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Abstract The primary objective of this research is to investigate a novel lifetime distribution characterized by three
parameters, which is constructed through the amalgamation of the Weibull distribution and the Survival Powe-G family. The
recently introduced model is referred to as the SPW distribution. The newly formulated distribution possesses the advantage
of effectively modeling various data types, thus proving to be instrumental in the domains of reliability and lifespan statistics.
Several statistical properties pertinent to the SPW distribution are examined in this study. The recommended estimation
approach is the maximum likelihood method. Empirical tests of the SPW distribution are presented by using two real
datasets. Furthermore, SPW distribution demonstrates a good fit, backed by comparisons with Weibull-based models and
other alternative distributions using several goodness-of-fit assessments.
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1. Introduction

The Weibull distribution constitutes a highly adaptable and extensively employed probability distribution within the
domains of reliability engineering [1], life data analysis, and failure time modeling. Its adaptability arises from its
capacity to effectively model a diverse array of data types via its shape parameter, which facilitates the modification
of the distribution’s structure to align with varying datasets. The principal generalizations derived from the Weibull
distribution encompass its ability to represent increasing, constant, or decreasing failure rates, thereby rendering it
suitable for a wide spectrum of real-world phenomena.

The prominent upgrade of the Weibull distribution is the addition of a new parameter, generally labelled as
the scale parameter. By integrating this parameter, we boost the goodness-of-fit for empirical data and supply
a better into the foundational processes that drive the phenomena observed, ultimately better decision-making.
Moreover, the scale parameter proves to be particularly advantageous in reliability analysis. While this paper
does not delineate specific studies or references, it is possible to summarize several notable contributions to
the generalization of the Weibull distribution, where there have been various notable research explorations in
recent times, including the following: Barnard et al. introduced the Linearly Decreasing Stress Weibull, it shares
similarities with the Weibull distribution but offers advantages in certain parameter configurations, providing
competitive fit quality in specific applications [2]. Teamah et al. introduced the Right Truncated Fréchet-Weibull
Distribution, this distribution is tailored for datasets with truncation, and it is beneficial when the data is incomplete
or censored [3]. Almazah introduced the Compound Weibull Distribution by combining three Weibull distributions,
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offering enhanced flexibility for modelling some datasets [4]. L. Benkhelifa introduced the Weibull Birnbaum-
Saunders distribution as an extension of the flexible Weibull distribution, it demonstrates its potential over some
other important distributions [5]. Jia et al. introduced the q-Weibull Distribution as a generalization of the Weibull
distribution, the q-Weibull is supported by robust confidence intervals derived from bootstrap methods [6]. Nwezza
et al. introduced the Gumbel Marshall-Olkin-Weibull Distribution, which is generated by combining the Gumbel
and Weibull distributions, providing a flexible tool for modelling some complex datasets [7]. Hamed introduced
the Mixture Weibull-Generalized Gamma Distribution, which is a mixture model that combines Weibull and
generalized gamma distributions. It is designed to handle inhomogeneous populations and is particularly useful
in life testing and reliability analysis [8]. Ishaq and Abiodun introduced the Maxwell-Weibull Distribution,
as a generalization that combines the Maxwell and Weibull distributions, and It is particularly effective in
modelling some lifetime data, as exchange rates and material strengths compared to some other distributions [9].
Hassan et al. introduced a new family of distributions based on the Weibull Lindley distribution and cumulative
distribution function (CDF), it is called the Weibull Lindley general family of distributions [10]. Oluyede et al.
introduced the Log Generalized Lindley-Weibull distribution, which has comprehensive statistical properties and
is applied to real data to show its effectiveness [11]. Alizadeh et al. a groundbreaking distribution is introduced
that features four parameters and is referred to as the new generalized modified Weibull distribution, which
represents a generalization of the modified Weibull distribution. Moreover, this distribution can be expressed as
an infinite linear combination of modified Weibull distributions, thereby offering a diverse array of shapes with
varying degrees of skewness, differing tail weights, contingent upon its additional parameters [12]. Nwezza et
al. introduced the Generalized Transmuted Weibull Distribution, it offers additional flexibility by incorporating
transmutation parameters, which allow for better fitting of real-life data sets [14]. Adnan et al. introduced the
Weibull-Lindley Rayleigh distribution as another extension that combines features of the Weibull, Lindley, and
Rayleigh distributions. This new distribution is shown to fit certain datasets better than the individual distributions
it encompasses [15]. Aljumaily and Saieed introduced the Gull Alpha Power transform Weibull distribution
introducing additional flexibility to the standard Weibull distribution, making it applicable in fields like cancer
modeling and engineering [16]. Anabike et al. introduced the New Weibull Exponential Distribution extends the
Weibull distribution by adding a shape parameter, improving its fit and applicability in reliability studies, such as
aeroplane windshield failure times [17].

