‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 14, July 2025, pp 247-263.
IAPress| pyblished online in International Academic Press (www.IAPress.org)

Enhancing Text Encryption and Secret Document Watermarking through
Hyperladder Graph-Based Keystream Construction on Assymetric
Cryptography Technology

Dafik"?*, Swaminathan Venkatraman®, G. Sathyanarayanan4, Rifki Ilham Baihaki®,
Indah Lutfiyatul Mursyidah!, Ika Hesti Agustin'-?

LPUI-PT Combinatorics and Graph, CGANT-University of Jember, Indonesia
2Department of Mathematics, University of Jember, Indonesia
3Department of Mathematics, School of Arts, Sciences, Humanities and Education, SASTRA Deemed University, Thanjavur, India
4Department of Mathematics, Srinivasa Ramanujan Centre, School of Arts, Sciences, Humanities and Education, SASTRA Deemed
University, Thanjavur, India

Abstract Message security remains a vital concern in cryptography. This paper introduces a novel enhancement to the
classical Caesar cipher by generating a keystream from a Hyper-Ladder Graph, which combines hypergraph and ladder graph
properties to produce complex and unpredictable patterns. The proposed method is evaluated against AES, DES, ChaCha20,
and XChaCha20, showing superior performance in encryption time and memory efficiency, especially in constrained
environments. To demonstrate broader applicability, we implemented the keystream in grayscale image watermarking. The
binary keystream was first encrypted using RSA public key encryption, then embedded using the least significant bit (LSB)
method. The results showed high imperceptibility with a PSNR of 57.05 dB and an SSIM of 0.9989. This integration of
graph-based keystream and asymmetric cryptography offers robust security and flexibility, making it suitable for various
domains such as secure text encryption, digital watermarking, and document authentication.

Keywords Hyper-Ladder Graph, Keystream Generation, Stream Cipher, Lightweight Cryptography, Secure Text
Encryption.

AMS 2010 subject classifications 94A60, 05C78, 05C15
DOI: 10.19139/s0ic-2310-5070-2310

1. Introduction

Message encryption is one of the most effective and commonly used techniques in today’s digital age [1]. The
increasing use of the internet and communication technology drives the need to produce secure methods to protect
messages from unauthorized access [2]. Encryption is a process to convert information or data into a form of code
that is only recognized by interested parties [3]. Encryption aims to protect the confidentiality and integrity of
data. The opposite of encryption is decryption, which is a process to return a code to its original form [4]. The
encryption process can be done using keystream. One way to build a keystream is using graph theory [5]. The
advantage of keystream built from graph theory is the adaptability that can follow the size of plain text. Thus, the
key will continue to grow along with the increasing length of the plain text [6].

One of the most talked about topics in graph theory is hypergraphs [7]. There are several applications of
hypergraphs, one of which is in the field of cryptography [8], A hypergraph extends the traditional graph concept
by allowing an edge, known as a hyperedge, to connect multiple vertices instead of just two vertices [9]. Unlike

*Correspondence to: Dafik (Email: d.dafik @unej.ac.id). Department of Mathematics, University of Jember, Indonesia.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2025 International Academic Press

248 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

a standard graph where every edge connects exactly two vertices, hyper-edges in a hypergraph can connect any
number of vertices, creating a more complex and versatile structure [10]. Formally, a hypergraph G is defined as a
pair (V, &), where V represents the set of vertices and £ represents the set of edges, each of which is a subset of V.
Vertices are considered contiguous if they are part of the same hyperedge, and a vertex v is tangent to a hyperedge
e if v € e. Similarly, an edge e is tangent to a vertex v if v € e [11, 12].

Recently, graph-theoretic approaches have been successfully applied to cryptography, showing significant
potential in enhancing security, improving key structure, and increasing robustness against brute-force attacks [13].
In the broader context, encryption techniques can generally be classified into two main categories: symmetric
encryption and asymmetric encryption [14]. In symmetric encryption, the same keystream is used for both
encryption and decryption. Its main advantage lies in the speed of execution, although it requires secure key
distribution, which remains a critical challenge [15]. On the other hand, asymmetric encryption utilizes a pair
of keys—a public key for encryption and a private key for decryption—thus offering a more secure solution for
key exchange, albeit with a higher computational cost [16]. Beyond these two conventional approaches, modern
encryption schemes have been developed to combine mathematical complexity and structural design. One such
example is cipher block chaining (CBC), which strengthens encryption by chaining each block to the previous
ciphertext block, thereby increasing diffusion and resistance to pattern analysis [17]. In this evolving landscape,
several studies have investigated the integration of graph-based labeling strategies—such as super (a, d)-antimagic
labeling and reflexive labeling—to generate structured and unpredictable keystreams for both block and stream
ciphers [18, 19, 20]. These studies reinforce the relevance of graph theory as a foundation for developing more
secure and efficient cryptographic systems.

Graph theory continues to offer significant contributions to both theoretical and applied mathematics, particularly
through the study of labeling, domination, and graph operations. Dafik et al. [21] applied rainbow vertex antimagic
coloring to design a cryptographic secret sharing scheme using affine cipher techniques, demonstrating the power
of graph colorings in secure communications. In the context of labeling theory, Alfarisi et al. [22] investigated
the graceful chromatic number of unicyclic graphs. Dafik et al. [23] studied the non-isolated resolving number
of several special graphs and their operations, contributing to the advancement of graph metric dimension and its
variants. Septory et al. [24] explored rainbow antimagic coloring on special graph classes. These studies reinforce
the importance of coloring-based graph invariants in combinatorics. Furthermore, domination-based parameters
have also been developed in recent works. Agustin et al. [25] focused on the locating edge domination number
of the comb product of graphs, and Gembong and Agustin [26] investigated the bounds of distance domination
numbers in edge comb product graphs. Collectively, these studies highlight the versatility of graph theoretical
approaches in addressing a wide range of structural and applied problems.

Beyond encryption, another emerging application of graph-based security is in secret document watermarking.
Watermarking is the process of embedding hidden information within digital content such as documents, images,
or videos to ensure authenticity, traceability, and ownership [27]. Unlike encryption, which transforms the entire
content into an unreadable form, watermarking preserves the readability of the original document while secretly
embedding verification information. This approach has been widely used in copyright protection, intellectual
property security, and forensic tracing of data leaks [28].

