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Abstract
We present a feasible kernel-based interior point method (IPM) to solve the monotone linear complementarity problem
(LCP) which is based on an eligible kernel function with a new logarithmic barrier term. This kernel function defines the
new search direction and the neighborhood of the central path. We show the global convergence of the algorithm and derive
the iteration bounds for short- and long-step versions of the algorithm.
We applied the method to solve a continuous Control Tabular Adjustment (CTA) problem which is an important Statistical
Disclosure Limitation (SDL) model for protection of tabular data. Numerical results on a test example show that this
algorithm is a viable option to the existing methods for solving continuous CTA problems. We also apply the algorithm
to the set of randomly generated monotone LCPs showing that the initial implementation performs well on these instances
of LCPs. However, this limited numerical testing is done for illustration purposes; an extensive numerical study is necessary
to draw more definite conclusions on the behavior of the algorithm.
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1. Introduction

In this paper, we consider the monotone Linear Complementarity Problem (LCP) in the standard form: Given a
positive semi-definite matrix M ∈ Rn×n and a vector q ∈ Rn, find a pair of vectors (x, s) ∈ R2n such that

−Mx+ s = q x, s ≥ 0 xs = 0, (1)

where xs denotes the component-wise product of vectors x and s. Monotone LCPs are commonly used for
both theoretical and practical purposes. The importance of LCPs stems from the fact that Karush-Kuhn-Tucker
(KKT) optimality conditions of important optimization problems such as Linear Optimization (LO) and Quadratic
Optimization (QO) can be formulated as LCPs (see [21]). In addition, many important practical problems in game
theory, engineering, economics, and optimal control can be formulated as LCPs, see [16, 20].
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Due to the theoretical and practical importance of LCPs, efficient methods for solving LCPs are of significant
interest. The Interior-Point Methods (IPMs) have revolutionized optimization theory and practice in the last three
decades and have been proven to be quite efficient in solving different classes of LCPs that were inaccessible or
difficult to solve using simplex-type pivoting methods. The path-following IPMs are based on following a central
path trajectory of the LCP approximately by staying within a predetermined neighborhood of the central path
towards a solution of LCP. The main tool in this process is Newton’s method which is used to determine the search
direction at each iteration.

There are two types of path-following IPMs, IPMs with short-step updates at each iteration, and long-step
updates at each iteration. Long-step IPMs take more aggressive steps that can deviate farther away from the central
path, while short-step IPMs take more conservative steps staying closer to the central path. Most of the IPMs are
based on the classical logarithmic barrier function [22] that is stated in the sequel in (7). The long-step versions of
these IPMs have O

(
n log n

ϵ

)
iteration bound while short-step versions have O

(√
n log n

ϵ

)
iteration bound which

is for order of magnitude better. However, in practice, the situation is the opposite, long-step IPMs perform much
better than short-step IPMs. This is considered the irony of IPMs, the term coined by Renegar [32]. Throughout
the years a considerable effort has been devoted to designing long-step IPMs with improved theoretical iteration
bounds to reduce, or even close, the gap between the theoretical complexities of short- and long-step IPMs. Several
approaches can be observed.

The first approach was to consider higher-order methods based on the classical logarithmic barrier function [31].
The second approach was the IPM developed by Ai and Zhang [1] which was based on two key ideas: a new wide
neighborhood and the decomposition of Newton’s directions into two components. In both of these approaches, the
gap between short- and long-step versions of the IPMs was closed on the expense of more computational work.

The third approach was a fruitful idea of kernel-based IPMs introduced by Peng, Roos, and Terlaky [29] that
led to long-step IPMs with an improved iteration bound. They considered the class of self-regular kernel functions
(SRKFs). Subsequently, Bai, Roos, and El Ghami [7] introduced a different class of kernel functions, a class of
eligible kernel functions (EKFs), and obtained a similar improvement for long-step IPMs for LO. These results
were extended to P∗(κ)-LCPs in [30] for SRKFs and in [22] for EKFs. For some instances of SRKFs and EKFs
they obtained O

(√
n(log n) log n

ϵ

)
iteration bound for long-step IPMs which is a significant improvement when

compared with O
(
n log n

ϵ

)
for long-step IPM based on the classical logarithmic kernel function.

In this paper, we introduce a new kernel function which is a modification of the classical logarithmic kernel
function and show that it is EKF and SRKF. The general convergence analysis of the IPMs based on the general
EKFs presented in [22] is used to show the convergence of the IPM based on the new EKF. The iteration bounds for
short- and long-step versions of the IPM are derived, which turns out to be as good as for the classical logarithmic
kernel function.

It is also shown that the IPM developed in this paper provides an alternative efficient method to solve the
Controlled Tabular Adjustment (CTA) problem [24] which is usually solved using the simplex method.

CTA is a method of Statistical Disclosure Limitation (SDL) that was first introduced in [10, 17]. The SDL is an
increasingly important area of research and practice for the statistical agencies that collect data from individuals
or enterprises and then release it to the public, researchers, and policymakers for statistical analysis and research.
Prior to such a release, the collected data have to undergo some SDL procedure in order to guarantee the privacy
and confidentiality of data providers. The goals of such procedures are two-fold: minimize the risk of disclosure of
confidential information about data providers and, at the same time, maximize the amount of released information,
that is, maximize the utility of the data for the legitimate data users. These are conflicting goals and therefore
SDL practice as a whole can be thought of as a search for the solution of complex and multifaceted optimization
problem: maximize the utility of the released data, subject to some upper bound on disclosure risk. The way utility
and risk are formulated depends on the scenario of data release and on the data format.

Data can be released in two basic formats: microdata - a collection of individual records, and tabular data - a
table of cumulative data that is obtained from cross-tabulations of attributes from microdata. CTA is a perturbative
method of protecting tabular data when a specified subset of its cells, called sensitive cells, must be modified to
avoid the re-identification of an individual respondent. The goal of CTA is to guarantee that the modified value of
a sensitive cell is outside of the disclosure interval- an interval that is determined by the data protector (usually a
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statistical agency). The remaining cells are minimally adjusted to satisfy table equations which usually represent
the requirement that the sum of elements in each row and column should be constant and remain unchanged.
Hence, the goal of CTA is to find the closest safe table to the original table with respect to the constraints
outlined above. The closeness of the original and modified table is measured by the weighted distance between
the tables with respect to a certain norm. Most commonly used norms are ℓ1 and ℓ2 norms. Thus, the problem can
be formulated as a minimization problem with the objective function being a particular weighted distance function
and constraints being table equations and lower and upper bounds on the cell values. The ℓ2-CTA reduces to a
Quadratic Optimization problem while the ℓ1-CTA is a convex but nonsmooth problem that can be reformulated
as a Linear Optimization (LO) problem. However, the number of variables and inequality constraints doubles.
Alternatively, in [24] a novel second-order cone (SOC) reformulation of ℓ1-CTA is proposed that does not increase
the dimension of the problem as much. As it is shown in [24], conic reformulation of ℓ1-CTA is a viable alternative
to LO reformulation of the problem.