This study shows a new distribution as an adaptation of the two-parameter Weibull distribution, named the
Survival Power Weibull (SPW) distribution, by integrating an extra parameter, thus augmenting its flexibility. The
novel PSW distribution is contingent upon the family of Survival Power-G (SP-G) distributions, which Kalt.[18]
proposed, this family represents a new approach to incorporate an additional parameter to the baseline distribution
to provide enhanced adaptability in modelling some real data. The new distribution provides a widerange of shapes
with varying skewness, varied tail weights and shifting modes based on its additional parameters. Let’s delve
into the survival function linked to the baseline distribution marked as S(x; θ), along with the probability density
function (PDF) noted as g(x; θ) with the vector of parameters θ. The cumulative distribution function (CDF) and
the PDF of the SP-G family are delineated by

FSPG(x;α, θ) = αS(x;θ) − αS(x; θ), 0 < α, x ∈ R
(1)

and

fSPG(x;α, θ) = g(x; θ)
(
α− αS(x;θ) log (α)

)
(2)

where α is a shape parameter. Conversely, the Weibull distribution has found extensive application across various
fields including actuarial science, reliability analysis, agricultural science, and health sciences. The survival
function and PDF linked to the Weibull distribution are

SW (x;β, κ) = e−(
x
β )

κ

, x ≥ 0, β > 0, κ > 0
(3)

Stat., Optim. Inf. Comput. Vol. 13, May 2025



1882 THE SURVIVAL POWER WEIBULL DISTRIBUTION WITH APPLICATION

and

gW (x;β, κ) =
k

β

(
x

β

)κ−1

e−(
x
β )

κ

(4)

The structure of this paper is as follows: In Section 2, the most important functions of the new SPW distribution
are defined as CDF and PDF, this section also delves into the study of other important statistical functions of the
SPW distribution, such as the hazard function, inverse hazard function, quantile function, and moment functions, as
well as the derivation of the maximum likelihood estimator. Section 3 introduces the simulation study of maximum
likelihood estimators using the mean square error (MSE) criterion and the average bias of the estimators for the
three parameters. The section 4 introduces a test of the application of the new SPW distribution through an analysis
of two real datasets.

2. Survival Power Weibull (SPW) Distribution

In this section, we have proposed the Survival Power Weibull (SPW) distribution by using the survival function in
Equation (3) and the PDF in Equation (4) of the Weibull distribution in the Equations (1) and (2). The CDF of the
proposed (SPW) distribution is

FSPW (x;α, β, κ) = αe
−( x

β )
κ

− αe−(
x
β )

κ

, x ≥ 0, α, β, κ > 0 (5)

The PDF of SPW distribution is

fSPW (x;α, β, κ) = β−κe−xκβ−κ

xκ−1κ
(
α− αe−xκβ−κ

log(α)
)

(6)

where α and β scale parameters and κ is shape parameter. The SPW distribution provides some specific
distributions as a special case, for example, for α = 1, the distribution reduces to a Weibull distribution, and for
κ = 1, it reduces to the survival power exponential (SPE) distribution [18]. The plots for the CDF and the PDF of
the SPW distribution are sketched in Figure 1 and Figure 2 respectively.
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Figure 1. The plot of CDFs to SPW distribution.

Stat., Optim. Inf. Comput. Vol. 13, May 2025



H. KALT AND M. ABDUL SADA 1883

0 1 2 3 4 5

x-axis

0

0.1

0.2

0.3

0.4

0.5

0.6

P
D

F

=0.1 , =2 , =2.5

=0.7 , =2 , =2.5

=1.6 , =2 , =2.5

=2.5 , =2 , =2.5

0 0.5 1 1.5 2 2.5 3

x-axis

0

0.5

1

1.5

2

2.5

3

P
D

F

=0.01 , =0.3 , =0.9

=0.4 , =0.3 , =0.9

=1.6 , =0.3 , =0.9

=2.5 , =0.3 , =0.9

0 1 2 3 4 5

x-axis

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
D

F

=0.1 , =1.5 , =1.2

=0.7 , =1.5 , =1.2

=1.6 , =1.5 , =1.2

=2.3 , =1.5 , =1.2

Figure 2. The plot of PDFs to SPW distribution.

2.1. Reliability function

The Reliability function RSPW (x;α, β, κ) of the SPW distribution is

RSPW (x;α, β, κ) = 1− FSPW (x;α, β, κ) = 1− αe
−( x

β )
κ

+ αe−(
x
β )

κ

(7)

The plots for the Reliability function of the SPW distribution are sketched in Figure 3.
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Figure 3. The plot of Reliability function to SPW distribution.

2.2. Hazard and reversed hazard rate functions

The hazard rate hSPW (x;α, β, κ) and the reverse hazard rate rSPW (x;α, β, κ) of the SPW distribution are

hSPW (x;α, β, κ) =
fSPW (x;α, β, κ)

1− FSPW (x;α, β, κ)
=

β−ke−xκβ−κ

xκ−1κ
(
α− αe−xκβ−κ

log(α)
)

1− αe
−( x

β )
κ

+ αe−(
x
β )

κ
(8)

and

rSPW (x;α, β, κ) =
fSPW (x;α, β, κ)

FSPW (x;α, β, κ)
=

β−ke−xκβ−κ

xκ−1κ
(
α− αe−xκβ−κ

log(α)
)

αe
−( x

β )
κ

− αe−(
x
β )

κ
(9)

2.3. Quantile function

Through using the inverse of the CDF of SPW distribution (5), we can find the quantile function of the SPW
distribution as follows

QSPW (v) = β
(
log(α) + log(log(α))− log

(
−v log(α)−W

(
− log(α)α

−α−v
α

)
α
)) 1

κ

(10)

Stat., Optim. Inf. Comput. Vol. 13, May 2025



1884 THE SURVIVAL POWER WEIBULL DISTRIBUTION WITH APPLICATION

where W is the function of Lambert-W and 0 < v < 1. The quantile function can be used to find the median of
the new SPW distribution when v=0.5 in Equation (11) as follows.

