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Abstract
The accurate pricing of options is crucial for minimizing financial risks and making informed investment decisions in
dynamic markets. Traditional models like the Black-Scholes often fail to account for the early exercise feature of American
options and the self-financing replicating portfolio concept, leading to less realistic pricing. This study address these gaps
by employing various metaheuristic algorithms, including Particle Swarm Optimization, Differential Evolution, Grey Wolf
Optimization, and Simulated Annealing Algorithm, to estimate the parameters for a modified Cox-Ross-Rubinstein model.
We derive a Brownian motion model incorporating upward and downward factors and use the Euler-Maruyama method to
simulate stock price paths. By comparing these simulated paths with real stock data, we evaluate the effectiveness of the
estimated parameters. Additionally, we improve the numerical method for estimating American option prices via the CRR
model by integrating the self-financing replicating portfolio concept. The results demonstrate that Particle Swarm and Grey
Wolf optimization algorithms provide parameter estimates that yield simulated paths closely matching the real stock data,
thereby offering computationally realistic prices for American options. This study highlights the potential of integrating
metaheuristic algorithms with traditional models to enhance the accuracy and reliability of option pricing.
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1. Introduction

Pricing options in a manner that accurately reflects various market and investment conditions can minimize losses
and ensure informed decisions on long or short positions in the market. Such conditions include early exercise,
as seen in American options, and the concept of a self-financing replicating portfolio. The Cox-Ross-Rubinstein
(CRR) model has been found to be more suitable for American options compared to the Black-Scholes model, as
it accommodates early exercise for option pricing [5]. Despite significant advancements in modeling underlying
stocks, particularly with the Geometric Brownian Motion (GBM) model [19], the existing literature has yet to
adequately address the limitations in estimating jump factors within the CRR model under the self-financing
replicating portfolio framework. This research aims to bridge these gaps by proposing a robust numerical approach
that enhances the accuracy of jump estimation without deviating from the full solution of Brownian Motion,
thereby providing a more reliable method for pricing American options.
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In the literature, some authors have focused on modeling the underlying stock using different models, such as
the Geometric Brownian Motion (GBM) model [10, 13, 17]. This model is more easily incorporated into the
Black-Scholes model than the CRR model [28]. However, to use the CRR model, some authors estimate jump
factors using a maximum likelihood algorithm criterion that counts the number of times a stock has jumped
against the number of times it has not, expressing this as a percentage [21]. The parametric Geometric Brownian
Motion, which is known for its desirable results in fitting data, has been sidelined for a long time. This led
authors, especially those working under the self-financing replicating portfolio framework, to manipulate the
solution of the Brownian Motion to estimate average daily upward and downward jump factors [11]. The common
approach involves removing Brownian Motion noise from the solution and then varying the signs of the volatility
components to estimate jumps [15, 22]. This results in estimates that somewhat deviate from the full solution of
the Brownian Motion [24].

Numerical methods for the CRR model mainly apply the technique of removing noise in the solution of Brownian
Motion to estimate jumps, in order to achieve a self-financing replicating portfolio according to the European
options. Most authors estimate volatility from returns to ensure that the factors accurately reflect jumps [2]. The
concept of a self-financing replicating portfolio is rarely used in trees for European options. [17] and [12] assume
that a tree is inherently a self-financing framework. Many numerical methods have been developed without this
concept, as seen in [4] and [20] for the CRR model.

In recent years, research has presented numerous metaheuristic algorithms that have been applied in various
scenarios, typically discrete, such as optimizing positions to minimize losses in electric power systems,
transportation expenses, and even mitigating denial-of-service attacks [9]. Few methods, like the Simulated
Annealing Algorithm (SAA), Particle Swarm Optimization (PSO), Differential Evolution (DE) algorithm, and
Grey Wolf Optimization (GWO), have been tried for continuous cases, usually in terms of optimization for discrete
factors [1, 18].