For the sake of completeness, the general formulations of CTA and its various reformulations are given in the
Numerical Results section of the paper. The IPM developed in this paper is applied to an LO formulation of a
CTA problem that appears as a test problem in [24] and several other papers. It is shown to work well confirming
the fact that it is a viable alternative for solving continuous CTA. We also apply the algorithm to the small set of
randomly generated monotone LCPs showing that the initial implementation performs well on these instances of
LCPs. However, this limited numerical testing is done for illustration purposes. More sophisticated implementation,
extensive numerical testing, and comparison to other methods are needed to draw more definite conclusions about
the practical performance of the method and are subject of future research.

The outline of the paper is as follows. The generic barrier-based IPM is presented in Section 2. The definitions
of the kernel function, EKFs, and SRKFs are presented in Section 3.1. The new kernel function and corresponding
barrier function are discussed in Section 3.2. The analysis of the algorithm based on the new kernel function and
derivation of the iteration bounds for short- and long-step variants of the method are presented in Section 4. The
application of the method to a CTA problem and preliminary numerical results are presented in Section 5 and the
concluding remarks are outlined in Section 6.

2. Barrier-based IPMs

As already indicated in the previous section, in this paper we consider the monotone LCP in the standard form
(1). We assume that the LCP satisfies the interior-point condition (IPC), which means that there exists a point
x0 > 0 such that s0 =Mx0 + q > 0, indicating that the interior of the feasible region is not empty. The IPC can
be assumed without loss of generality, since the original LCP can be embedded in the larger LCP with the known
starting point as described in Section 5.1 in [21].

Most IPMs are based on the use of Newton’s method. However, it is well-known using the direct application
of Newton’s method to the system (1) will most likely fail at the second equation called the complementarity
equation. Hence, the idea is to replace the complementarity equation in (1) with a parametrized equation xs = µe
with parameter µ > 0 and e being a vector of all ones. Therefore, we consider the parametrized system

−Mx+ s = q,

xs = µe, (2)
x, s > 0 .

Since we assume that IPC holds and M is a positive-semidefinite matrix, it is well known that the parametrized
system (2) has a unique solution, for each µ > 0; see Lemma 4.1 in [21]. This solution is denoted as (x(µ), s(µ))
and it is called the µ-center of the LCP. The set of µ-centers, with µ running through all positive real numbers,
forms a homotopy path, which is called the central path of the LCP. Under the above assumptions, if µ→ 0, the
limit of the central path exists and it is a solution of LCP (1).

The limiting property of the central path mentioned above leads naturally to the main idea of the IPMs for
solving LCP: Trace the central path while reducing µ at each iteration. However, tracing the central path exactly
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would be computationally too costly and inefficient. It has been shown that it is sufficient to trace the central
path approximately within a certain neighborhood of the central path. The neighborhood of the central path is
determined using a certain proximity measure to the central path which in this paper is determined by the kernel
function and the corresponding barrier function.

Suppose an iterate (x, s) of the IPM in the neighborhood of the central path is known. We then decrease µ to
µ := (1− θ)µ, for some value of the barrier parameter θ ∈ (0, 1). Applying Newton’s method to (2) leads to the
following Newton’s system for the search directions (∆x,∆s):

−M∆x+∆s = 0,

s∆x+ x∆s = µe− xs. (3)

Since M is a positive semidefinite matrix, the above system has a unique solution for any (x, s) > 0.
For the analysis of IPMs it is important to associate any pair (x, s) ≥ 0 and µ > 0 with the variance vector

v :=

√
xs

µ
. (4)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e. Furthermore, it is also
important to introduce the following scaled search directions dx and ds

dx :=
v∆x

x
, ds :=

v∆s

s
, (5)

where the operations are component-wise product and division. Using (4) and (5) the system (3) can be rewritten
as

−M̄dx + ds = 0,

dx + ds = v−1 − v, (6)

where M̄ := DMD, with D := X1/2S−1/2, X := diag (x), S := diag (s).
A crucial observation is that the right-hand side of the second equation of (6) equals minus the gradient of the

function

Ψc(v) :=

n∑
i=1

(
v2i − 1

2
− log vi

)
, (7)

where vi represents the i-th component of the variance vector v. In other words,

dx + ds = −∇Ψc(v). (8)

This equation is called the scaled centering equation. Its importance arises from two facts, first, it essentially
defines the search direction, and second, it defines a proximity measure to the central path.

One may easily verify that ∇2Ψc(v) = diag (e+ v−2). Since this matrix is positive definite, Ψc(v) is strictly
convex. Moreover, since ∇Ψc(e) = 0, it follows that Ψc(v) attains its minimal value at v = e, with Ψc(e) = 0.
Thus, Ψc(v) is nonnegative everywhere and vanishes if and only if v = e, that is, if and only if (x, s) is a µ-center,
i. e., x = x(µ) and s = s(µ). Hence, we see that the µ-center (x(µ), s(µ)) can be characterized as the minimizer
of the function Ψc(v). Thus, the second important feature of the function Ψc(v) is that it essentially serves as a
’proximity’ measure of closeness for (x, s) with respect to the µ-center.

The above observations regarding the function Ψc(v) lead to an obvious generalization: We can replace Ψc(v)
by any strictly convex function Ψ(v), v ∈ Rn

++, such that Ψ(v) is minimal at v = e and Ψ(e) = 0. Thus, the new
scaled centering equation becomes

dx + ds = −∇Ψ(v). (9)
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The function Ψ(v) is called a (scaled) barrier function. Hence, different barrier functions lead to different Newton’s
directions, as they are calculated from Newton’s system

−M̄dx + ds = 0,

dx + ds = −∇Ψ(v). (10)

Since

Ψ(v) = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e,

the function Ψ(v) still serves as a proximity measure of closeness to the µ-center (x(µ), s(µ)) on the central path.
Introducing a parameter τ > 0 as a threshold value, the inequality Ψ(v) ≤ τ defines a τ -neighborhood of the

central path.

NΨ(τ) =
{
v ∈ ℜn

++ : Ψ(v) ≤ τ
}

(11)

In the sequel we also use norm-based proximity measure, which is defined by

δ(v) :=
1

2
∥∇Ψ(v)∥. (12)

The function δ(v) is often called proximity function and it is easy to see that

δ(v) = 0 ⇔ v = e. (13)

From the above discussion, the main idea of the IPM based on the appropriate barrier function follows. Given the
current iterate (x, s), we start the new outer iteration by targeting the new µ+-center obtained by reducing µ by a
factor 1− θ with 0 < θ < 1, that is, µ+ = (1− θ)µ. This implies the change in the variance vector v, v+ = v√

1−θ
.

Most likely, after this step, the value of the barrier function will exceed the threshold value, that is, Ψ(v+) > τ ,
and hence, the algorithm enters the inner iteration loop. The inner iteration loop consists of computing the scaled
search directions dx and ds at the current iterate and the current value of µ+ from Newton’s system (10), which we
rename to be a new µ. Next, we compute the corresponding search directions ∆x and ∆s from dx and ds by using
(5). Then, the new inner iterate is calculated as

x+ = x+ α∆x, s+ = s+ α∆s (14)

with the appropriately calculated step size α. If necessary, the procedure is repeated, however, with keeping µ fixed,
until the iterate belongs to the τ -neighborhood (11) of the current µ-center (x(µ), s(µ)), that is, until Ψ(v) ≤ τ .
This process is repeated until µ is small enough, which is usually measured by nµ < ϵ. At this stage, we have found
an ϵ-approximate solution of LCP (1).