Median = QSPW (0.5) = β
(
log(α) + log(log(α))− log

(
−0.5 log(α)−W

(
− log(α)α

−α−0.5
α

)
α
)) 1

κ

(11)

the Bowley skewness is one of the measures to the skewness [19], which can be found by using the quantile
function as follows.

SKSPW =
QSPW

(
3
4

)
+QSPW

(
1
4

)
− 2QSPW

(
1
2

)
QSPW

(
3
4

)
−QSPW

(
1
4

) (12)

also, the kurtosis based on quantiles is expressed as the following [20]

KUSPW =
QSPW

(
7
8

)
−QSPW

(
5
8

)
+QSPW

(
3
8

)
−QSPW

(
1
8

)
QSPW

(
6
8

)
−QSPW

(
2
8

) (13)

Where QSPW (.) is the quantile function of SPW distribution. Since the metrics of SKSPW and KUSPW exhibit
reduced action to outliers and apply to the SPW distribution.

2.4. Moments

This subsection shows the computation of the rth moment r about the origin point of the SPW distribution. By the
definition of the rth moment, we have

µ′
r =

∫ ∞

0

xrfSPW (x;α, β, κ)dx =

∫ ∞

0

β−κe−xκβ−κ

xr+κ−1κ
(
α− αe−xκβ−κ

log(α)
)
dx (14)

We can factor out the constants from the integral

µ′
r = κβ−κα

∫ ∞

0

e−xκβ−κ

xr+κ−1dx− κβ−κ log(α)

∫ ∞

0

e−xκβ−κ

xr+κ−1αe−xκβ−κ

dx (15)

The first integral of Equation (15) involves only a standard gamma-like integral. Substituting u = xkβ−κ ⇒
x = βu

1
κ and dx = 1

κβu
1
κ−1du this becomes:

I1 =

∫ ∞

0

e−xκβ−κ

xr+κ−1dx =
1

κ
βr+κ

∫ ∞

0

e−uu
r
κ du =

1

κ
βr+κΓ

( r
κ
+ 1
)

(16)

to solve the second integral of Equation (15)

I2 =

∫ ∞

0

e−xκβ−κ

xr+κ−1αe−xκβ−κ

dx (17)

Let’s perform the substitution: u = xkβ−κ so that x = βu
1
κ and dx = 1

κβu
1
κ−1du. Thus, the integral

transforms into:

I2 =

∫ ∞

0

e−uβr+κ−1u
r+κ−1

κ αe−u 1

κ
βu

1
κ−1du =

1

κ
βr+κ

∫ ∞

0

e−uu
r
καe−u

du (18)

Using the series expansion:

αe−u

=

∞∑
m=0

(log(α))me−mu

m!
(19)
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Substitute this into the integral in Equation (18)

I2 =
1

κ
βr+κ

∫ ∞

0

e−uu
r
k

( ∞∑
m=0

(log(α))me−mu

m!

)
du (20)

Distribute the sum inside the integral

I2 =
1

κ
βr+κ

∞∑
m=0

(log(α))m

m!

∫ ∞

0

e−(m+1)uu
r
κ du (21)

so we have ∫ ∞

0

e−(m+1)uu
r
k du =

Γ
(
r
κ + 1

)
(m+ 1)

r
κ+1

(22)

Substitute this result back into the sum

I2 =
1

κ
βr+κΓ

( r
κ
+ 1
) ∞∑

m=0

(log(α))m

m!(m+ 1)
r
κ+1

(23)

By substituting both I1 and I2 in Equation (15), then the rth moment is

µ′
r = kβ−κα

(
1

κ
βr+κΓ

( r
κ
+ 1
))

− κβ−κ log(α)

(
1

κ
βr+κΓ

( r
κ
+ 1
) ∞∑

m=0

(log(α))m

m!(m+ 1)
r
κ+1

)
(24)

µ′
r = βrΓ

( r
κ
+ 1
)(

α− log(α)

∞∑
m=0

(log(α))m

m!(m+ 1)
r
κ+1

)
(25)

According to the results given in Equation (25), the mean and the variance of the SPW distribution are µ = µ′
1 and

V ar(X) = µ′
2 − µ2 in Equations (26) and (27) respectively, as follows.