Furthermore, advancements in computational power have enabled more sophisticated approaches to option pricing
models, incorporating machine learning and artificial intelligence techniques. These methods aim to refine the
estimation of jump factors and volatility, providing more accurate and robust models for both European and
American options. Studies such as [16] and [25] have demonstrated the potential of these advanced algorithms in
enhancing the predictive power and efficiency of option pricing models.

Additionally, the integration of metaheuristic algorithms with traditional models has shown promising results in
handling large datasets and complex market conditions. For instance, [27] and [26] utilized a hybrid approach
combining PSO with GBM to capture market anomalies and improve pricing accuracy. This hybrid methodology
not only enhances the flexibility of the models but also provides a robust framework for future research in financial
modeling and option pricing.

The existing literature has yet to address several critical questions: 1) How can jumps be estimated in a way that
does not violate the principles of GBM for use in the CRR model, particularly for American option exercises? 2)
If it is possible to minimize the violation of GBM, how can metaheuristic algorithms be utilized to estimate jumps
while ensuring a self-financing replicating portfolio scenario? 3) Furthermore, once this issue is resolved, how can
the self-financing replicating portfolio be integrated into the CRR model to compute realistic prices for American
options?

This paper proposes a robust numerical approach to the CRR model under the self-financing assumption.
Specifically, we derive parameters from a modified Brownian motion to enhance the accuracy of jump estimation.

In summary, this work makes the following contributions:
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(i) Integration of a self-financing replicating portfolio into the numerical method for the American option
exercise under the CRR model. The combination of this approach with metaheuristic algorithms results
in computationally realistic prices for American options.

(i) Development of a Brownian motion model that includes both upward and downward factors. Using the Euler-
Maruyama method and a sampling correction procedure, a fitness function is constructed that converges
effectively to provide accurate estimates of jumps using PSO, DE, SAA, and GWO.

The rest of the paper is organized as follows: Section 2 describes the methodology employed to achieve the study’s
objectives. Section 3 presents the results, illustrating the effectiveness of the methods used. Finally, Section 4
concludes the paper by discussing the findings and their implications.

2. Methodology

This section presents the methodology used to achieve the goals of this paper. First, it covers the concepts of self-
financing and replicating portfolios. It then delves into the use of these concepts to improve numerical methods for
calculating both American and European options. This work proposes using metaheuristic techniques instead of
traditional likelihood-based approaches to enhance the estimation process. Specifically, it explains the application
of Simulated Annealing (SAA), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Grey Wolf
Optimization (GWO) algorithms, which necessitate the use of sufficient data.

2.1. Utilization of Self-Financing and Replicating Portfolio Principles

A self-financing portfolio is one where the changes in the portfolio’s value over time are solely due to the changes in
the prices of the assets it holds. That is, no additional funds are added or withdrawn from the portfolio; any changes
in the value are the result of gains or losses from the assets’ price movements. Mathematically, the following
definition [14] can be adopted.

Definition 1
Consider a market with N assets {Sj}Nj=1. Let ωt = {ωj,t}Nj=1 be a vector of weights representing the proportion
of wealth invested in asset Sj at time t. Let Vt be the value of the portfolio at time t. The portfolio ωt is called
self-financing if the change in the portfolio value over the time interval [t, t+∆t] is given by:

Vt+∆t − Vt =

N∑
j=1

ωj,t∆Sj , (1)

where ∆Sj = Sj,t+∆t − Sj,t represents the change in the price of asset Sj over the time interval [t, t+∆t].

A replicating portfolio is one that matches the payoff of a derivative at maturity. The portfolio is constructed by
holding positions in the underlying assets and adjusting these positions over time to ensure that the portfolio value
replicates the value of the derivative. The following definition [12] can be adopted:

Definition 2
The value of the replicating portfolio Vt at any time t is given by:

Vt = ∆tSt +Ψt, (2)

where ∆t represents the number of shares of the underlying asset held in the portfolio, and Ψt represents the
amount of cash or risk-free asset held. The cash or risk-free asset component Ψt is estimated as:

Ψt = e−r∆t(Vt+∆t −∆tSt+∆t), (3)

where Vt+∆t is the portfolio value at time t+∆t, St+∆t is the asset price at time t+∆t, and r is the risk-free rate.
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The value of an American option can be represented as the value of a self-financing replicating portfolio in the
CRR model.