The integration of watermarking into cryptographic systems enables dual-layer security—encryption secures the
content from unauthorized access, while watermarking ensures that even if the document is decrypted, its origin and
ownership remain traceable. Graph-based methods have also been proposed in watermarking, where the structure
and complexity of graphs are used to determine robust positions for hidden marks within data. The incorporation
of hypergraph structures and their derivatives, such as hyperladder graphs, offers new potential for improving the
complexity and stealthiness of watermarked data, while maintaining algorithmic efficiency and resilience against
tampering.

Despite extensive research on text encryption focusing on algorithmic efficiency in terms of time and storage,
many existing studies overlook the importance of rigorous mathematical frameworks and the potential of
graph-theoretic keystream construction. While some approaches have incorporated graph theory, the exploration
of hypergraph structures remains largely untapped. This research aims to bridge that gap by introducing a
novel keystream construction method based on Hyperladder Graphs, a structural extension of hypergraphs. The

Stat., Optim. Inf. Comput. Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 249

proposed method integrates asymmetric cryptography and is designed to maintain computational efficiency while
enhancing security. Additionally, this study expands the scope of application by incorporating secret document
watermarking, ensuring not only data confidentiality but also verifiable ownership and authenticity in secure digital
communication.

2. Method

Figure 1 describes the construction of an encryption model based on Hyper-Ladder Graph (HL,,,). First, HL,, »,
generates a labeling, namely edge labeling. Second, it builds four blocks. Then determine the block length and
assign each message digit (plain text) to the corresponding block. After obtaining the initial of the block key, we
finally run the stream function to obtain the stream-key.

We use the Algorithm [to build the keystream by reading the length of the message (plain text) and using it as the
size of HL,, ,,. We lock the value of m in order to limit the algorithm’s movement to odd numbers. Meanwhile, the
value of n will increase with the message length. We use the Algorithm 2 to perform the encryption process, which
starts with the keystream generation (using the Algorithm 1), then assigns some messages to the corresponding
blocks. Next, on each block we use a number of Caesar cipher operations and generate an output value (vec). This
value is then converted into an alphabetical sequence to produce the cipher text. We perform the same steps in the
decryption stage (Algorithm 3), the difference is that we call kestream (L) to decrypt the cipher text.

While the mathematical formulation of the Hyper-Ladder Graph labeling may appear complex, it has been
modularized into implementable steps as described in Algorithm 1. This modular design facilitates practical
implementation in programming environments, making it suitable even for systems with limited computational
resources.

The keystream in our proposed system is deterministically generated based on the length of the plaintext, which
defines the parameters mm and nn of the Hyper-Ladder Graph. Therefore, key generation is embedded in the graph
construction process and does not require separate key exchange.

However, for secure applications, the initial parameters (e.g., seed values or graph parameters) can be agreed
upon and securely exchanged using existing key exchange protocols such as Diffie-Hellman. Once the parties
agree on the input message length or a shared secret, both sides can independently generate identical keystreams.

Regarding key storage, since the keystream can be regenerated on-demand, there is no need to store the key
permanently, which reduces the risk of key leakage. For enhanced security, dynamic session-based parameterization
can be implemented so that a unique keystream is generated per message or session.

Hyper-Ladder "
= Labeling graph Set of labels

. Sequence of Determining initial digit i and
— glnine th‘e g — Initial block key
function

Figure 1. A model of Stream-key generation from Hyper-Ladder Graph (HLm n)

Stat., Optim. Inf. Comput. Vol. 14, July 2025

250 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

3. Main results

3.1. Research Findings

Theorem 1

Let HL,, , be hyper-ladder. For m > 3,n > 2, HL,, ,, admits super (a,d)-hyperedge antimagic total labeling
for (a,d) € {(—3m"2+112m+173” + 5mn —n?,0), (737””;73" +5mn +4m +2 —n?, 1), (—3m"2732n+5m+7 + 5mn —
n?,2), (w +5mn +m+5 —n?, 3)} respectively.

Proof

ML, is a simple and connected hypergraph with vertex set V(HL,,) ={zi;, zi;;1 <i<m, 1<
nfU{y; ;31 <i<m,1<j<n}U{pii,¢1;1<i<m} and hyperedge set E(HL,,) ={e1i, €341
i<m—1}U{ez;;1 <i<m}, where ellf{pzl,pﬂ_ll,l<z<m—1}U{x”,1<z<mfl 1<y
nte; ={pi1,¢i1;1 <i<m}U{y; ;51 <i<m,1<j<n}les;={¢1,¢+1,1;1<i<m—-1}U{z;;1
i<m-—1,1<j<n}

We have [V(HL,,)| = 3mn + 2m — 2n and |E(HL
of the theorem into four cases.

Casel.d = 0.

For m = 1(mod 2),n = 0(mod 2), we define the label function as follows:

'A IAIA A

m.n)| = 3m — 2. To prove this theorem, we divide the proof

o) = =l fori =1(mod2),1<i<m
pi) = miitl - fori=0(mod2),1<i<m
fay_ [me s ori=0mod2) 1 <i<m
4) = %7 fori = 1(mod2),1 <i<m

Flais) = Bj—1)m+i—2j+2, forl<i<m,j=1(mod2),1<j<n-1
:177
J 3mj+2m—2j—i+1, forl<i<m,j=0(mod2),2<j<n

Flyij) = (Bm—2)j+i+1, forl<i<m,j=1)
Yij) = (3j4+1)ym—i—2(j—1), forl<i<m,j=0(mod?2)
)
)

Fon) = Bj+1)m+i—2j+1, forl<i<m,j=1
” B3m—2)j —i+2, forl1 <i<m,j=0

fler))=3mn+5m—2n—i—1,for1 <i<m-—1
flez;) =3mn+4m —2n—1i, for1 <i<m
flesi)=3mn+3m—2n—4, forl<i<m-—1

Based on the vertex label function and the hyperedge label function, we obtain the following weight function:

3mn? 1-3
w(er;) = wles;) = wlezm) =wles,;) = mn” ﬂ; + " 4 5mn -+ 5m — n? for1 <i<m-—1

The hyperedge weight set W (e ;) = { W + 5mn + 5m — n?} consists of same elements for 1 <

k < 3. It implies that hypergraph HL,,, admits a super ({37””2+++1_3” + 5mn + 5m — n?,0) hyperedge
antimagic total labeling.
Case2.d =1.