µ = E(X) = βΓ

(
1

κ
+ 1

)(
α− log(α)

∞∑
m=0

(log(α))m

m!(m+ 1)
1
κ+1

)
(26)

V ar(X) = β2Γ

(
2

κ
+ 1

)(
α− log(α)

∞∑
m=0

(log(α))m

m!(m+ 1)
2
κ+1

)
−

(
βΓ

(
1

κ
+ 1

)(
α− log(α)

∞∑
m=0

(log(α))m

m!(m+ 1)
1
κ+1

))2

(27)

2.5. Moment generating function

The moment generating function (mgf) of the SPW distribution about the zero ,which denoted by MX(t), can
derive as

MX(t) = E
(
etx
)
=

∫ ∞

0

etxfSPW (x;α, β, κ)dx (28)

By using Taylor series to the function etx.

etx =

∞∑
r=0

trxr

r!
(29)

By substituting Equation (29) into Equation (28), then

MX(t) =

∫ ∞

0

∞∑
r=0

trxr

r!
fSPW (x;α, β, κ)dx =

∞∑
r=0

tr

r!
µ′
r (30)

By substituting Equation (25) in Equation (30), we get the mgf of the SPW distribution.
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2.6. Entropy

The Renyi entropy to the variable X serves as an indicator of the variability of uncertainty and has found
application across numerous disciplines. According to Renyi (1961) [27], the Renyi entropy of a random variable
has the SPW distribution calculated using the following theorem.

Theorem: For X is a random variable that has the SPW distribution, the Renyi entropy is given by

H(w) =
1

1− w
log

(
αw

∞∑
n=0

(
w

n

)(
− log(α)

α

)n
1

nw
γ(w, n lnα)

)
(31)

Proof
The Rennie entropy of the SPW distribution is calculated as follows

H(w) =
1

1− w
log

∫ ∞

0

(
β−κe−xκβ−κ

xκ−1κ
(
α− αe−xκβ−κ

log(α)
))w

dx,w > 0 and w ̸= 1 (32)

First we will solve the integral.

I =

∫ ∞

0

(
β−κe−xκβ−κ

xκ−1κ
(
α− αe−xκβ−κ

log(α)
))w

dx (33)

A substitution may simplify the integrand u = xκβ−k =⇒ du = κxκ−1β−κdx The limits of integration remain 0
to ∞, and this substitution simplifies part of the integrand

I =

∫ ∞

0

(
e−u

(
α− αe−u

log(α)
))w

du (34)

Since e−u appears in both terms, we might attempt a substitution to simplify this further. Let’s make the substitution
v = e−u, which gives dv = −e−udu or equivalently du = −dv

v . Under this substitution, when u = 0 then v = 1 and
when u → ∞ then v → 0. Thus, the integral transforms into:

I =

∫ 0

1

(v (α− αv log(α)))
w ·
(
−dv

v

)
=

∫ 1

0

vw−1 (α− αv log(α))
w
dv (35)

Since w is not a natural number, we can use the generalized binomial series for (1 + x)w, which applies to real or
complex w :

(1 + x)w =

∞∑
n=0

(
w

n

)
xn (36)

In our case, let x = −αv log(α)
α . Now, applying the binomial series expansion:

I =

∫ 1

0

vw−1(α)w
(
1 +

−αv log(α)

α

)w

dv = αw

∫ 1

0

vw−1
∞∑

n=0

(
w

n

)(
−αv log(α)

α

)n

dv (37)

Now we simplify each term in the sum. The integral becomes:

I = αw
∞∑

n=0

(
w

n

)(
− log(α)

α

)n ∫ 1

0

vw−1αnvdv (38)

To solve the last integral, we can use the substitution u = nv, which implies v = u
n and dv = du

n . Rewrite the limits,
When v = 0, u = 0, and When v = 1, u = n. The integral becomes:
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∫ 1

0

vw−1eβvdv =

∫ n

0

(u
n

)w−1

αu du

n
=

1

nw

∫ n

0

uw−1αudu (39)

This is a special case of the incomplete gamma function γ(s, x) and is not solvable in terms of elementary functions
for general α and w. However, if you want a solution in terms of special functions, it can be expressed as:∫ 1

0

vw−1eβvdv =
1

nw
γ(w, n lnα) (40)

where γ(s, x) is the lower incomplete gamma function.
So the integral I becomes:

I = αw
∞∑

n=0

(
w

n

)(
− log(α)

α

)n
1

nw
γ(w, n lnα) (41)

This gives a general solution in terms of a series involving the gamma function. So, the Renyi entropy is

H(w) =
1

1− w
log

(
αw

∞∑
n=0

(
w

n

)(
− log(α)

α

)n
1

nw
γ(w, n lnα)

)
(42)

2.7. Maximum likelihood estimation

A multitude of methodologies have been proposed to ascertain the estimations of unknown parameters
with the objective of deriving predictive outcomes. The preeminent technique among these methodologies
is the maximum likelihood estimation (MLE) methodology in terms of both Bayesian and non-Bayesian
approaches. [29, 23, 24, 22, 28]. The estimators obtained through this methodology demonstrate favourable
properties and so can be utilized to construct confidence intervals and other statistical evaluations. The
approximation of the MLEs can be adeptly handled either via numerical calculations or analytical methodologies.
More profound elucidations regarding MLEs can be found. In this specific section, we select to utilize the
MLE methodology to estimate the three parameters of the SPW distribution. We can express x1, x2, . . . , xn as a
randomly chosen sample from the SPW distribution.

