is said to have weak order of convergence equal to r if there exists a constant C
for every function p such that:

|E{p(Xn)} − E{p(X(t))}| ≤ C∆tr (4)

For any choice t = n∆t ∈ [0, T ] and ∆t small enough [4, 5].

II. CONTENT

II.1. Euler-Maruyama Method:

The Euler-Maruyama method is a numerical method used to approximate the solution of stochastic differential
equations (SDE) of the form:

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) (5)

Where:

• X(t) is the stochastic process we are trying to approximate.
• f(X(t), t) is the deterministic derivative of X at time t.
• g(X(t), t) is the stochastic derivative of X at time t.
• dW (t) is a stochastic differential following a Wiener process (Brownian process), which is a source of

stochastic noise.

The Euler-Maruyama method is based on a time discretization and is used to approximate the solution X(t) at
discrete points in time. tn = n∆t, where ∆t is the step size of time. The numerical approximation of X(t) at time
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tn is denoted as Xn:
Xn+1 = Xn + f(Xn, tn)∆t+ g(Xn, tn)∆Wn (6)

Where:

• Xn+1 is the approximation of X(tn+1) at time tn+1.
• Xn is the approximation of X(tn) at time tn.
• ∆t is the time step size.
• f(Xn, tn) is the value of f at time tn and Xn.
• g(Xn, tn) is the value of g at time tn and Xn.
• ∆Wn is a Wiener increment following a normal distribution with zero mean and variance ∆t.

The Euler-Maruyama method is a first-order method, which means that its approximation error is proportional
to

√
∆t. Therefore, to achieve higher accuracy, the time step size ∆t is typically reduced.

It is important to mention that, due to the presence of stochastic noise in SDEs, the numerical solutions generated
by the Euler-Maruyama method are stochastic approximations of the true solutions. Therefore, multiple simulations
are required to estimate probabilistic statistics of interest.

II.2. Milstein Method

The Milstein method is commonly used to solve SDEs involving stochastic processes based on Brownian motion,
such as geometric Brownian motion or the Wiener process. This method is an extension of the Euler-Maruyama
method, which is a simpler numerical technique for approximating solutions of SDEs but tends to have larger
errors, especially in SDEs with non-linear coefficients.

The Milstein method is based on a second-order Taylor series expansion and takes into account additional terms
due to the stochastic nature of the equation. Essentially, the Milstein method improves the accuracy of the Euler-
Maruyama method by considering higher-order terms in the Taylor series expansion.

Consider the SDE:
dXt = a(Xt)dt+ b(Xt)dWt, (3)

with initial condition X0 = x0, τj , τj+1 consecutive points of the discretization.
Itô’s equation establishes that for a twice differentiable function we can write:

θ(Xs) = θ(Xt) +

∫ s

tj

θ′(Xu)a(Xu) +
1

2
θ′′(Xu)b(Xu)

2 du+

∫ s

tj

θ′(Xu)b(Xu)dWu. (4)

And when applying Itô’s formula to the expressions a(Xs) and b(Xs), which are the coefficients of the SDE, we
obtain [6, 7]:

Xtj+1
= Xtj +

∫ tj+1

tj

a(Xtj ) du+

∫ s

tj

(
a′(Xu)a(Xu) +

1

2
a′′(Xu)b(Xu)

2

)
du+

∫ s

tj

a′(Xu)b(Xu) dWu ds

+

∫ tj+1

tj

b(Xtj ) du+

∫ s

tj

(
b′(Xu)a(Xu) +

1

2
b′′(Xu)b(Xu)

2

)
du+

∫ s

tj

b′(Xu)b(Xu) dWu dWs.

If you want to obtain a method of strong convergence order equal to 1, you can ignore the double integrals that
are of the type dWs and dsds. Then, you get:

Xtj+1
≈ Xtj +

∫ tj+1

tj

(
a(Xtj ) ds+

∫ tj+1

tj

b(Xtj ) ds+

∫ s

tj

b′(Xu)b(Xu) dWu

)
dWs

≈ Xtj + a(Xtj )∆t+ b(Xtj )∆Wj+1 +

∫ tj+1

tj

∫ s

tj

b′(Xu)b(Xu) dWu dWs.
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The first three addends are well known from the Euler-Maruyama method. The fourth addend can be
approximated by: ∫ tj+1

tj

∫ s

tj

b′(Xu)b(Xu) dWu dWs ≈ b′(Xtj )b(Xtj )

∫ tj+1

tj

∫ s

tj

dWu dWs. (5)

The right side integral is: ∫ tj+1

tj

∫ s

tj

dWu dWs =
1

2

(
(∆Wj+1)

2 −∆t
)
. (6)

Substituting into the previous approximation, the Milstein method is finally obtained:

X0 = x0

Xj+1 = Xj + a(Xj)∆t+ b(Xj)∆Wj+1 +
1

2
b′(Xj)b(Xj)

(
(∆Wj+1)

2 −∆t
)
. (7)

III. APPLICATION

The following table has a sample representation of thousands of individuals of lynx (predators) and rabbits (prey)
prepared by the Hudson Bay company between the years 1900 and 1920 in a forest in northern Canada.