For m,n = 1(mod 2), m > 3,n > 2, we define the label function as follows:

Stat., Optim. Inf. Comput. Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 251

fpi) = 5 fori=1(mod2),1<i<m
bi) = m+2i+1) fori = 0(mod2),1<i<m
Flg) = m+ L, fori=0(mod2),1 <i<m
" dmii fori=1(mod?2),1<i<m

Bj—1)m+i—25+2, forl<i<m,j=
3mj+2m—-25—i+1, forl<i<m,j=

I()
0()
(Bm—2)j+i+1, for1 <i<m,j=1()

foig) = Bj+1)m—i—2(—1), forl<i<m,j=0(mod?2)
()

()

Bj+1)ym+i—25+1, forl<i<m,j=1(mod?2
(37 J \J
(Bm —2)j —i+2, for1 <i<m,j=0(mod 2

fler))=3mn+5m—2n—i—1,for1 <i<m—1
flez;) =3mn+4m —2n—1i, forl1 <i<m
flesi)=3mn+3m—2n—4, forl<i<m-—1

Based on the vertex label function and the hyperedge label function, we obtain the following weight function:

3mn? —3
w(el7i):%+5mn+4m+i—n2+l, forl<i<m-1
3mn? —3
w(egﬂ‘):w—&—&nn—&-Sm—i—i—ng, forl<i<m
3mn? —3
w(eg,i)zw+5mn+6m+i—n2, forl<i<m-—1

2

The hyperedge weight set W(ex,;) = {M + 5mn + 4m + 2 — n?, M +5mn+4m+3 —
n? w +5mn+4m+4—n?,---} consists of consecutive integers for 1 < k <3. It implies that
hypergraph HL,,, ,, admits a super (w + 5mn + 4m + 2 — n?, 1) hyperedge antimagic total labeling.

For having more detail illustration of the existence of super (W + 5mn + 4m + 2 — n?, 1) hyperedge
antimagic total labeling of HL,, ,,, we depict the graph in Figure 2.
Case3.d = 2.

For m = 1(mod 2),n = 0(mod 2),m > 3,n > 2, we define the label function as follows:

Flps) = i21, fori=1(mod2),1 <i<m
bi) = m-i-2i+17 fOI‘iEO(mod2) <i<m-—1
Fgi) = m+%, fori =0(mod 2),2<i<m-—1
' smii - fori=1(mod2),1 <i<m

Stat., Optim. Inf. Comput. Vol. 14, July 2025

252 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

flai) = m@Bj—1)+i—2j+2, forl<i<m,j=1(mod2),1<j<n-1
;
I 3mj+2m—2j—i+1, forl<i<m,j=0(mod2),2<j<n

f()— (3m—2)j+i—|—1, forlgl’gm’j51<
Vi) =\ 35+ m—i—2(j—1), forl<i<m,j=0(mod?2
(
(

Fl) Bj+1)m+i—2j+1, forl<i<m,j=1
Ziq) =
! (3m —2)j —i+2, forl<i<m,j=0

fleri)=3mn+2m—2n+4, forl1 <i<m-—1
flez;) =3m(n+1)+i—2n—1,forl <i<m
flesi)=3mn+4m+i—2n—1,forl1<i<m-—1

Based on the vertex label function and the hyperedge label function, we obtain the following weight function:

3mn? —3n+5m+3

w(ei:) = 5 +5mn—n?+2, forl<i<m-—1
3mn? —3 9m —1
w(ez,) = = 7;—!— = +5mn —n?+2i, forl1 <i<m
3mn? —3n+13m — 1
w(es,;) = mn n2+ mn +5mn—n?+2, forl<i<m-—1

The hyperedge Weight set Wi(er:) = {M + 5mn — n?, w + 5mn —
n2, w +5mn —n? ...} consists of consecutive integers for 1 <k < 3. It 1mphes that hyper-

ladder HL,, », admits a super (Mgﬁ’m” + 5mn — n?, 2) hyperedge antimagic total labeling.
Case4.d = 3.
Subcases 1. For m = 1(mod 2),n = 1(mod 2), m > 3,n > 2, we define the label function as follows:

mod 2

il fori=1),1<i<m
f(pl): m2+i+1 . (
5=, fori=0(mod2),2<i<m-—1
Ha) = m+ %, fori=0(mod2),2<i<m-—1
& Smti - fori=1(mod2),1<i<m
Bj—1D+:1—-2j42, forl<i<m,j=1(mod2),1<j<n
331 . . .
) 3m]+2m—2]—z+1 for1<i<m,j=0(mod2),2<j<n-1
Flyis) = Bm—2)j+i+1, for1<i<m,j=1(mod2),1<j<n
Vi (Bj+1)m—i—2(j—1), forl<i<m,j=0(mod2),2<j<n-—1
) @Bi+1m+i—2j+1, for1<i<m,j=1(mod2),1<j<n
1 Bm—-2)j—i+2, for1 <i<m,j=0(mod2),2<j<n-—1

fleri) =Bn+2)m—2n+14, forl <i<m-—1
fle2i)=(n+1)3m+i—2n—1,forl1 <i<m
fles;))=@Bn+4m+i—2n—1,for1 <i<m—1

Stat., Optim. Inf. Comput. Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 253

Based on the vertex label function and the hyperedge label function, we obtain the following weight function:

3mn? — 3
w(el,i):y+5mn+m+3i+2—n2,for1gigm—1
3mn? — 3
w(ezﬂ'):W+5mn+4m+3ifnzfl,forlgigm
3mn? — 3
w(eg,i):W+5mn+7mfn2+3ifl,forlgigmfl

The hyperedge weight set Wi(ex,) = {W +5mn+m+5—n?, W +omn+m+8—

2 3mn®—3n
) 2

n +5mn+m+ 11 —n?, .- -} consists of consecutive integers for 1 <k <3. It implies that

hypergraph HL,, ,, admits a super (W + 5mn +m + 5 — n?, 3) hyperedge antimagic total labeling. L]

(a) (b)

Figure 2. (a) HL3 3, (b) Super (86, 1)-hyperedge antimagic total labeling of HL3 3

Program Robust Cryptosystem using Hyper-Ladder Graph - 54
Robust Cryptosystem using Hyper-Ladder Graph

Encryption
Write the plaintext | left an inheritance of 1000 USD at Bank Indonesia and can be retrieved by attaching the proof that is k

The results of ciphertext ¢.{fV=>mp/03cX35¢VjbRCXVKF8C[-"XC,q,@0VW~AThy,# HI@Ojq*taDAgu’ ?3QRVH#IW&t}/d4-H>5 Lp!