Theorem 1
Let Vt be the value of an American option at time t in the Cox-Ross-Rubinstein (CRR) model. Then

Vt = ∆tSt +Ψt, (4)

where ∆t and Ψt are determined such that the portfolio replicates the payoff of the American option at each time
step and allows for early exercise, satisfying:

Vt = max
(
payoff(St), e

−r∆t(pV u
t+∆t + (1− p)V d

t+∆t)
)
, (5)

with p = er∆t−d
u−d , and V u

t+∆t and V d
t+∆t representing the option values at the next time step for the up and down

states, respectively.

Proof
See [6] and [23].

Using the concepts defined in the two definitions and the theorem, we propose an improvement to the algorithm
in [21] to incorporate self-replicating concepts and American options. This is presented in the following algorithm:

Algorithm 1 American Option Valuation Using Self-Financing Replicating Portfolio

Require: S0, K, r, u, d, n, optionType, earlyExerciseThreshold
∆t← 1

n

p← er∆t−d
u−d

Initialize matrices V , S, ∆, and Θ of size (n+ 1)× (n+ 1) with zeros
for i← 0 to n do

for j ← 0 to i do
S[i, j]← S0 · uj · di−j

for j ← 0 to n do
if optionType = ”call” then

V [n, j]← max(0, S[n, j]−K)
else

V [n, j]← max(0,K − S[n, j])

for i← n− 1 down to 0 do
for j ← 0 to i do

continuationV alue← e−r∆t · (p · V [i+ 1, j + 1] + (1− p) · V [i+ 1, j])
if optionType = ”call” then

exerciseV alue← S[i, j]−K
V [i, j]← max(earlyExerciseThreshold · exerciseV alue, continuationV alue)

else
exerciseV alue← K − S[i, j]
V [i, j]← max(earlyExerciseThreshold · exerciseV alue, continuationV alue)

∆[i, j]← V [i+1,j+1]−V [i+1,j]
S[i+1,j+1]−S[i+1,j]

Ψ[i, j]← e−r∆t · (V [i+ 1, j]−∆[i, j] · S[i+ 1, j])
V [i, j]← ∆[i, j] · S[i, j] + Ψ[i, j]

return V [0, 0]
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In the CRR model, any European call or put option can be perfectly replicated by a self-financing portfolio
consisting of shares of the underlying stock and a bond. This is derived from the fact that if the early exercise
value is excluded, as described in Theorem 1, we are left with the characteristics of a European option.

2.2. Optimal CRR Option Prices Using Metaheuristic Algorithms

We assume that the closing stock price, Xt, follows a Geometric Brownian Motion (GBM) as characterized by
the parameters σ (volatility) and µ (drift), under the condition that 2µ ̸= σ2. The GBM is a widely used model in
financial mathematics to describe the stochastic behavior of asset prices, where

dXt = µXtdt+ σXtdWt (6)

represents the differential equation governing the price evolution [8]. This assumption underpins our approach to
option pricing within the CRR model, as it allows for a realistic representation of stock price movements over
time.

Suppose we adopt a self-financing replicating portfolio framework for derivatives in this study. We can express σ
as:

σ =
1

2
√
∆t

ln
(u
d

)
, (7)

where u = eµ+σ
√
∆t and d = eµ−σ

√
∆t. Similarly, µ can be expressed as:

µ =
1

2
ln(ud). (8)

Consequently, we propose the following problem to integrate metaheuristic methods for estimating options under
the self-financing replicating portfolio conditions.