Note that the algorithm can be started, since, as we discussed at the beginning of this section, we may assume
that a strictly feasible point (x0, s0) is given, and this point can be chosen such that Ψ(v0) ≤ τ which means it is
in the τ -neighborhood of the µ-center.

The generic form of the barrier-based IPM for monotone LCP is given in Figure 1.
The parameters τ , θ and the step size α in the algorithm should be tuned in such a way that the number of

iterations required by the algorithm is as small as possible.
Two main types of the algorithm can be distinguished: short-step method and long-step method, according to the

value of the barrier-update parameter θ. The long-step method is characterized by the fact that θ is a fixed constant
(θ ∈ (0, 1)), independent of the dimension n of the problem, whereas the short-step method uses a value of θ that
depends of the dimension of the problem, with θ = O

(
1√
n

)
.

The resulting iteration bound depends on a careful selection of these parameter values. It also heavily depends
on the choice of the barrier function.
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Generic barrier-based IPM for LCP

Input:
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a starting point (x0, s0), such that Ψ(v0) ≤ τ , where

µ0 = (x0)T s0

n , and v0 =
√

x0s0

µ0 ;

begin
x := x0; s := s0; µ := µ0, v := v0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
v = v√

1−θ
;

while Ψ(v) > τ do
begin

calculate search direction (∆x,∆s) using (5) and (10);
determine a step size α;
update x := x+ α∆x; s := s+ α∆s;
v :=

√
xs
µ ;

end
end

end

Figure 1. Generic barrier-based IPM for LCP

3. Kernel functions and their properties

3.1. Eligible kernel functions

Following the discussion in the previous section and considering the original logarithmic barrier function (7), we
restrict ourselves to the case where a barrier function Ψ(v) is separable with identical coordinate functions ψ(vi).
All barrier functions considered in the literature on this topic are of this type. Thus,

Ψ(v) =

n∑
i=1

ψ(vi), (15)

where ψ(t) : (0,+∞) → [0,+∞) is twice differentiable, convex, and attains its minimum at t = 1, with ψ(1) =
ψ′(1) = 0. Following the terminology introduced in [6, 7, 28], we call the univariate function ψ(t) the kernel
function of the barrier function Ψ(v) (15). In the following, we state the formal definition of the kernel function.

Definition 3.1
The univariate function ψ : (0,∞) → [0,∞) is called a Kernel Function (KF) if it satisfies the following conditions:
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ψ′(1) = ψ(1) = 0, (KF-a)
ψ′′(t) > 0, (KF-b)

lim
t↓0

ψ(t) = lim
t→∞

ψ(t) = ∞. (KF-c)

The first class of KF, the class of Self-Regular KFs (SRKF), that leads to the improved complexity of long-
step IPMs was proposed by Peng, Roos, and Terlaky in [29]. Subsequently, the class of Eligible Kernel Functions
(EKFs) was introduced in [7] that leds to the same improved complexity of long-step IPMs. It is worth noting
that these two classes are not the same, however, they have a nonempty intersection. Below we state the formal
definitions of SRKF and EKF.

Definition 3.2
The KF defined in Definition 3.1 that satisfies the following additional properties:

C.1 There exist positive constants ν2 ≥ ν1 > 0 and parameters p ≥ 1, q ≥ 1 such that

ν1
(
tp−1 + t−1−q

)
≤ ψ′′(t) ≤ ν2

(
tp−1 + t−1−q

)
, ∀t ∈ (0,∞);

C.2 For any t1, t2 > 0
ψ
(
tr1t

1−r
2 ≤ rψ(t1) + (1− r)ψ(t2)

)
, ∀r ∈ [0, 1];

is called a Self-Regular Kernel Function (SRKF). We call parameter q the barrier degree and parameter p the growth
degree of the function ψ(t).

Definition 3.3
The KF defined in Definition 3.1 that satisfies the following additional properties

tψ′′(t) + ψ′(t) > 0, t < 1, (EKF-a)
ψ′′′(t) < 0, t > 0, (EKF-b)

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1, (EKF-c)
ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1, (EKF-d)

is called an Eligible Kernel Function (EKF).

Remark 3.4
In [7] another condition is also discussed, namely,

tψ′′(t)− ψ′(t) > 0, t > 1. (16)

This condition is listed because conditions (16) and (EKF-b) imply condition (EKF-d) (Lemma 4.4 in [7]). The
reason for the introduction of condition (16) is that it is easier to check condition (16) than (EKF-d) which is more
technically involved.

3.2. The new EKF with logarithmic barrier term

It is easy to observe that the barrier function (15) is a separable function with the same univariate function for each
component vi of the variance vector v. If we define this univariate function as

ψc(t) =
t2 − 1

2
− ln t, (17)

then the barrier function (15) becomes logarithmic barrier function as stated in (7), i.e. Ψ(v) = Ψc(v). The related
kernel function ψc(t) is called the logarithmic kernel function. These are the classical logarithmic barrier and kernel
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functions that have been used the most in the theory and practice of IPMs. Most optimization software codes are
also based on these functions. It is not hard to show that the logarithmic kernel function is EKF and SRKF. Term
t2−1
2 is called the growth term and − ln t is called the barrier term.
However, many other SRKFs and EKFs have been proposed and IPMs based on them analyzed and iteration

bounds calculated. The literature on this topic is rich. Without an attempt to be complete, we list several relevant
references [22, 6, 7, 9, 23, 29, 30, 27, 19, 18, 14].

The EKFs that appeared in the literature can be classified regarding the barrier term into four main groups, EKFs
with logarithmic, rational, exponential, trigonometric barrier terms, or some combination of them. There are quite
a number of instances of EKFs from last three groups, however, there are very few with logarithmic barrier terms
that are different than the classical logarithmic EKF (17).

In this section we introduce a new KF with a logarithmic barrier term that is different than the barrier term of
the classical logarithmic EKF, − ln t and show that it is EKF and SRKF. The definition of the new kernel function
is as follows:

ψ(t) =
t2 − 1

2
+ 2 ln

(
1 +

1

t

)
− 2 ln(2), t > 0, (18)

and the corresponding scaled barrier function is

Ψ(v) =

n∑
i=1

v2i − 1

2
+ 2 ln

(
1 +

1

vi

)
− 2 ln 2 vi > 0. (19)

The new kernel function has a standard growth term t2−1
2 and a logarithmic barrier term 2 ln

(
1 + 1

t

)
− 2 ln 2.

It is worth noting that this is the only other kernel function in the literature with a pure logarithmic barrier term,
however, different than the barrier term − ln t that appears in the classical logarithmic kernel function (17).