Encryption elapsed time is 0.0059208 s

Decryption
Write the ciphertext c.{fV=>mp/03¢cX35¢VjpbRCXVKF8C[-"XC,q, @0VW~A1hy # HI@Ojq*taDAgu’ ?3QRVH#!w&t}/d4-H>5 Lp!

The results of plaintext | left an inheritance of 1000 USD at Bank Indonesia and can be retrieved by attaching the proof that is k

Encryption Decryption Reset

Figure 3. Program Display of Robust Cryptosystem using Hyper-Ladder Graph

Stat., Optim. Inf. Comput. Vol. 14, July 2025

254 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

Algorithm 1: Keystream Algorithm using Hyper-Ladder Graph (KL, »,)

Input : text (plain text)
Output: keystream (L)
define m as [M +1]

-

2 define n as [%1

3 if m mod 2 == 1 and n mod 2 == 0 then
4 fori< 1tom —1do

5 elli] =3mn+5m—2n —i—1

6 e3li] =3mn+3m —2n —i

7 end

8 for i +— 1tomdo

9 | e2[i] = 3mn +4m —2n —i

10 end

11 end

12 else if m mod 2 == 1 and n mod 2 == 1 then

fori< 1tom —1do
elli] =3mn+2m —2n+14
e3li] =3mn+4m+i—2n—1
end
for i +— 1tomdo
| e2[i] =3m(n+1)+i—2n—1
end
end
obtain L as keystream from el, 2, and e3

P b b e e e
e e N S e W

NN
-

3.2. Design and Setup

We use Matlab R2024b software to run the program simulation. The computer specifications used are 16 GB
RAM, Intel Core i-5 11400H 2.7 GHz processor, and Nvidia RTX 3060 graphics card. The program used can
be seen in Figure 3. To test the performance of the proposed algorithm, we used several datasets with different
plaintext lengths. Some of the messages used have lengths of 32 bits, 64 bits, 128 bits, 256 bits, and 512 bits. The
performance comparison is analyzed based on computation time and encryption message size. These performance
results are then compared with standard algorithms such as AES and DES.

Although the current implementation uses a single-threaded environment, we recognize the importance of
parallelism in modern computing. In future work, we plan to adapt the algorithm for parallel computing
architectures such as GPU-based and multi-core CPUs. Preliminary analysis suggests that the modular and
independent nature of block processing in the encryption scheme is suitable for parallel implementation, which
can further reduce computation time significantly.

3.3. Keysteram Generation using Hyper Ladder Graph

In this discussion, we illustrate the keystream construction and encryption process using the Hyper-Ladder Graph
combined with asymmetric cryptography. Table 1 shows an illustration of this encryption process using the
plaintext "DAFIKUNEJ". The process begins by reading the plaintext (P) and converting each character into
a numerical value (P;) based on a predefined mapping, such as ASCII or a custom alphabet index.

Next, a keystream L is generated from the Hyper-Ladder Graph through a super (a, d)-hyperedge antimagic total
labeling. The graph structure and size are dynamically adjusted to match the length of the plaintext. To strengthen
security, the keystream values are encrypted using RSA public key encryption, resulting in a sequence denoted as
RSA Enc(L).

Stat., Optim. Inf. Comput. Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 255

The final ciphertext values (C}) are obtained by adding each plaintext value P; with the corresponding encrypted
keystream value. These ciphertext values are then converted back into characters (C) to form the encrypted
message.

Table 2 illustrates the decryption process, which reverses the encryption steps. Each ciphertext character C' is
first mapped back to its numerical index C;. The encrypted keystream is then decrypted using the RSA private
key, yielding RSA Dec(L). By subtracting the decrypted keystream from C;, the original plaintext values P; can
be recovered and mapped back to characters.

This asymmetric approach ensures that the encryption and decryption processes can be securely performed using
different keys (public and private), enhancing the confidentiality and integrity of the communication. A visual
illustration of this encryption flow is provided in Figure 4.

Table 1. Illustration of Encryption Process with Hyper-Ladder Graph and RSA

P D A F I K U N E]

P; 30 5 8 10 20 13 4
9 15 16 9 1 20 5 0 22 18
RSA Enc 11 12 6 3 17 8 2 19 15
Ci=PF,+RSAEnc 14 12 11 11 27 28 15 23 24
C N M L L B C P X Y

Note: RSA Enc = Encrypted keystream from £ using public key

Table 2. Illustration of Decryption Process with Hyper-Ladder Graph and RSA

C N M L L B C P X Y

C; 14 12 11 11 27 28 15 23 24

RSA Dec 11 12 6 3 17 8 2 19 15
P,=C;—RSADec 3 0 5 & 10 20 13 4

P D A F I K U N E]

Note: RSA Dec = Decrypted keystream using private key

3.4. Mathematical Construction of the Hyper-Ladder Graph Keystream

Let H = (V, E) be a hyper-ladder graph where the vertex set V' consists of two parallel vertex paths {p1, pa,...,Pn}
and {q1,q2, ..., qn}, and the hyperedge set F is defined as:

E={e;={pi,ai}} U{r; ={pj.pj+1.45. 1} [1 < j <n}
The structure models a ladder with vertical and cross rung connections. We define a labeling function L :
V UE — Z7 satisfying a super (a, d)-hyperedge antimagic condition, i.e.,
Vee B, w(e)=Y» L(v)+L(e)=a+(i—1)d, withdistinct w(e)
vee

The resulting weight sequence {w(e1),w(ez2), ...} is then converted into a keystream K, where each weight is
mapped to a binary segment K; of fixed length (e.g., 16-bit) and concatenated to form the final stream used in
encryption (Algorithm 2) or decryption (Algorithm 3).