Year Rabbits Lynxes Year Rabbits Lynxes
1900 30.0 4.0 1911 40.3 8.0
1901 47.2 6.1 1912 57.0 12.3
1902 70.2 9.8 1913 76.6 19.5
1903 77.4 35.2 1914 52.3 45.7
1904 36.3 59.4 1915 19.5 51.1
1905 20.6 41.7 1916 11.2 29.7
1906 18.1 19.0 1917 7.6 15.8
1907 21.4 13.0 1918 14.6 9.7
1908 22.0 8.3 1919 16.2 10.1
1909 25.4 9.1 1920 24.7 8.6
1910 27.1 7.4 1921

Table 1. Samples of lynx and rabbits in thousands of individuals.

The deterministic Lotka-Volterra model is given by:

dX

dt
= αX − βXY,

dY

dt
= δXY − γY (8)

Where:

• dX
dt is the rate of change of the prey population with respect to time.

• α is the intrinsic growth rate of the prey.
• β is the predation rate of the prey by the predators.
• X is the prey population.
• Y is the predator population.
• dY

dt is the rate of change of the predator population with respect to time.
• δ is the growth rate of the predators due to consumed prey.
• γ is the intrinsic mortality rate of the predators.
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The stochastic equations for the stochastic Lotka-Volterra model are given by [8]:

dXt = (αXt − βXtYt)dt+ αXtdW1,t, dYt = (δXtYt − γYt)dt+ δXtYtdW2,t (9)

Where the parameters are the same as those in the deterministic model, and dW1,t and dW2,t are independently
generated randomly sampled Wiener processes that introduce uncertainty into the system dynamics.

The Milstein method is an extension of the Euler-Maruyama method that provides a better approximation of
solutions in stochastic equations by including additional terms to account for stochastic variability.

To derive the Milstein discretization for the stochastic Lotka-Volterra system, we apply Itô’s lemma to each
equation in Equation (9).

Applying Itô’s formula to the prey equation in Equation (9):

dXt = (αXt − βXtYt)dt+ σ1XtdW1,t

d(Xt)
2 = 2XtdXt + (dXt)

2

= 2Xt(αXt − βXtYt)dt+ 2Xtσ1XtdW1,t + σ2
1X

2
t dt.

Thus, the Milstein discretization for Xt is:

Xt+∆t = Xt + (αXt − βXtYt)∆t+ σ1Xt∆W1,t +
1

2
σ2
1Xt((∆W1,t)

2 −∆t). (9.1)

Now, applying Itô’s formula to the predator equation in Equation (9):

dYt = (δXtYt − γYt)dt+ σ2XtYtdW2,t

d(Yt)
2 = 2YtdYt + (dYt)

2

= 2Yt(δXtYt − γYt)dt+ 2Ytσ2XtYtdW2,t + σ2
2X

2
t Y

2
t dt.

Thus, the Milstein discretization for Yt is:

Yt+∆t = Yt + (δXtYt − γYt)∆t+ σ2XtYt∆W2,t +
1

2
σ2
2X

2
t Yt((∆W2,t)

2 −∆t). (9.2)

The cross terms such as ∂bY
∂X in the stochastic equation for Yt involve derivatives of the diffusion term with

respect to X . Since the Wiener processes dW1,t and dW2,t are assumed to be independent, their mixed differentials
(e.g., dW1,tdW2,t) have expectation zero and do not contribute to the main approximation order in the Milstein
scheme. Additionally, the absence of explicit mixed derivatives in the diffusion term σ2XtYt means that such
contributions are negligible at the order of accuracy considered here.

By excluding these terms, we maintain a computationally efficient scheme while preserving the dominant
stochastic effects relevant to the system dynamics. For higher-order approximations, one could investigate
extensions incorporating such dependencies, but they are typically negligible in standard applications of the
Milstein method.