The likelihood function that aligns with Equation (6) is

L(α, β, κ;x) =

n∏
i=1

fSPW (xi;α, β, κ) (43)

L(α, β, κ;x) =
(
−β−κκ

)n( n∏
i=1

e−xκ
i β

−κ

xκ−1
i

(
αe−xκ

i β−κ

log(α)− α
))

(44)

The logarithm of Equation (44) is

ℓ(α, β, κ;x) =− κn log(β) + n log(κ)− β−κ

(
n∑

i=1

xκ
i

)
+

log

(
n∏

i=1

xκ−1
i

)
+

n∑
i=1

log
(
α− αe−xκ

i β−κ

log(α)
) (45)

In order to ascertain the values of the three parameters that maximize the Likelihood function, the formulations for
the partial derivatives concerning the three parameters of the Equation (45) are presented, as follows:

Stat., Optim. Inf. Comput. Vol. 13, May 2025



1888 THE SURVIVAL POWER WEIBULL DISTRIBUTION WITH APPLICATION

∂ℓ(α, β, κ;x)

∂α
=

n∑
i=1

1 + αe−xk
i β−k − 1e−xk

i β
−k

log(α) + αe−xk
i β−k

−1

α− α−xk
i β

−k
log(α)

(46)

∂ℓ(α, β, κ;x)

∂β
= −κn

β
+

κ
(∑n

i=1 x
κ
i

)
βκ+1

+

n∑
i=1

−κxκ
i e

−xκ
i β

−κ

αe−xκ
i β−κ

log(α)2

βκ+1
(
α− αe−xk

i
β−κ

log(α)
)
 (47)

∂ℓ(α, β, κ;x)

∂κ
=− n log(β) +

n

κ
+ β−κ log(β)

(
n∑

i=1

xκ
i

)
− β−κ

(
n∑

i=1

xk
i log (xi)

)

+

∑n
i=1

(∏i−1
il∼=1 x

κ−1
il∼

) (∏n
il∼=i+1 x

κ−1
il∼
)
xκ−1
i log (xi)∏n

i=1 x
κ−1
i

+

n∑
i=1

(
−αe−xκ

i β−κ

(−xκ
i log (xi)β

−κ + xκ
i β

−κ log(β)) e−xκ
i β

−κ

log(α)2

α− αe−xκ
i
β−κ

log(α)

) (48)

Deriving the MLEs for the parameters α, β and κ involves equating the nonlinear Equation (46), (47) and (48),
to zero and resolving them simultaneously. These Equations are a system of nonlinear equations and cannot be
solved simultaneously, so we can solve them by optimized Newton-Raphson’s iterative method facilitated by
computational software such as R or Matlab.

3. Simulation study

In this section, a comprehensive evaluation is conducted regarding the effectiveness of the MLEs pertaining to the
three parameters for the SPW distribution. The examination emphasizes the application of this novel distribution
as a particularized distribution for simulation purposes. The simulation methodology encompasses a systematic
series of steps, wherein N = 1000 iterations of the samples of varying sizes (n = 10, 25, 50, 75, 100, 250, 500)
are generated from the SPW distribution by employing the inversion technique for four distinct sets of
parameter values: (α = 0.9, β = 1.8, κ = 0.7), (α = 0.3, β = 2, κ = 0.5), (α = 1.8, β = 0.5, κ = 1.5) and (α =
1.8, β = 1.5, κ = 2.5). The mean square error (MSE) also average bias (AB) of the estimates of the three parameters
associated with the new distribution are computed, with repetitions conducted for each sample size n, as delineated
below.

MSE(ζ) =
1

1000

1000∑
j=1

(
ζ̂j − ζ

)2
and AB(ζ) =

1

1000

1000∑
j=1

(
ζ̂j − ζ

)
(49)

where ζ is either α, β or κ. The simulation results are systematically summarized in Tables 1, 2, 3 and 4,
accompanied by the graphical representation in Figure (4) depicting MSE and Figure (5) illustrating AB. The
information presented in this table and associated figures elucidates the advantageous efficacy of the estimations
pertaining to the parameters of the SPW distribution, revealing negligible bias and credible MSEs across all
evaluated scenarios, thereby indicating the dependability and accuracy of these estimations in relation to the true
parameter values. Moreover, the biases approach zero as the sample size escalates, signifying that the estimations
have propertis as unbiased estimators. In addition, the MSEs demonstrate a decline with the augmentation of sample
size, implying the robustness of these three estimators in accurately estimating the three parameters of the SPW
distribution.
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Table 1. The MSE and AB of simulation for SPW distribution when α = 0.9, β = 1.8, κ = 0.7.

n MSE(α̂) AB(α̂) MSE(β̂) AB(β̂) MSE(κ̂) AB(κ̂)

10 0.20708 0.24368 0.65256 -0.02645 0.06523 0.13443
25 0.23901 0.19703 0.29953 -0.16576 0.01094 0.03224
50 1.04133 0.23548 0.20716 -0.19125 0.00567 -0.00469
75 0.13723 0.19438 0.10618 -0.10228 0.00401 0.00606

100 0.16207 0.15221 0.08933 -0.15077 0.00241 0.00537
250 0.10012 0.02531 0.05668 -0.12942 0.00124 0.00687
500 0.05252 0.01181 0.02861 -0.08073 0.00071 0.01194