The first three derivatives of the new kernel function (18) are:

ψ
′
(t) = t− 2

t2 + t
, (20)

ψ
′′
(t) = 1 + 2

1 + 2t

(t2 + t)2
, (21)

ψ
′′′
(t) = −4

3t2 + 3t+ 1

(t2 + t)3
. (22)

It is easy to see that the new kernel function satisfies all properties of a kernel function stated in the Definition
3.1 Furthermore, ψ

′′
(t) is monotone decreasing for t > 0. Since ψ(t) is at least twice differentiable, it is completely

determined by the following integral

ψ(t) =

∫ t

1

∫ ξ

1

ψ
′′
(ζ)dζdξ. (23)

In the next lemma, it is shown that (18) is EKF. We need to show that the four conditions for eligibility stated in
the Definition 3.3 are satisfied.

Lemma 3.5
The kernel function in (18) is EKF since it satisfies all conditions in Definition 3.3.

Proof
Using the first three derivatives of the new kernel function 20 - 22, we easily check eligibility conditions in
Definition 3.3.
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tψ
′′
(t) + ψ

′
(t) = 2t+ 2t 1+2t

(t2+t)2 − 2
t2+t = 2t+ 2

(1+t)2 > 0, t < 1,

tψ
′′
(t)− ψ

′
(t) = 2t 1+2t

(t2+t)2 + 2
t2+t =

2(2+3t)
t(1+t)2 > 0, t > 1,

ψ
′′′
(t) = −4 3t2+3t+1

(t2+t)3 < 0, t > 0,

2ψ
′′
(t)2 − ψ

′
(t)ψ

′′′
(t) = 2(t7+4t6+6t5+18t4+33t3+24t2+10t+4

t3(1+t)4 > 0, t < 1.

It is shown in [22], that these conditions are essential in proving the convergence of the generic algorithm and
deriving good iteration bounds. The following lemma that provides the quadratic bounds for EKFs is also important
in the subsequent analysis of the algorithm.

Lemma 3.6 (Lemma 4.2 in [22])
Given any EKF ψ(t), the following inequalities hold:

1

2
ψ

′′
(1)(t− 1)2 < ψ(t) <

1

2
ψ

′′
(t)(t− 1)2, t < 1, (24)

1

2
ψ

′′
(t)(t− 1)2 < ψ(t) <

1

2
ψ

′′
(1)(t− 1)2, t > 1. (25)

Observe that for t = 1, the above inequalities hold as equalities. For the new EKF (18), the quadratic bounds
above reduce to the following bounds.

Corollary 3.7
Given the EKF (18), the following inequalities hold:

1

2
(t− 1)2 < ψ(t) ≤ 1

2
ψ

′
(t)2, t < 1; (26)

1

2
(t− 1)2 < ψ(t) <

5

4
(t− 1)2, t > 1. (27)

Proof
From (21) it immediately follows ψ

′′
(t) > 1 for t > 0 which leads to left inequalities in (26) and (27). The right

side of the right inequality in (27) follows from the fact that ψ
′′
(1) = 5

2 . The right inequality in (26) follows from
(23)

ψ(t) =

∫ t

1

∫ ξ

1

ψ
′′
(ζ)dζdξ ≤

∫ t

1

∫ ξ

1

ψ
′′
(ξ)ψ

′′
(ζ)dζdξ =

1

2
ψ

′
(t)2,

where the inequality in the derivation above is due to ψ
′′
(t) > 1 for t > 0. Hence, (26) holds not only for 0 < t < 1

but for entire t > 0.

Below, we show that the new EKF (18) is also SRKF.

Lemma 3.8
The kernel function in (18) is SRKF since it satisfies all conditions in Definition 3.2.

Proof
Proof of C1:
We first show the upper bound in C1.

ψ′′(t) = 1 + 2 1+2t
(t2+t)2

≤ 1 + 2 2+2t
(t2+t)2

= 1 + 4 1
t2(1+t)

≤ 1 + 4 1
t2

≤ 4
(
1 + 1

t2

)
.
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Hence, ν2 = 4 and p = q = 1. Next, we show the lower bound in C1.

ψ′′(t) = 1 + 2 1+2t
(t2+t)2

≥ 1 + 1+t
(t2+t)2

= 1 + 1
t2(1+t)

We have two cases:

Case I: If 0 < t < 1, then 1 + t < 2 implying 1
t2(1+t) >

0.5
t2 . Therefore, it follows ψ′′(t) ≥ .5

(
1 + 1

t2

)
.

Case II: If t ≥ 1, then .5 ≥ .5
t2 implying 1 + 1

t2(1+t) ≥ .5 + .5
t2 + 1

t2(1+t) . Since 1
t2(1+t) ≥ 0 , it follows that

ψ′′(t) ≥ .5
(
1 + 1

t2

)
.

Hence, ψ′′(t) ≥ .5
(
1 + 1

t2

)
for t > 0. We see that ν1 = 0.5 and again p = q = 1.

Proof of C2:
The proof of C2. follows from the (EKF-a). In [29] it is shown that these two conditions are equivalent.

4. Analysis of the algorithm for new EKF

In this section, we analyze the algorithm presented in Figure 1 for the specific barrier function (19) derived from
the new EKF (18). In the sequel, we refer to the algorithm in Figure 1 with this specific barrier function as simply
the Algorithm.

We first give an overview of the analysis of the algorithm with general EKF. The analysis is performed in the
following four major steps.

• During the outer iteration the value of a barrier function, which serves as a proximity measure, increases. It
is important to find an upper bound on that increase.

• Next, we determine the default step size that leads to a sufficient decrease of the barrier function during each
inner iteration.

• The lower bound on the decrease of the barrier function during each inner iteration is then found.
• Combining previous steps, we can determine the upper bound on the number of iterations necessary to find
ε-approximate solution of the LCP for long-step and short-step methods.

We will not repeat this general analysis here, instead, we refer the reader to [22] where the details of the analysis
and the proofs can be found. We will especially use the Scheme from [22] which streamlines the analysis of the
generic algorithm and calculations of iteration bounds for short- and long-step versions of the method. However,
to better follow the process, we first state the definition of the following two functions that play a crucial role in the
analysis of the generic algorithm and derivation of the iteration bounds and are frequently used in the Scheme.

Definition 4.1
We define two inverse functions, ϱ and ρ, as follows:

(i) The function ϱ : [0,∞) −→ [1,∞) is the inverse function of ψ(t), t ≥ 1.
(ii) The function ρ : [0,∞) −→ (0, 1] is the inverse function of − 1

2ψ
′(t), t ∈ (0, 1].

We will adapt the Scheme for the new EKF (18) and derive the iteration bounds of the short-step and long step
versions of the Algorithm. We first state the steps, as they are stated in Scheme, and then make the derivations for
the new EKF (18).

Step 1: Solve the equation − 1
2ψ

′(t) = s to get ρ(s), the inverse function of − 1
2ψ

′(t), t ∈ (0, 1]. If the equation is
hard to solve, derive a lower bound for ρ(s).

It is important to mention that variable s used in the derivations in this step and subsequent steps is different than
the variable s used in the definition of the LCP (1). It is quite clear which one is used from the content where it
appears.
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We have the following derivation;
s = − 1

2ψ
′(t)

s = − 1
2

(
t− 2

t2+t

)
2

t2+t = t+ 2s
1
t ≤ 1 + 2s

The inequality above follows from the fact that t ≤ 1 which implies t2 ≤ t and t2 + t ≤ 2t that leads to 2
t2+t ≥

1
t .