By applying equation (7) to equation (9), we obtain the Milstein method for the stochastic Lotka-Volterra model
[9]:

Xt+∆t = Xt + (αXt − βXtYt)∆t+ σ1Xt∆W1,t +
1

2
σ2
1Xt((∆W1,t)

2 −∆t)

Yt+∆t = Yt + (δXtYt − γYt)∆t+ σ2XtYt∆W2,t +
1

2
σ2
2X

2
t Yt((∆W2,t)

2 −∆t) (10)

To obtain the parameters α, β, γ, δ and the data in Table (1), the following analysis is used.
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The deterministic Lotka-Volterra model is given by equation (8); From this, the following relation is derived:

d

dt
lnX(t) = α− βY (t) (11)

And the average value of Y (t) over the interval [0, T ] is given by:

1

T

∫ T

0

Y (t) dt (12)

By substituting Equation (11) into Equation (12), we obtain:

1

T

∫ T

0

1

β

(
α− d

dt
lnX(t)

)
dt =

α

β
. (13)

In an analogous way, it is proven that the average value of X(t) is given by:

X(t) =
γ

δ
. (14)

IV. RESULTS

To estimate the parameters α, β, γ, δ, we employ the Maximum Likelihood Estimation (MLE) method, leveraging
the time-series data of prey and predator populations.

Likelihood Formulation

The stochastic version of the Lotka-Volterra model introduces diffusion terms:

dXt = (αXt − βXtYt)dt+ σ1XtdW1,t,

dYt = (δXtYt − γYt)dt+ σ2XtYtdW2,t,

where W1,t and W2,t are independent Wiener processes, and σ1 and σ2 represent diffusion intensities.
Assuming small time intervals ∆t, the transition probabilities are approximated as Gaussian distributions:

P (Xt+∆t, Yt+∆t|Xt, Yt) ∼ N (µ,Σ),

where:

µX = Xt + (αXt − βXtYt)∆t,

µY = Yt + (δXtYt − γYt)∆t,

Σ = diag(σ2
1X

2
t ∆t, σ2

2X
2
t Y

2
t ∆t).

The log-likelihood function for n data points is:

logL(α, β, γ, δ) = −1

2

n−1∑
i=1

[
log |Σ|+ (zi+1 − µ)TΣ−1(zi+1 − µ)

]
,

where zi = [Xi, Yi]
T .

The parameters α, β, γ, δ are obtained by maximizing the log-likelihood function using numerical optimization
techniques. The estimated values and their 95% confidence intervals are summarized below:
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Parameter Estimate CI Lower CI Upper

α 0.368 -0.693 1.429
β 0.015 -0.023 0.054
γ 0.799 -1.159 2.758
δ 0.028 -0.637 0.693

Table 2. Estimated parameters for the Lotka-Volterra model with confidence intervals.

By using the parameters found for α, β, γ, and δ, we have:

dXt = (0.368Xt − 0.015Yt)dt+ 0.368XtdW1,t,

dYt = (0.028XtYt − 0.799Yt)dt+ 0.028XtYtdW2,t. (15)
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Figure 1. Solution of equation (8) using the Heun’s method with the parameters found in the previous section. The green
curve represents the rabbit population, and the pink one represents the lynx population.
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Figure 2. Numerical solution of a trajectory using the Euler-Maruyama method with the parameters found in the previous
section. The blue curve represents the rabbit population, and the red one represents the lynx population.
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Figure 3. Numerical solution of a trajectory using the Euler-Maruyama method with the parameters found in the previous
section. The blue curve represents the rabbit population, and the red one represents the lynx population.
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(a) Milstein
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Figure 4. Numerical solution of different trajectories using the Milstein method with the parameters found in the previous
section. The green curve represents the rabbit population, and the pink one represents the lynx population.

V. CONCLUSIONS

• From the simulations, it can be observed that even if the model is considered stochastic, the system’s
dynamics remain consistent. This means that when the lynx population increases, the rabbit population
decreases, and when the prey population decreases, the predator population increases.
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• The numerical solution of the stochastic Lotka-Volterra model using the Euler-Maruyama method provides
valuable insights into the dynamics of prey and predator populations in an uncertain environment. Through
this approach, we can appreciate how stochastic fluctuations can influence interactions between species,
even though overall trends remain consistent with the deterministic model. This underscores the importance
of considering randomness in ecological systems and how it can impact population stability over time.
Additionally, the use of the Euler-Maruyama method offers an effective tool for addressing complex
biological systems and examining their behavior under variable and realistic conditions. This research
contributes to our understanding of ecology and population biology, helping to better predict how species
interactions may respond in fluctuating natural environments.
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