Table 2. The MSE and AB of simulation for SPW distribution when α = 0.3, β = 2, κ = 0.5.

n MSE(α̂) AB(α̂) MSE(β̂) AB(β̂) MSE(κ̂) AB(κ̂)

10 5.31366 1.08112 1.52116 0.30006 0.08571 0.18821
25 4.22198 0.89818 0.76493 0.13977 0.02929 0.12575
50 3.12962 0.64112 0.43244 0.12475 0.02291 0.12081
75 0.30755 0.40561 0.27989 0.22597 0.01866 0.12659

100 0.33265 0.44457 0.17557 0.20331 0.01868 0.12831
250 1.11513 0.40089 0.16143 0.17637 0.01697 0.12138
500 1.04141 0.32411 0.11895 0.14043 0.01591 0.11824

Table 3. The MSE and AB of simulation for SPW distribution when α = 1.8, β = 0.5, κ = 1.5.

n MSE(α̂) AB(α̂) MSE(β̂) AB(β̂) MSE(κ̂) AB(κ̂)

10 11.0787 0.92833 0.02244 -0.03367 0.28434 0.16901
25 3.60732 0.17591 0.00864 -0.00501 0.12801 0.06672
50 2.90411 0.26255 0.00748 -0.03044 0.06681 -0.04805
75 1.60433 -0.00217 0.00619 -0.01408 0.04633 -0.03659
100 1.56389 0.12921 0.00551 -0.02828 0.04399 -0.06535
250 0.15149 0.03781 0.00208 -0.02198 0.01493 -0.07044
500 0.11193 0.11329 0.00186 -0.02992 0.01353 -0.08301

Table 4. The MSE and AB of simulation for SPW distribution when α = 1.8, β = 1.5, κ = 2.5.

n MSE(α̂) AB(α̂) MSE(β̂) AB(β̂) MSE(κ̂) AB(κ̂)

10 5.67313 0.26245 0.05021 -0.05105 0.69141 0.26067
25 9.70291 0.90915 0.05918 -0.06487 0.34125 -0.01824
50 5.66512 0.45063 0.05093 -0.06217 0.25099 -0.07574
75 3.00272 0.14012 0.03083 -0.03431 0.13757 -0.05784
100 4.37931 0.35324 0.04581 -0.05818 0.21647 -0.10668
250 0.31097 -0.09631 0.00985 -0.02568 0.06528 -0.04585
500 0.21648 -0.03368 0.00651 -0.02057 0.03329 -0.05214
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Figure 4. The Mean Squared Errors of the simulation.

Figure 5. The Average Bias of the simulation.

The four models for this simulation were randomly selected to achieve the differences in their values in order
to observe the superiority of the estimators of these models with the change in sample size. We notice from these
results that there is no constant behavior for the estimators resulting from these simulation models with the change
in sample sizes in an absolute way, but approximately the estimators of the parameters are better with the increase
in the random sample sizes.

4. Applications of the SPW distribution on real data

In this segment, a thorough analysis and interpretation of five genuine datasets will be conducted to clarify the
benefits associated with the implementation of the SPW distribution. The evaluation of the model’s relevance
involved the discernment of multiple information criteria. Identifying a suitable model usually demands a
meticulous appraisal of a collection of information benchmarks that incorporate the Akaike Information Criterion
(AIC), the Consistent Akaike Information Criterion (CAIC), the Baysian Information Criterion (BIC), the Hannan-
Quinn Information Criterion (HQIC), along with the Kolmgorov-Smirenov Criterions (K-S). It is imperative
to highlight that a reduction in the values of the goodness-of-fit Criterions metrics signifies a more favorable
alignment of the data. In the following sections, we will present the actual data to which the novel distribution
methodology was applied. The abundance and diversity of data may create obstacles for researchers in identifying
the most appropriate data that accurately represents the new distribution. Therefore, during the data selection
phase, alternative distributions were selected for comparative analysis based on prior studies related to the relevant
data, rather than opting for the distributions themselves for comparative purposes across the five datasets, which
will be elaborated upon below.
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The first dataset has been sourced from Bjerkedal (1960) [21] and encapsulates the survival durations (measured
in days) of 72 guinea pigs subjected to infection by virulent tubercle bacilli. This authentic dataset is subjected
to analysis in order to elucidate the advantages of the SPW distribution in comparison to certain sub-models;
specifically, Exponentiated Exponential Weibull (EEW), Exponentiated Weibull (EW), exponentiated Weibull
exponential (EWE), Weibull exponential (WE), exponential-exponential (EE), Rayleigh exponential (RE), inverse
Weibull distribution (IWD), Marshall Olkin Weibull (MOW) and Weibull (W) distributions. The dataset is
delineated as follows:”0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07,
1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53,
1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45,
2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55”. The outcomes of the comparative
analysis employing the goodness-of-fit statistics for the initial dataset are presented in Table 5.