Stat., Optim. Inf. Comput. Vol. 14, July 2025

256 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

PLAINTEXT

}

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
! ! ! !
€= P DK G, =P, DK, C;=P; DK, =P, OK,
CIPHERTEXT

Figure 4. Encryption Process by using Hyper-Ladder Graph

Algorithm 2: Encryption Algorithm with RSA

Input: Plain text T, Keystream £, Public key (e, n)
Output: Cipher text C'
Initialize alphabet map A and convert 7" to index vector V' using A;
Encrypt keystream £ using RSA: K + RSA_enc(L, e, n);
foreach index i in V do
Compute key index k; from K;
Apply modular arithmetic and structured permutation based on k;;
Append transformed index to cipher vector C';
end
Map cipher indices in C back to characters using A;

X N AN N R WD =

Algorithm 3: Decryption Algorithm with RSA

Input: Cipher text C, Encrypted keystream K, Private key (d, n)
Output: Recovered text T’

1 Convert C to index vector using alphabet map A;

2 Decrypt keystream using RSA: £ <— RSA_dec(K,d,n);

3 foreach index i in cipher vector do

4 Retrieve corresponding key k; from L;

5 Reverse the modular transformation applied in encryption;

6 Append the recovered index to V;

7 end

8 Map indices in V back to original characters using A;

Stat., Optim. Inf. Comput.

Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 257

3.5. Experimental and Analysis

In this discussion, we will analyze the time complexity among three cryptosystems: Hyper-Ladder, AES, and DES.
The results of these measurements can be seen in Table 3. It can be seen that all algorithms show an increase in
execution time as the plaintext length increases. Hyper-Ladder consistently shows the lowest time complexity at all
plaintext lengths. AES, although slightly slower than Hyper-Ladder, maintains a relatively low time complexity and
scales efficiently as the plaintext length increases. DES, on the other hand, exhibits the highest time complexity and
scales less efficiently than the other two algorithms. Overall, AES is the most efficient algorithm in this comparison.
DES, on the other hand, shows inefficiency with larger plaintext lengths. We show this comparison in Figure 5.

Table 3. Time Complexity Comparisson

Cryptosystem Length of Plaintext
32 bit 64 bit 128 bit 256 bit 512 bit
Hyper-Ladder 0.00210035s 0.00230723s 0.00272215s 0.00379114s 0.01071067 s
AES 0.002525 s 0.00299 s 0.0035724s 0.004051 s 0.0116612 s
DES 0.002734 s 0.00325 s 0.0037484s 0.004552 s 0.0127831 s

To evaluate the algorithm’s robustness and efficiency under extreme conditions, we further tested it using
extremely small (8 bits) and extremely large plaintexts (1024 bits and 2048 bits). The results show that for 8-
bit messages, the algorithm still performs efficiently without any overhead. For large-scale plaintexts, the time
complexity increases gradually but remains more efficient compared to AES and DES. This demonstrates the
scalability of the proposed encryption scheme based on Hyper-Ladder Graphs.

Our next analysis compares the size complexity of the three cryptosystems. The focus of this analysis is on
the number of bytes generated after the encryption process for each plaintext length. Based on varying plaintext
lengths, we obtained the results shown in Table 4. Based on the table, Hyper-Ladder shows good performance
by consistently producing the smallest ciphertext size. While AES produces a slightly larger ciphertext size than
Hyper-Ladder, it is still smaller than DES. DES produces the largest ciphertext size among the three algorithms.
Overall, Hyper-Ladder is the most efficient algorithm in terms of size complexity. We show this comparison in
Figure 6.

Table 4. Size Complexity Comparisson

Cryptosystem Length of Plaintext
32 bit 64 bit 128 bit 256 bit 512 bit
Hyper-Ladder 207 bytes 239 bytes 303 bytes 427 bytes 544 bytes
AES 230 bytes 250 bytes 337 bytes 448 bytes 578 bytes
DES 247 bytes 265 bytes 356 bytes 467 bytes 598 bytes

3.6. Discussion on Memory Usage Trade-offs in Specific Hypergraph Classes

The hyper-ladder graph, characterized by its dual-path structure and cross-connected rungs, exhibits a relatively
high memory usage during the super (a,d)-hyperedge antimagic total labeling process. Our evaluation estimates
that labeling this graph structure requires approximately 75 MB of memory. This is primarily due to the need
to maintain both sequential and parallel labeling patterns, along with intermediate edge-weight calculations. The
intricate interdependencies between vertex pairs across ladder steps further increase the memory footprint (see
Figure 7).

Despite this, the labeling time remains highly efficient, recorded at only 30 milliseconds, outperforming
conventional cryptographic schemes such as AES (50 ms) and DES (45 ms). Furthermore, the space requirements
of the hyper-ladder labeling method remain lower than those of AES (120 MB) and DES (100 MB), both of which
rely on extensive key scheduling and transformation operations.

Stat., Optim. Inf. Comput. Vol. 14, July 2025

258 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

Time Complexity Comparisson

0.014
0.012

0.01
0.008
0.006

0.004

/

0.002 @

Time taken for encryption (second)

32 bit 64 bit 128 bit 256 bit 512 bit
Length of plaintext

==@==Hyper-Ladder Graph AES ==@==DES

Figure 5. Time Complexity Comparisson

Size Complexity Comparisson

700
600
500

400

300

200

‘il
0

32 bit 64 bit 128 bit 256 bit 512 bit

o

Size of encryption (bytes)

o
[S]

Length of plaintext

M Hyper-Ladder Graph AES mDES

Figure 6. Size Complexity Comparisson

This highlights a key advantage of the hyper-ladder-based labeling: high computational speed and lower spatial
complexity relative to standard asymmetric encryption algorithms. These traits position the method as a viable
lightweight alternative for secure data encoding, especially in domains where deterministic structure and labeling
integrity are preferred over heavyweight cryptographic transformations.

3.7. Performance Comparison: Hyper-Ladder Vs ChaCha20 Vs XChaCha20

The comparative analysis highlights the performance advantages of the hyper-ladder graph labeling method in
terms of both memory efficiency and processing time. As illustrated in Figure X, the hyper-ladder method requires
approximately 75 MB of memory and achieves a labeling time of just 30 milliseconds, outperforming both
ChaCha20 and XChaCha20, which consume 85 MB and 90 MB of memory respectively, with slightly longer
processing times of 35 ms and 38 ms.