Hence, we have

ρ(s) = t ≥ 1

1 + 2s
. (28)

Step 2: Calculate the decrease of the barrier function Ψ(v) during the inner iteration in terms of the proximity
measure δ(v) for the default step size α̃.

In what follows δ(v) is denoted simply as δ. From Lemma 5.10 in [22], the lover bound on the decrease of the
barrier function, f(α) = Ψ(v+)−Ψ(v) is given as

f(α̃) ≤ −α̃δ2, (29)

where α̃ is a default step size

α̃ =
1

ψ′′ (ρ (2δ))
. (30)

For ψ
′′
(t) given by (21), we have the following derivation for t ∈ (0, 1],

ψ
′′
(t) = 1 + 2

1 + 2t

(t+ t2)2
< 1 + 2

2 + 2t

(t+ t2)2
= 1 + 2

2(1 + t)

t2(1 + t)2
= 1 +

4

t2(1 + t)
< 1 +

4

t2
, (31)

where the last inequality is due to the fact that 1/1 + t < 1 for t > 0. Hence, from (28), (30) and (31) we derive the
lower bound for the default step size

α̃ =
1

ψ′′ (ρ (2δ))
>

1

1 + 4
(ρ(2δ))2

≥ 1

1 + 4(1 + 4δ)2
(32)

Step 3: Solve the equation ψ(t) = s to get ϱ(s), the inverse function of ψ(t), t ≥ 1. If the equation is hard to
solve, derive lower and upper bounds for ϱ(s).

From the definition (18) of ψ(t), we have

t2 − 1

2
= s− 2 ln

(
1 +

1

t

)
+ 2 ln(2). (33)

Since −2 ln
(
1 + 1

t

)
+ 2 ln(2) is monotone increasing function with respect to t ≥ 1, (33) reduces to the following

inequality
t2 − 1

2
≥ s,

which implies that
ϱ(s) = t ≥

√
2s+ 1. (34)

Using (27) in Corollary 3.7, we have

s = ψ(t) ≥ 1

2
(t− 1)2,

where equality is obtained for t = 1. This immediately leads to the following inequality

ϱ(s) = t ≤ 1 +
√
2s. (35)
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Hence, in inequalities (34) and (35) we obtained lower and upper bounds on ϱ(s)
√
2s+ 1 ≤ ϱ(s) ≤ 1 +

√
2s.

Step 4: Derive a lower bound for δ in terms of Ψ(v).
We have

Ψ(v) =

n∑
i=1

ψ(vi) ≤
n∑

i=1

1

2
ψ′(vi)

2 =
1

2
∥∇Ψ(v)∥2 = 2δ(v)2,

where the inequality in the derivation above is due to the right inequality in (26) which is valid not only for t < 1
but for entire t > 0, as shown in the proof of the Corollary 3.7. Hence, we immediately obtain the lower bound for
δ in terms of Ψ

δ(v) ≥
√

1

2
Ψ(v). (36)

This lower bound leads to yet another one. Since in the Algorithm we assume the threshold parameter τ ≥ 1 and
in inner iterations Ψ(v) ≥ τ , the inequality (36) reduces to

δ(v) ≥
√

1

2
>

1

2
. (37)

Step 5: Substitute the results of Step 3 and Step 4 into Step 2 and find a valid inequality of the form

f(α̃) ≤ −βΨ(v)1−γ

for some positive constants β and γ, with γ ∈ (0, 1] as small as possible.
The inequality in (37) can be written as 1 ≤ 2δ and used to further transform the lower bound for default step

size α̃ in (32)

α̃ >
1

1 + 4(4δ + 1)2
≥ 1

4δ2 + 4(2δ + 4δ)2
=

1

148δ2
. (38)

Substituting (36) and (38) into the (29) we obtain

f(α̃) ≤ −α̃δ2 ≤ − 1

148δ2
δ2 = − 1

148
. (39)

Hence, we have

f(α̃) ≤ −βΨ(v)1−γ = − 1

148
,

implying that

β =
1

148
, γ = 1. (40)

Step 6: Calculate an upper bound for Ψ0 which is the value of the barrier function after outer iteration in which
µ is reduced to µ+ = (1− θ)µ, that is, Ψ0 = Ψ(v+) = Ψ

(
v√
1−θ

)
.

The upper bound is given in Corollary 5.2 in [22]

Ψ0 ≤ nψ

(
ϱ
(
τ
n

)
√
1− θ

)
≤ n

2
ψ′′(1)

(
ϱ( τn )√
1− θ

− 1

)2

. (41)

We have the following derivation

Ψ0 ≤ n
2
5
2

(
ϱ( τ

n )√
1−θ

− 1

)2

= 5n
4(1−θ)

(
ϱ
(
τ
n

)
−

√
1− θ

)2
≤ 5n

4(1−θ)

(
1 +

√
2τ
n −

√
1− θ

)2
≤ 5n

4(1−θ)

(
θ +

√
2τ√
n

)2
= 5

4(1−θ)

(
θ
√
n+

√
2τ
)2
.

(42)

Stat., Optim. Inf. Comput. Vol. 13, March 2025



912 INTERIOR-POINT METHODS FOR MONOTONE LINEAR COMPLEMENTARITY PROBLEMS

The first inequality follows from (41) by substituting ψ′′(1) = 5
2 from (21). The second inequality follows from

(35) while the third inequality is the result of the well-known inequality 1−
√
1− θ = θ

1+
√
1−θ

≤ θ.
Step 7: Calculate an upper bound for the total number of iterations N by substituting the results of Step 5 and

Step 6 into the expression

N ≤ Ψγ
0

θβγ
log

n

ϵ
.

Hence, we have the following derivation of the upper bound of iterations of the Algorithm

N ≤ Ψ0

θ 1
148

log n
ϵ

≤ 148
θ

5
4(1−θ)

(
θ
√
n+

√
2τ
)2

log n
ϵ

= 185
θ(1−θ)

(
θ
√
n+

√
2τ
)2

log n
ϵ ,

(43)

where the first inequality is due to (40) and the second inequality is due to (42).
Step 8: Set τ = Θ(n) and θ = Θ(1) to calculate an iteration bound for long-step method, and set τ = Θ(1) and

θ = Θ
(

1√
n

)
to calculate an iteration bound for short-step method.

Short-step method: Substituting τ = Θ(1) and θ = Θ
(

1√
n

)
into (43) we obtain

N ≤ 185
θ(1−θ)

(
θ
√
n+

√
2τ
)2

log n
ϵ

= 185

Θ
(

1√
n

)(
1−Θ

(
1√
n

)) (Θ( 1√
n

)√
n+

√
2Θ(1)

)2
log n

ϵ

= 185

Θ(1)
(

1√
n

)(
1−Θ(1)

(
1√
n

)) (Θ(1)
(

1√
n

)√
n+

√
2Θ(1)

)2
log n

ϵ

= 185
Θ(1)Θ(1) (Θ(1) + Θ(1))

√
n log n

ϵ

= 185
Θ(1)Θ(1)

√
n log n

ϵ .