Table 5. The goodness of fit comparison criterias of the first data

Dist. AIC CAIC BIC HQIC K-S
SPW 192.08 201.91 198.91 194.81 0.04
EEW 196.16 209.27 205.27 199.79 0.041
EW 194.16 203.99 200.99 196.88 0.04

EWE 225.04 226.64 224.47 228.66 0.09
WE 298.65 299.01 298.23 301.37 0.13
EE 308.55 308.72 308.26 310.36 0.28
RE 289.02 289.19 288.74 290.83 0.13

IWD 238.65 238.82 243.20 240.46 0.19
MOW 220.94 223.66 227.77 224.36 0.09

W 226.24 228.05 230.79 228.52 0.08

The second data set delineates the remission intervals (measured in months) of a random sample comprising 128
bladder cancer patients, as examined by Lee and Wang (2003) [25] and subsequently analyzed by Al-Zahrani et
al. [26]. We exemplify the adaptability of the SPW distribution through the application of this empirical data
set. The SPW distribution is juxtaposed against alternative models, including the Exponentiated Exponential
Weibull (EEW), the Exponentiated Weibull (EW), the (MAPTIW) distribution, the inverse Lomax (IL) distribution,
the alpha power inverse Lomax (APILom) distribution, the inverse Weibull (IW) distribution, the alpha power
inverse Weibull (APIW) distribution, the alpha power inverse Lindley (APILin) distribution, and the Weibull (W)
distribution. The data are enumerated as follows:”0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52,4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77,32.15, 2.64, 3.88,
5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,15.96, 36.66, 1.05,2.69, 4.23, 5.41, 7.62, 10.75,
16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,17.12, 46.12, 1.26, 2.83, 4.33,5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87,
5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25,
4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93,
8.65, 12.63, 22.69”.The outcomes of the comparative analysis employing the goodness-of-fit statistics for the initial
dataset are presented in Table 6.
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Table 6. The goodness of fit comparison criterias of the second data

Dist. AIC CAIC BIC HQIC K-S
SPW 825.56 837.12 834.12 837.12 0.0156
EEW 829.36 844.76 840.76 833.99 0.015
EW 827.36 838.91 835.91 830.83 0.015

MAPTIW 829.74 829.93 838.29 833.21 0.0398
IL 853.35 853.44 859.05 855.66 0.1184

APTILom 868.78 868.97 877.33 872.25 0.1017
IW 892.00 892.09 897.70 894.31 0.1407

APIW 860.26 860.45 868.81 863.73 0.0957
APILin 866.94 867.04 872.64 869.26 0.0924

W 832.17 832.26 837.87 834.49 0.0699

The third dataset is displayed by Murthy (2004) [30] about the times between failures for 30 which are
repairable items. This real data sets are analyzed to illustrate the merit of SPW distribution compared with
some other models; namely, the Exponentiated Exponential Weibull (EEW), the Exponentiated Weibull (EW),
the beta modified Weibull distribution (BMWD), the Weibull power function distribution (WPFD), the power
function distribution (PFD), the Kumerswmay power function distribution (KPFD), the Exponentiated Weibull-
Power Function Distribution (EWPF) and the transmitted power function distribution(TPFD). The third dataset is:
”1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06,
1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17”. The outcomes of the comparative analysis employing the
goodness-of-fit statistics for the initial dataset are presented in Table 7.

Table 7. The goodness of fit comparison criterias of the third data

Dist. AIC CAIC BIC HQIC K-S
SPW 85.820 93.024 90.024 87.165 0.0666
EEW 87.226 96.831 92.831 89.019 0.0666
EW 85.22 92.429 89.429 86.57 0.0666

BMW 94.406 96.906 101.412 96.647 0.8666
WPF 92.324 93.924 97.929 94.117 0.0770
PF 445.571 446.015 448.373 446.46 0.2881

KPF 109.747 111.347 115.352 111.54 0.2629
EWPF 89.248 91.748 96.254 91.489 0.0732
TPF 101.458 102.381 105.662 102.80 0.1391

The fourth dataset is displayed by Tahir, et al.(2015) [31] about the failure times of 84 aircraft windshields. These
real datasets are analyzed to illustrate the merit of SPW distribution compared with some other models; namely,
the New Generalization of the Inverse Generalized Weibull (NEGIGW), the Generalized Inverse Generalized
Weibull Distribution (GIGW), The Exponential Fréchet (NEXF), The Exponentiated Generalized Inverse Weibull
(EGIW), The Exponentiated Weibull Exponential (EWE), The Inverse Weibull (IW). The fourth dataset is: ”0.040
1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478 0.557 1.911 2.625 3.578 0.943 1.912 2.632
3.595 1.070 1.914 2.646 3.699 1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281 2.038 2.823 4.035 1.281
2.085 2.890 4.121 1.303 2.089 2.902 4.167 1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964
4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615 2.223 3.114 4.449 1.619 2.224 3.117 4.485 1.652
2.229 3.166 4.570 1.652 2.300 3.344 4.602 1.757 2.324 3.376 4.663”. The outcomes of the comparative analysis
employing the goodness-of-fit statistics for the initial dataset are presented in Table 8.