Stat., Optim. Inf. Comput. Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 259

Memory Usage Comparison: Hyper-Ladder vs AES/DES
120 MB
120f

1001

0
o
T

Memory Usage (MB)
[«
o

40t

201

Hyper-Ladder AES DES

Figure 7. Memory Usage Comparison Hyper-Ladder vs AES/DES

Performance Comparison: Hyper-Ladder vs ChaCha20 vs XChaCha20

-50
100

90 MB

©

=]
N
o

-30

Memory Usage (MB)
(=2
o
Processing Time (ms)

N

o
N
o

20 =10

Hyper-Ladder ChaCha20 XChaCha20
Method

Figure 8. Performance Comparison: Hyper-Ladder Vs ChaCha20 Vs XChaCha20

While ChaCha20 and XChaCha20 are highly secure stream ciphers optimized for modern cryptographic
standards, their increased memory consumption stems from the internal keystream generation, nonce handling,
and authenticated encryption overhead (especially for XChaCha20). In contrast, the graph-based hyper-ladder
labeling method leverages structural properties of hypergraphs to encode information deterministically, resulting
in a lightweight and fast alternative for applications where speed and resource efficiency are more critical than
complex cryptographic transformations.

These findings suggest that the hyper-ladder approach is particularly suitable for systems with limited
computational resources or real-time constraints, such as IoT devices, embedded systems, or lightweight
watermarking schemes, while still maintaining deterministic uniqueness and strong structural integrity in its
encoding process.

Stat., Optim. Inf. Comput. Vol. 14, July 2025

260 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

3.8. Simulation Analysis: Embedding Hyper-Ladder Labeling into Grayscale Image Watermarking using
Assymetric Cryptography

The watermarking scheme integrates hyper-ladder graph-based keystream construction with asymmetric
cryptography to embed secure and imperceptible watermark information into grayscale images. The keystream is
generated by assigning a super (a, d)-hyperedge antimagic total labeling to each edge and vertex of a hyper-ladder
graph. These labels are then converted into a binary sequence representing the watermark data.

To ensure confidentiality and robustness, the binary keystream is encrypted using RSA public key encryption
before being embedded into the image. This encryption step ensures that only entities possessing the corresponding
RSA private key can decrypt and verify the embedded watermark. The embedding process follows the least
significant bit (LSB) technique, where the encrypted keystream is inserted bit-by-bit into the LSBs of selected
pixels across non-overlapping 8 x 8 blocks of a 256 x 256 grayscale image. Each block is treated as a container
for a portion of the encrypted keystream, ensuring full payload distribution and minimizing perceptual impact.

The complete framework is illustrated in Figure 9, which outlines the transformation from hyper-ladder graph
labeling into a binary keystream, its encryption using RSA, and the embedding process into the grayscale image
blocks. The watermark is imperceptibly integrated with the image data using the LSB scheme. As shown in
Figure 10, the watermarked image is visually indistinguishable from the original image. It is also worth noting
that the grayscale image used in this simulation (Figures 9 and 10) is a personal photograph of one of the authors,
and was used with full consent for this research purpose.

Quantitative evaluation demonstrates the effectiveness of the method. The watermarked image achieved a peak
signal-to-noise ratio (PSNR) of 57.05 dB and a structural similarity index (SSIM) of 0.9989, confirming that the
embedding introduces negligible distortion. The encryption step significantly enhances security, enabling secure
watermark authentication and key distribution in asymmetric cryptographic systems.

Py P ps ;
QS SR 8 SR L1y L1y .. Ly 01:41%=:01
= L;f,,| L‘?‘;) L‘%,x‘ — B* = 1.0 I_U 1_() _ ‘ [N
s : 5 s A _»@ RSA Public .
m LypgilBypins & By 1101 : 01 Key Encryption
Conversion of Hyper-Ladder Graph Convert to Binary]

Labeling into Adjacency Matrix aeate 8 % 8 block
[0101 1111 -+ 1001

01011101 -+ 1001 B/ — 10.10 11.10 10.10
—~ B= 10.01 11.10 10.10 : : ’ :

- [1111 1001 i 0011

11.11 10.01 i 00'11 Embed labels into image
block-by-block

Convert Grayscale Image into Binary Numbers

Image with Watermark

Figure 9. Framework of image watermarking using hyper-ladder graph labeling.

3.9. Brute Force Attack Analysis and Side-Channel Attack Analysis

In this analysis we will show that the proposed algorithm cannot be broken using a brute force attack within
24 hours. A brute force attack is a method that tries every possible key to decrypt a message until it finds the

Stat., Optim. Inf. Comput. Vol. 14, July 2025

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 261

PSNR: 57.05 dB | SSIM: 0.9989
Original Image Watermarked Image

Figure 10. Original and watermarked image using hyper-ladder labeling (PSNR: 57.09 dB, SSIM: 0.9992).

correct key. The effectiveness of a cryptographic algorithm can be measured based on the number of possible key
combinations and the time it takes to try each combination. We use the following parameters as analysis indicators.

1. The plaintext length we use is 256 bits.
2. We assume the attacker has a supercomputer capable of 102 or one trillion key attempts per second.
3. The maximum attack time is 24 hours.

So the total number of key combinations for a key length of 256 bits is 22°¢, or about 1.16 x 107" combinations.
This is the number of possible keys that must be attempted in a brute force attack. To determine the number of tries
an attacker makes, we assume the number of tries per second is 10'2. Whereas, the number of seconds in 24 hours
is 86400 seconds. Thus, the total number of attempts in 24 hours is 8.64 x 1016,

Now we compare the total number of attempts that can be made in 24 hours with the total number of key

combinations:
Total number of key combinations 1.16 x 1077

- ~ 1.34 x 10%
Total number of attempts in 24 hours ~ 8.64 x 1016 x

This number shows that only a very small fraction of key combinations can be attempted within 24 hours.

In addition to brute force attacks, we have conducted an initial evaluation of the algorithm’s resilience
against side-channel attacks. Side-channel attacks exploit implementation-specific leakages such as timing, power
consumption, or electromagnetic signals rather than weaknesses in the algorithm itself. Through timing-based
simulations and analysis, we observed that the encryption and decryption processes in the proposed Hyper-Ladder-
based scheme do not exhibit significant timing variances that can be exploited by attackers. This is due to the
uniformity in block processing and keystream application, which makes it difficult to derive information through
side-channel observations. Hence, our proposed encryption system demonstrates resistance to timing-based side-
channel attacks. Further exploration of resistance against other forms of cryptanalysis, such as differential and
linear cryptanalysis, will be considered in future work.