(44)

Hence, for short-step method we match the best possible iteration bound

N = O
(√

n log
n

ϵ

)
. (45)

Long-step method: Substituting τ = Θ(n) and θ = Θ(1) into (43) we obtain

N ≤ 185
θ(1−θ)

(
θ
√
n+

√
2τ
)2

log n
ϵ

= 185
Θ(1)(1−Θ(1))

(
Θ(1)

√
n+

√
2Θ(n)

)2
log n

ϵ

= 185
Θ(1)Θ(1) (Θ(1)

√
n+Θ(1)

√
n)

2
log n

ϵ

= 185
Θ(1)Θ(1)n log n

ϵ .

(46)

Hence, for long-step method we get the following iteration bound

N = O
(
n log

n

ϵ

)
. (47)

Hence, we conclude that the iteration bounds of the long- and short-step methods are of the same order of
magnitude as for the classical logarithmic barrier function.
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Remark 4.2
In [29] it is shown that a long-step IPM based on the SRKF with a barrier term q ≥ 1 has an O

(
n

q+1
2q log n

ε

)
iteration bound while the iteration bound of short-step IPMs is the same as for the short-step IPMs based on EKFs,
O
(√

n log n
ε

)
.

Since the new kernel function (18) is SRKF with q = 1, the iteration bound of the large-step version of the
Algorithm is O

(
n log n

ε

)
confirming the result (47) obtained when considering new kernel function (18) as an

EKF.

Remark 4.3
In this remark we discuss an interesting observation regarding the complexity of the long-step version of the
Algorithm. In Step 1 of the analysis of the Algorithm in Section 4, we have to solve the equation

2

t2 + t
= 2s+ t, (48)

for t or, if it is hard to solve the equation, find the lover bound on t. We can do that in a different way than in Step
1 in Section 4. The left-hand side of the equation (48) can be transformed to

2

t2 + t
=

2

t2(1 + 1/t)
.

Since t ∈ (0, 1], we can assume that there exists t0 > 0, however small, such that t ∈ [t0, 1]. If we denote
λ = 1 + 1/t0, then 1 + 1/t ≤ λ, hence,

2

t2(1 + 1/t)
≥ 2

λt2
.

Thus, from (48) we can derive the following inequality

2

λt2
≤ 2s+ 1,

where the right side of the inequality follows from the fact that in (48) 2s+ t ≤ 2s+ 1 for t ≤ 1. Hence, we have
the following lower bound on t = ρ(s) that is different than the one in (28) and depends on the parameter λ

t = ρ(s) ≥
√

2

λ(2s+ 1)
.

If we follow the steps of the analysis of the Algorithm as in Section 4, after some calculations, we would derive
the iteration bound for long-step version of the Algorithm to be O

(
λ
√
n log n

ϵ

)
.

Hence, with this derivation, the iteration bound of the long-step version of the Algorithm is of the same order
of magnitude as the iteration bound for the short-step version. However, this derivation has a serious drawback,
it depends on the constant λ which can be fixed arbitrarily and, hence, can be exponentially large if the t0
is exponentially small. Introducing such a constant for even well structured problems such as LO makes this
derivation obsolete.

However, in our opinion, this observation still has value because it gives insight into finding and/or creating a
kernel function for which short- and long-step versions of the related IPM would have iteration bounds of the same
order of magnitude. This is an interesting topic for further research.

5. Numerical results

Numerical experiments were implemented in Python and carried out on a regular PC operating on a 64-bit
Operating System Windows 10 machine, lntel(R) Core(TM) i7-10700K CPU @ 3.80GHz, 16.0 GB RAM.
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5.1. Numerical results for CTA Model

5.1.1. The CTA Model
In this subsection we provide the formulation of CTA problem as an important example of the conic problem to

which the IPM developed in this paper can be efficiently applied.
The following CTA formulation is given in [24] and several other papers: Given the following set of parameters:

(i) A set of cells ai, i ∈ N = {1, . . . , n}. The vector a = (a1, . . . , an)
T satisfies a certain linear system Aa = b

where A ∈ Rm×n is an m× n matrix and b ∈ Rm is m-vector. The system usually describes the fact that
the sum of elements in each row and column should remain unchanged, i.e. constant.

(ii) A lower, and upper bound for each cell, lai
≤ ai ≤ uai

for i ∈ N , which are considered known by any
attacker.

(iii) A set of indices of sensitive cells, S = {i1, i2, . . . , is} ⊆ N .
(iv) A lower and upper protection level for each sensitive cell i ∈ S respectively, lpli and upli, such that the

released values must be outside of the interval (ai − lpli, ai + upli).
(v) A set of weights, wi, i ∈ N used in measuring the deviation of the released data values from the original data

values.

A CTA problem is a problem of finding values zi, i ∈ N , such that zi, i ∈ S are safe values and the weighted
distance between released values zi and original values ai, denoted as ∥z − a∥l(w), is minimized, which leads to
solving the following optimization problem

min
z

∥z − a∥l(w)

s.t. Az = b,
lai ≤ zi ≤ uai , i ∈ N ,
zi, i ∈ S are safe values.

(49)

As indicated in the assumption (iv) above, safe values are the values that satisfy

zi ≤ ai − lpli or zi ≥ ai + upli, i ∈ S. (50)

By introducing a vector of binary variables y ∈ {0, 1}s, the constraint (50) can be written as

zi ≥ −L (1− yi) + (ai + upli) yi, i ∈ S,
zi ≤ Lyi + (ai − lpli) (1− yi) , i ∈ S, (51)

where L≫ 0 is a large positive number. Constraints (51) enforce the upper safe value if yi = 1 or the lower safe
value if yi = 0.

Replacing the last constraint (49) in the CTA model with constraints in (51) leads to a mixed integer convex
optimization problem (MIOP) which is, in general, a difficult problem to solve; however, it provides solutions
with high data utility [11]. The alternative approach is to fix binary variables up front, which leads to a CTA
that is a continuous convex optimization problem because all binary variables are replaced with values 0 or 1. The
continuous CTA is easier to solve; however, the obtained solution may have a lower data utility because the optimal
solution of the continuous CTA is either a feasible or infeasible solution of the corresponding MIOP depending on
the values that were assigned to the binary variables. The strategies on how to avoid a wrong assignment of binary
variables that may result in the MIOP being infeasible are discussed in [12, 13].

In what follows, we consider a continuous CTA where binary variables in MIOP are fixed with certain values
of 0 or 1, and vector z is replaced by the vector of cell deviations x = z − a. Then, the CTA (49) reduces to the
following convex optimization problem:

min
x

∥x∥l(w)

s.t. Ax = 0,
l ≤ x ≤ u ,

(52)
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where upper and lower bounds for xi, i ∈ N are defined as follows:

li =

{
upli if i ∈ S and yi = 1

lai − ai if (i ∈ N \ S) or (i ∈ S and yi = 0)
(53)

ui =

{
−lpli if i ∈ S and yi = 0

uai − ai if (i ∈ N \ S) or (i ∈ S and yi = 1) .
(54)

The two most commonly used norms in (52) are the ℓ1 and ℓ2 norms. For the ℓ2-norm, (52) reduces to the
following ℓ2-CTA model:

min
x

n∑
i=1

wix
2
i

s.t. Ax = 0,
l ≤ x ≤ u .