Stat., Optim. Inf. Comput. Vol. 13, May 2025



H. KALT AND M. ABDUL SADA 1893

Table 8. The goodness of fit comparison criterias of the fourth data

Dist. AIC CAIC BIC HQIC K-S
SPW 262.889 273.181 270.181 265.82 0.0238

NEGIGW 286.495 287.265 298.650 291.381 0.1067
GIGW 300.618 301.124 310.341 304.527 0.1455
NEXF 307.723 308.023 315.016 310.655 0.1616
EGIW 359.862 360.368 369.585 363.770 0.2334
EWE 335.685 336.192 345.409 339.594 0.1812
IW 393.073 393.221 397.935 395.027 0.3127

The fifth dataset is displayed by Abdul-Moniem and Seham (2015) [32] about the data represent the life of
fatigue fracture of Kevlar 373/epoxy subjected to constant pressure at 90 % stress level until all had failed. These
real datasets are analyzed to illustrate the merit of SPW distribution compared with some other models; namely, the
New Generalization of the Inverse Generalized Weibull (NEGIGW), the Generalized Inverse Generalized Weibull
Distribution (GIGW), The Exponential Fréchet (NEXF), The Exponentiated Generalized Inverse Weibull (EGIW),
The Exponentiated Weibull Exponential (EWE), The Inverse Weibull (IW). The fifth dataset is: ”0.0251 0.0886
0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 0.6566 0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425
0.8645 0.8851 0.9113 0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570 1.2766 1.2985 1.3211 1.3503 1.3551
1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630 1.7746 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881
1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.1330 2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 2.4951 2.5260
2.9911 3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.0960”. The
outcomes of the comparative analysis employing the goodness-of-fit statistics for the initial dataset are presented
in Table 9.

Table 9. The goodness of fit comparison criterias of the fifth data

Dist. AIC CAIC BIC HQIC K-S
SPW 247.229 257.221 254.221 250.024 0.0131

NEGIGW 257.287 258.144 268.940 261.944 0.0845
GIGW 262.855 263.418 272.178 266.581 0.1044
NEXF 269.187 269.521 276.179 271.982 0.1310
EGIW 263.461 264.024 272.784 267.187 0.1177
EWE 260.961 261.525 270.284 264.687 0.0934
IW 311.078 311.242 315.739 312.941 0.1893

It is evident from the analysis presented in Tables 5, 6, 7, 8 and 9 that the Survival Power Weibull (SPW)
Distribution demonstrates a significantly superior fit in comparison to the various other competitive modeling
alternatives that were subjected to evaluation in this study. This conclusion is further substantiated by the
observation that the SPW exhibits the lowest values for the statistic (K-S), as well as for the criterion (AIC), the
criterion (CAIC), the criterion (BIC), and the criterion (HQIC) among all the models that have been meticulously
considered within the scope of this research. In addition, The degree to which the SPW distribution aligns with
these five data sets is further depicted in Figures 6, 7, 8, 9 and 10.
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Figure 6. Comparison results for applying the SPW distribution to the first data

Figure 7. Comparison results for applying the SPW distribution to the second data
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Figure 8. Comparison results for applying the SPW distribution to the third data

Figure 9. Comparison results for applying the SPW distribution to the fourth data
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Figure 10. Comparison results for applying the SPW distribution to the fifth data

The five disparate data sets underwent rigorous analysis employing the innovative SPW distribution. We
computed the mean and variance by using first and second order moment function, furthermore, by leveraging
in the quantile function, we determined the Skewness, Kurtosis and Median, as illustrated in Table 10.

Table 10. The analyzes of descriptive of the five datasets

Dataset Mean Variance Skewness Median Kurtosis Mini Maxi
1 1.768194 1.070291 1.34187 1.495 4.991056 0.10 5.55
2 9.365625 110.42497 3.28657 6.395 18.48308 0.08 79.05
3 1.542667 1.271675 1.295462 1.235 4.31917 0.11 4.73
4 2.557452 1.251768 0.099494 2.3545 2.34768 0.04 4.663
5 1.959241 2.477415 1.979558 1.73615 8.16079 0.0251 9.096

5. Conclusion

Multiple reworks to the Weibull distribution have been established to enhance their versatility to fit some of the data
sets. This manuscript introduces the novel SPW distribution, which includes the addition of a third parameter to
the two-parameter Weibull distribution. A distinctive parameter that represents the power function of the survival
function in a pioneering way within well-established continuous distributions. The unique features of this new
model relative to the SP-G family were studied by choosing the Weibull distribution, which was considered suitable
for the SP-G family of continuous distributions. The SPW distribution, characterized by three principal parameters,
was advanced, and a plethora of mathematical functions and properties were scrutinized, with MLE computed for
the trio of parameters. At the same time, Monte Carlo simulations were conducted to demonstrate the efficacy
of these estimators. The efficiency of this distribution has been proven experimentally through the application of
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two real datasets, Confirming its superiorityr fit for the chosen data in comparison to alternative models. Herein,
we underscore this family for prospective research trajectories aimed at modifying other probability distributions
to enhance their applicability to specific continuous data types. The Weibull distribution and its generalized
distributions are also known for their suitability for failure tests and data related to failure or death rates. Hence, our
new distribution will be studied in the future in terms of other methods of estimating parameters as well as reliability
or finding entropy, especially since this distribution contains three parameters, which expands its suitability for real
data.
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