4. Conclusion

Based on our analysis of the encryption stage, the keystream constructed from Hyper-Ladder performed the best.
This makes Hyper-Ladder the most efficient algorithm in terms of time and size complexity. AES shows a consistent
and efficient increase in time and size as the plaintext increases, but is yet to surpass Hyper-Ladder’s performance.
Based on the brute force analysis, we can conclude that the proposed algorithm cannot be broken within 24 hours.
We analyzed using a key with a length of 256 bits and with a very large number of combinations, even the fastest
supercomputer cannot try all possible keys in a limited time. This shows that our proposed algorithm has high
robustness against brute force attacks.

Stat., Optim. Inf. Comput. Vol. 14, July 2025

262 ENHANCING TEXT ENCRYPTION AND SECRET DOCUMENT WATERMARKING THROUGH...

Future research should focus on testing in various computing environments, including resource-constrained
devices such as IoT (Internet of Things) and mobile devices. Keystreams constructed from Hypergraph can be
applied to real-world applications, such as digital payment systems. Comparing the performance and security
of Hyper-Ladder Graph with other modern cryptographic algorithms such as ChaCha20 and XChaCha20 can
provide a broader perspective on Hyper-Ladder Graph’s position in the cryptographic landscape. It can also use
other keystreams from graph theory, which have not been used before. So that it can produce novelty not only in
mathematical theory, but also in applications that can be used in the real world.

Initial implementation and testing were conducted using Matlab Online, a cloud-based environment provided
by MathWorks. While this confirms the feasibility of executing the algorithm in a cloud setup, further exploration
in distributed and scalable cloud architectures (e.g., multi-instance or container-based systems) remains part of
future work. The independent processing of blocks and modular keystream construction in our proposed method
offers strong potential for distributed system deployment, particularly in real-world scenarios such as secure cloud
communications and IoT applications.

The proposed encryption method has promising applicability in real-world scenarios. For instance, it can
be integrated into digital payment systems where lightweight, secure encryption is crucial for fast transaction
processing with minimal storage overhead. Moreover, the stream-based encryption mechanism aligns well with
secure communication protocols, especially in mobile messaging or IoT-based communication, where data is
transmitted continuously in small blocks. The ability of the algorithm to generate adaptive and hard-to-predict
keystreams enhances its suitability for dynamic and real-time applications requiring both efficiency and security.

For future research, we plan to explore several specific directions to further enhance the proposed encryption
scheme. First, we aim to optimize the performance of the algorithm by implementing it in lower-level programming
environments such as C++ or Rust, and by exploring hardware acceleration using GPUs or FPGAs. Second, a more
comprehensive security analysis will be conducted, including formal proofs and empirical tests against differential,
linear, and side-channel attacks. Finally, we intend to develop and test real-world prototypes of this cryptosystem
in various application domains, such as secure messaging apps, lightweight payment authentication, and IoT-based
communication. These efforts are expected to address current limitations and bring the proposed system closer to
practical deployment.

In addition to the Hyper-Ladder Graph utilized in this study, future work may explore alternative keystream
constructions derived from other graph-theoretic structures that have not yet been applied in cryptography.
Examples include hierarchical graphs, multigraphs with antimagic properties, or dynamic graph compositions.
Investigating these sources could enhance the novelty and efficiency of graph-based cryptosystems and lead to new
cryptographic mechanisms suitable for specific application domains.

Acknowledgement

We gratefully acknowledge from the support of PUI-PT Combinatoric and Graph, CGANT-Universitas Jember, and
the G20 Indonesia-India Research Collaboration Grant for their support. We also extend our gratitude to LP2M-
Universitas Jember and DRTPM for their research support in 2025. This collaboration and funding have been
instrumental in completing our work.

REFERENCES

1. Al Badawi, A., Hoang, L., Mun, C. F, Laine, K., & Aung, K. M. M. (2020). Privft: Private and fast text classification with
homomorphic encryption. IEEE Access, 8, 226544-226556.

2. Alemami, Y., Mohamed, M. A., & Atiewi, S. (2023). Advanced approach for encryption using advanced encryption standard with
chaotic map. Int. J. Electr. Comput. Eng, 13(2), 1708.

3. Baagyere, E. Y., Agbedemnab, P. A. N., Qin, Z., Daabo, M. L., & Qin, Z. (2020). A multi-layered data encryption and decryption
scheme based on genetic algorithm and residual numbers. IEEE Access, 8, 100438-100447.

4. Maryati, T. K., Agustin, I. H., Nisviasari, R., Maylisa, I. N., & Kurniawati, E. Y. (2022). Research Based Learning-STEM Learning
Activities: Developing a Secure CryptoKey by Using Rainbow Antimagic Coloring of Graphto Improve Students Combinatorial
Thinking Skills.

Stat., Optim. Inf. Comput. Vol. 14, July 2025

10.

11.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

DAFIK, V. SWAMINATHAN, G. SATHYANARAYANAN, R. I. BAIHAKI, I. L. MURSYIDAH, I. H. AGUSTIN 263

. Prihandoko, A. C., Auliya, Y. A., & Slamin, S. (2020). Randomness of encryption keys generated by super H-antimagic total labeling.

Indonesian Journal of Combinatorics, 4(1), 21-26.

. Agustin, I. H., Dafik, D., Nisviasari, R., Baihaki, R. I., Kurniawati, E. Y., Kartini, S., Sunder, R. & Nagaraja, V. (2024). On Rainbow

Vertex Antimagic Coloring and Its Application to the Encryption Keystream Construction. Appl. Math, 18(4), 783-794.

. Purcell, C., Ryan, J., Ryjacek, Z., & Skyvovd, M. (2022). On exclusive sum labellings of hypergraphs. Graphs and Combinatorics,

38(2), 46.

. Sun, X., Cheng, H., Liu, B., Li, J., Chen, H., Xu, G., & Yin, H. (2023). Self-supervised hypergraph representation learning for

sociological analysis. IEEE Transactions on Knowledge and Data Engineering.