(55)

The above problem is a standard QO problem that can be efficiently solved using IPM or other methods.
For the ℓ1-norm, (52) reduces to the following ℓ1-CTA model:

min
x

n∑
i=1

wi |xi|

s.t. Ax = 0,
l ≤ x ≤ u .

(56)

The ℓ1-CTA model (56) above is a convex optimization problem; however, the objective function is not
differentiable at x = 0. Since most of the algorithms, including IPMs, require differentiability of the objective
function, (56) needs to be reformulated.

The standard reformulation is the transformation of (56) into the following LO model:

min
x−,x+

n∑
i=1

wi

(
x+i + x−i

)
s.t. A

(
x+i − x−i

)
= 0,

l+ ≤ x+ ≤ u+,
l− ≤ x− ≤ u−,

(57)

where

x+ =

{
x if x ≥ 0

0 if x < 0,
x− =

{
0 if x > 0

−x if x ≤ 0.
(58)

The drawback of the LO reformulation above is that the number of variables and inequality constraints doubles.
In [24] an alternative SOC reformulation of ℓ1-CTA is proposed where the dimension of the problem does not
increase as much. It is based on the fact that the absolute value has an obvious SOC representation since the
epigraph of the absolute value function is exactly SOC, that is,

ti = |xi| −→ Ki =

{
(xi, ti) ∈ R2 : ti ≥

√
x2i

}
.

A SOC formulation of the l1-CTA (56) is given below

min
x

∑n
i=1 witi

s.t. Ax = 0,
(xi, ti) ∈ Ki; i = 1, . . . , n ,
l ≤ x ≤ u .

(59)
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The IPM developed in this paper can be directly applied to the LO formulation in (57) of ℓ1-CTA because LO
can straightforwardly be formulated as a monotone LCP or, alternatively the Algorithm can easily be modified to
solve a LO formulation directly. In the next subsection, we implement the method on a CTA test example used in
[24] and several other papers. These numerical results show that the Algorithm is a viable option for solving CTA
problems, however, more sophisticated implementation, extensive numerical testing, and comparison with other
methods, are needed to draw more definite conclusion.

5.1.2. Numerical results for the test example
We first consider the test example of a table considered in Figure 1 (table (a)) in [24] which is also listed as table

(a) in Figure 2 below.

Original table
10(3) 15 11 9 45

8 10 12 15 45
10 12 11 13(5) 46
28 37 34 37 136

(a)

Safe table: LO ℓ1-IPM
13.11 15.30 11.25 5.34 45
8.19 10.60 12.55 13.66 45
6.70 11.10 10.20 18 46
28 37 34 37 136

(b)

Safe table: LO ℓ1-Simplex
13 15 11 6 45
10 10 12 13 45
5 12 11 18 46

28 37 34 37 136

(c)

Figure 2. Results of the test example (rounded to two decimal places).

The continuous CTA model based on the table (a) is formulated in the following way:

• The linear constraints are obtained from the requirement that the sum of the elements in each row (or column)
remains constant and is equal to the corresponding component in the last column (or row) of table (a).

• The sensitive cells are cells a1 and a12. For both of them the upper safe values are enforced, which are listed
in the parentheses in the lower right corners of the cells, upl1 = 3 and upl12 = 5 respectively. Hence, in the
transformed tables the upper safe value of the cell a1 should be 13 or above and for a12 the upper safe value
should be 18 or above.

• For the nonsensitive cells the lower and upper bounds are set to be zero and positive infinity respectively, that
is, lai

= 0 and uai
= inf for i = 2, . . . , 11.

• The weights in the objective function are set to have the value one, that is, wi = 1 for i = 1, . . . , 12.

Table (b) is a safe table obtained by solving LO formulation of ℓ1-CTA using the Algorithm in Figure 1. For
comparison we also list the safe table (c) obtained by solving it using the Simplex method in MOSEK solver [2].

5.2. Numerical results for a set of randomly generated monotone LCPs

5.2.1. Randomly generated monotone LCPs
A monotone LCP is randomly generated in the following way:

1. Randomly generate a m× n matrix A using random generator subroutine in Python, matrix A =
numpy.random.randint(from, to, size=(m,n)).

2. Calculate a matrix M = ATA. By construction matrix M is positive semidefinite.
3. Calculate a vector q such that q = e−Me = (I −M)e, where vector e is a n-vector of all ones, and I is a
n× n identity matrix. This selection of vector q ensures that x = e, s = e is an obvious solution of the LCP,
hence, the feasible region of the LCP is not empty.

We consider problems of dimension n = 10, 20, 50, 100.

5.2.2. Numerical results for monotone LCPs
A set of randomly generated monotone LCPs described in the previous subsection is solved using the Algorithm

with two EKFs, the new EKF (18), and the classical logarithmic kernel function (17). The classical logarithmic
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kernel function is used in most implementations of IPMs in optimization software packages and serves as a
benchmark for comparison with IPMs based on different kernel functions.

The point x = e, s = e is an obvious starting point for the Algorithm because µ0 = 1 and v0 = e implying that
x = e, s = e is a µ-center, i.e., lies on the central path of the LCP.

We have used the following values of the parameters:

• Accuracy parameter: We used two values, ε = 0.001 (lower accuracy) and ε = 0.00001 (higher accuracy).
• Threshold parameter: We used two values τ = 3 (narrower neighborhood) and τ = 10 (wider neighborhood).
• Barrier parameter: For the long-step method we used two values θ = 0.9 (more aggressive steps) and θ = 0.5

(less aggressive steps). For the short-step method we only used θ = 1√
n

.
• Step size:

Default step size: From (32), the lower bound for a step size is α = 1
1+4(1+4δ)2 which is then taken as a default

step size. The default step size for classical logarithmic kernel function is exact, α = 1

1+(2δ+
√
1+4δ2)

2 , see

[7].
Practical step size: We have also tried an aggressive step size that is practical but does not guarantee
the convergence of the Algorithm. In essence, it is a scaled minimal ratio type step which is obtained as
follows. First, calculate αx =

{
− xi

∆xi
: ∆xi < 0

}
and αs =

{
− si

∆si
: ∆si < 0

}
. Next, calculate αmax =

min {αx, αs}, and then finalize the calculation of the step size α = γαmax, where γ = 0.9, or γ = 0.95, or
even γ = 0.99, assuring that we slightly step back from the boundary of the feasible region. We call this step
size maximal step size and denote it as maxα.

In Table 1, the number of iterations and the CPU times for both EKFs and both choices of step sizes are given.
A few comments on the results shown in the table are in order.

• The number of iterations for the default step size for the new kernel function is significantly higher than for
the classical logarithmic kernel function. The reason is that the default step size is calculated exactly for the
classical kernel function while for the new kernel function we use a lower bound that may not be the best
estimate of the step size, however, it does serve the purpose of deriving good theoretical iteration bounds for
the new kernel function.

• In the first four rows of the Table 1, LCPs were solved by the long-step method using an aggressive reduction
of µ with θ = 0.9, and moderately aggressive reduction with θ = 0.5. In the last row of the table a short-
step method was used with θ depending on the dimension of the problem, hence, the reduction of µ at each
iteration is smaller.