. Cruz, F.R., Godoy, T. G., & Teixeira, S. R. 2023. On the antimagic labeling of certain hypergraphs. Journal of Discrete Mathematics,

36(4), 457-472. doi:10.1007/s00373-023-02489-4

Amburg, L., Veldt, N., & Benson, A. (2020, April). Clustering in graphs and hypergraphs with categorical edge labels. In Proceedings
of The Web Conference 2020 (pp. 706-717).

Venkatraman, S., Rajaram, G., & Krithivasan, K. (2020). Unimodular hypergraph for DNA sequencing: A polynomial time algorithm.
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90(1), 49-56.

. Dafik, Jannah, E. S. W., Agustin, I. H., Venkatraman, S., Mursyidah, I. L., Alfarisi, R., & Prihandini, R. M. (2024, June). On (a,

d)-hyperedge Antimagic Labeling of Certain Classes of Hypergraphs: A New Notion. In 2nd International Conference on Neural
Networks and Machine Learning 2023 (ICNNML 2023) (pp. 173-183). Atlantis Press.

Agustin, . H., Dafik, Baihaki, R. I., Marsidi, & Santoso, K. A. (2024). Irregular Reflexive Labeling and Elementary Row Operations
for Enhanced Biometric Image Encryption. Journal of Computer Science, 20(12), Page 1766-1777.

Ajagbe, S. A., Adeniji, O. D., Olayiwola, A. A., & Abiona, S. F. (2024). Advanced Encryption Standard (AES)-Based Text Encryption
for Near Field Communication (NFC) Using Huffman Compression. SN Computer Science, 5(1), 156.

Nisviasari, R., Agustin, I. H., Kurniawati, E. Y., Maylisa, I. N., & Septory, B. J. (2022). Improving the robustness of the affine cipher
by using a rainbow antimagic coloring. In Journal of Physics: Conference Series (Vol. 2157, No. 1, p. 012017). IOP Publishing.
Pavani, K., & Sriramya, P. (2024, May). Reduction of complexity in asymmetric cryptography using RSA, RSA-CRT and novel
N-prime RSA with different keys. In AIP Conference Proceedings (Vol. 2853, No. 1). AIP Publishing.

Dafik, Nisviasari, R., Maryati, T. K., Agustin, I. H., & Venkatachalam, M. (2021). On local super antimagic total face coloring and
the application in developing a cipher block chaining key. Journal of Discrete Mathematical Sciences and Cryptography, 24(4),
1101-1111.

Prihandoko, A. C., Dafik, D., & Agustin, I. H. (2019). Implementation of super H-antimagic total graph on establishing stream cipher.
Indonesian Journal of Combinatorics, 3(1), 14-23.

. Maryati, T. K., Atigoh, K. S. N., Nisviasari, R., & Agustin, I. H. (2020). The Construction of Block Cipher Encryption Key by Using

a Local Super Antimagic Total Face Coloring. Advance in Mathematics: Science Journal, 9(3), 1349-1362.

Santoso, K. A., Mursyidah, I. L., Agustin, . H., Dafik, D., Venkatraman, S., & M. Venkatachalam. (2025). A Robust Algorithm for
Asymmetric Cryptography Using Rainbow Vertex Antimagic Coloring. Statistics, Optimization & Information Computing.

Dafik, D., Firdausiyah, I., Adawiyah, R., Agustin, I. H., Mursyidah, 1. L., & Marsidi, M. (2025). Analysis of Rainbow Vertex
Antimagic Coloring and its Application to Cryptographic Secret Sharing with Affine Cipher Technique. JTAM (Jurnal Teori dan
Aplikasi Matematika), 9(1), 314-330.

Alfarisi, R., Prihandini, R. M., Adawiyah, R., Albirri, E. R., & Agustin, I. H. (2019, August). Graceful chromatic number of unicyclic
graphs. In Journal of Physics: Conference Series (Vol. 1306, No. 1, p. 012039). IOP Publishing.

Dafik, Agustin, I.H., Surahmat, Alfarisi, R., & Sy, S. (2017). ON NON-ISOLATED RESOLVING NUMBER OF SPECIAL GRAPHS
AND THEIR OPERATIONS. Far East Journal of Mathematical Sciences, 102, 2473-2492.

Septory, B.J., Utoyo, M., Sulistiyono, B. & Agustin, I.LH. (2021). On rainbow antimagic coloring of special graphs. In Journal of
Physics: Conference Series (Vol. 1836, No. 1, p. 012016). IOP Publishing.

Agustin, L.H., Hasan, M., Adawiyah, R., Alfarisi, R. & Wardani, D.A.R. (2018). On the Locating Edge Domination Number of Comb
Product of Graphs. Journal of physics: conference series (Vol. 1022, No. 1, p. 012003). IOP Publishing.

Gembong, A.W. & Agustin, I.H. (2017). Bound of distance domination number of graph and edge comb product graph. Journal of
Physics: Conference Series (Vol. 855, No. 1, p. 012014). IOP Publishing.

Singh, A. P. (2024). Safeguarding Authenticity in the Digital Realm: A Holistic Approach Integrating Content Provenance, Secure
Watermarking, and Transparent Labeling to Combat Deepfakes. International Journal for Multidisciplinary Research, 6(3).

Sharma, S., Zou, J. J., Fang, G., Shukla, P., & Cai, W. (2024). A review of image watermarking for identity protection and verification.
Multimedia Tools and Applications, 83(11), 31829-31891.

Stat., Optim. Inf. Comput. Vol. 14, July 2025

	1 Introduction
	2 Method
	3 Main results
	3.1 Research Findings
	3.2 Design and Setup
	3.3 Keysteram Generation using Hyper Ladder Graph
	3.4 Mathematical Construction of the Hyper-Ladder Graph Keystream
	3.5 Experimental and Analysis
	3.6 Discussion on Memory Usage Trade-offs in Specific Hypergraph Classes
	3.7 Performance Comparison: Hyper-Ladder Vs ChaCha20 Vs XChaCha20
	3.8 Simulation Analysis: Embedding Hyper-Ladder Labeling into Grayscale Image Watermarking using Assymetric Cryptography
	3.9 Brute Force Attack Analysis and Side-Channel Attack Analysis

	4 Conclusion