• If we look at the first two rows of the table, we can see that the number of iterations is smaller for θ = 0.5
because we expect the value of the barrier function after the µ-update to increase less, hence, also deviates
less from the central path than for θ = 0.9, requiring less inner iterations necessary to return to the τ -
neighborhood of the central path.

• Comparing the first and third rows of the table, we can observe that a wider τ -neighborhood for τ = 10
requires more iterations than the narrower τ -neighborhood for τ = 3.

• Finally, the third and fourth rows of the table show that in the case of higher accuracy ε = 0.00001, the
Algorithm requires more iterations than in the case of the lower accuracy ε = 0.001, which is to be expected.

• The columns with αmax in the table represent the number of iterations when the practical (aggressive)
step size is used that converges to the ε-approximate solution of LCP significantly faster than the default
step size. However, it does not guarantee convergence. We can observe that in this case long-step methods
are much faster than the short-step methods, which is expected and observed in many, if not all, practical
implementations of these types of IPMs [2]. It is also worth noting that for αmax step size the number of
iterations for the classical kernel function and new kernel function are identical in almost all cases except
one where they differ for only one iteration. The related CPU times show more differences, albeit small ones,
than the iteration counts. Actually, in several instances the CPU times of IPM based on a new kernel function
are slightly better than for the IPMs based on the classical logarithmic kernel function. Hence, the last two
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columns of the table show that with aggressive step sizes, IPMs based on the new kernel function behave
equally as good as IPMs with classical logarithmic kernel function.

θ τ ϵ n
# iterations
CPU time (sec)

New Ψ
Default step size

Classical Ψ
Default step size

New Ψ
α max

Classical Ψ
α max

0.9 3 0.001

10

20

50

100

11926
1.03125
24185
3.984375
47518
31.96875
83333
249.28125

2693
0.234375
5568
0.984375
11146
8.375
19875
55.578125

7
0.0
9
0.0
9
0.0
10
0.015625

7
0.0
9
0.0
9
0.015625
10
0.015625

0.5 3 0.001

10

20

50

100

4683
0.40625
7303
1.21875
13438
8.609375
22676
70.40625

980
0.09375
1555
0.25
2933
2.3125
5051
12.921875

14
0.0
15
0.0
16
0.015625
17
0.015625

15
0.0
15
0.0
16
0.0
17
0.125

0.9 10 0.001

10

20

50

100

19900
1.71875
36685
6.171875
63781
43.125
104006
297.796875

4619
0.40625
8585
1.515625
15138
10.703125
24961
71.28125

7
0.0
9
0.0
8
0.0
9
0.0

7
0.0
9
0.0
8
0.0
9
0.078125

0.9 10 0.00001

10

20

50

100

32524
2.859375
53907
9.234375
92695
64.15625
149994
452.671875

7548
0.6875
12623
2.140625
22026
14.453125
35988
104.734375

10
0.0
11
0.0
10
0.109375
11
0.0

10
0.015625
11
0.0
10
0.015625
11
0.0

1/
√
n 3 0.001

10

20

50

100

3747
0.3125
5099
0.859375
7904
6.15625
11469
33.625

767
0.078125
1045
0.171875
1627
0.921875
2362
7.40625

25
0.0
40
0.015625
71
0.0
110
0.125

25
0.0
40
0.0
71
0.0
110
0.03125

Table 1. Results of solving monotone LCPs using Algorithm.
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The numerical results presented in Table 1 are for illustration purposes, however, they still show that with
aggressive step size, IPMs with new kernel function and classical logarithmic kernel function are comparable.
A more sophisticated implementation that includes a procedure to select a starting point, detecting and handling
the ill-conditioning, taking advantage of sparsity and block structure of problems, extensive numerical testing on a
larger set of test problems, and comparisons with IPMs based on other kernel functions are needed to draw more
definite conclusions about the computational behavior of the Algorithm. This is an interesting and large enough
topic for future research whose results we intend to present in a separate paper.

6. Concluding remarks

In this paper, we consider a monotone LCP which is the most commonly used class of LCPs. The method of solving
a monotone LCP is a feasible barrier-based IPM, the outline of which is given in Figure 1.

The class of EKFs was introduced in [7] to improve the theoretical performance of long-step versions of kernel-
based IPMs. It is well known that most long-step methods perform better in practice but have worse theoretical
iteration bounds than short-step methods. The best iteration bound for most short-step methods is O(

√
n log n

ϵ )
while the best iteration bound for long-step methods is O(

√
n log n log n

ϵ ) which is achieved for several specific
EKFs [7, 22]. Similar results were obtained for the class of SRKFs introduced in [30, 29].

We introduced a new kernel function (18) with logarithmic barrier term that is different than the barrier term
− ln t of the classical logarithmic kernel function (17). It is proved that the new kernel function is EKF adding
to the small pool of the EKFs with pure logarithmic barrier term. It is shown in Remark 4.2 that the new kernel
function is also SRKF.

The generic barrier-based IPM presented in Figure 1 is adapted for the barrier function based on the new kernel
function and is called throughout the text simply the Algorithm. The Algorithm was analyzed and iteration bounds
for short- and long-step versions of the Algorithm were derived. It is shown that the iteration bounds of large- and
short-step versions have the same order of magnitude as large- and short-update versions of the IPM based on the
classical logarithmic kernel function, namely O(

√
n log n

ϵ ) for short-step version and O(n log n
ϵ ) for long-step

version of the Algorithm. These results were confirmed by the fact that the new kernel function is also SRKF.
It is important to mention that the goal of the paper is mostly theoretical, to introduce a new kernel function,

examine its properties as EKF and SRKF, analyze the IPM based on this new kernel function, and derive the
iteration bounds for short-step and long-step versions of the Algorithm.

The numerical experiments in Section 5 are limited to show the validity of the Algorithm. The Algorithm is
applied to solve a continuous CTA problem which is an important Statistical Disclosure Limitation (SDL) model
for the protection of tabular data. Numerical results on a standard test example in Figure 2 show that this algorithm
is a viable option to the existing methods for solving continuous CTA. We also applied the Algorithm to a small set
of randomly generated monotone LCPs. Numerical results are presented in Table 1 and show that the Algorithm
performs well on this small set of test problems. Furthermore, in the same table, we compared the Algorithm with
the IPM based on the classical logarithmic barrier function, which is a benchmark kernel function used in most
implementations of IPM, and showed that for the practical, aggressive, step-sizes they perform equally as good.
However, more extensive numerical testing on a larger set of test problems, and comparisons with IPMs based on
other kernel functions, are needed to draw more definite conclusions about the behavior of the Algorithm. This is
an interesting topic for future computational research.

Other possible research directions, that are more theoretical, include modifications of the Algorithm to solve
different formulations of the CTA model as well as more general classes of LCPs, such as sufficient LCPs and
LCPs over symmetric cones. An interesting but difficult topic for future research is connected to the observation
in Remark 4.3 that may be helpful in searching for the the kernel function for which short- and long-step IPMs
have the same complexity, namely O(

√
n log n

ϵ ).
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