Proposition 1
To estimate u and d for a self-financing replicating portfolio, one must solve the optimization problem:

argmin
u,d

J(u, d) (9)

subject to the constraint:
4µ∆t+ log(d) > log(u), (10)

where J(u, d) is defined as:

J(u, d) =

√√√√ 1

N

N−1∑
j=0

(
∆Xj − 0.5 log(ud)Xj∆t− 1

2∆t

√
N log

(u
d

)
Xj∆Wt

)2

. (11)

The objective function J(u, d) can be derived from the stochastic differential equation (SDE) of the form:

dXt = 0.5 log(ud)Xtdt+
1

2∆t
log

(u
d

)
XtdWt. (12)

Equation (12) can be discretized using the Euler-Maruyama method, resulting in the following expression:

Xj+1 −Xj = 0.5 log(ud)Xj∆t+
1

2∆t

√
N log

(u
d

)
Xj∆Wt, j = 0, 1, 2, . . . , N − 1. (13)
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2.3. Methodological Approach

The metaheuristic algorithms selected for this study include Simulated Annealing (SAA), Grey Wolf Optimization
(GWO), Particle Swarm Optimization (PSO), Differential Evolution (DE), and a hybrid of PSO and a neural
network (PSO-NN) found in [3]. These methods are systematically applied to the objective function, as detailed in
Equation (7). The estimates of u and d are then used in Algorithm 1 to estimate prices.

To adapt these algorithms for effective operation within the stochastic environment of the objective function,
a sampling correction factor of 1√

N
was integrated. This modification enhances the algorithms’ performance,

addressing the challenge that, while these techniques fundamentally rely on random number generation, they are
conventionally more suited to deterministic scenarios. This strategic adjustment is crucial for leveraging their
capabilities in stochastic contexts, as detailed by [7]. These five methods were specifically chosen to reflect a
range of global search strategies—SAA for probabilistic annealing, GWO for swarm-based exploration inspired
by natural leadership hierarchies, PSO and DE for efficient population-based optimization, and PSO-NN for its
demonstrated ability to combine PSO’s global search with the adaptive learning power of neural networks [2].

3. Results of Numerical Experiments

Using the scheme in Equation (13), stock data are simulated with parameters T = N ∈ {21, 50, 100, 120}, u =
1.15, and d = 0.95. A simple binomial tree framework generates possible stock paths based on the specified up
(u) and down (d) factors. The results show that the accuracy of SAA improves with larger sample sizes, while
the accuracy of GWO, PSO, DE, and PSO-NN generally decreases as N increases (Table 1). Notably, PSO, DE,
and PSO-NN still achieve nearly exact parameter estimates despite this trend. The initial score values tend to vary

Table 1. Estimates for different values of N using SAA, GWO, PSO, DE, and PSO-NN

N Parameter SAA GWO PSO DE PSO-NN

21 u 1.154 1.149 1.150 1.150 1.160
d 0.949 0.950 0.950 0.950 0.960
MSE for u 9.15× 10−4 1.7× 10−7 5.6× 10−41 0.000 4.5× 10−8

MSE for d 1.12× 10−3 5.5× 10−8 6.5× 10−31 0.000 3.2× 10−8

Score 4× 10−1 3.4× 10−3 5× 10−15 2.99× 10−15 1.2× 10−15

50 u 1.162 1.151 1.150 1.150 1.165
d 0.940 0.949 0.950 0.949 0.961
MSE for u 1.4× 10−4 3× 10−7 3.6× 10−41 4.93× 10−32 2.3× 10−7

MSE for d 9.2× 10−5 1.8× 10−7 7.5× 10−45 4.93× 10−32 1.5× 10−7

Score 1.5× 10−1 2.6× 10−3 1.5× 10−14 6.03× 10−14 9.9× 10−15

100 u 1.143 1.151 1.150 1.150 1.155
d 0.958 0.949 0.950 0.950 0.962
MSE for u 4.2× 10−5 7.71× 10−7 5.6× 10−48 0.00 3.8× 10−8

MSE for d 6.5× 10−5 5.9× 10−7 8.9× 10−45 0.00 4.1× 10−8

Score 9.6× 10−1 2.2× 10−2 2.2× 10−14 4.71× 10−14 7.5× 10−15

150 u 1.151 1.150 1.150 1.150 1.158
d 0.949 0.950 0.950 0.950 0.961
MSE for u 2.9× 10−7 2.1× 10−7 4.5× 10−48 4.93× 10−32 1.9× 10−8

MSE for d 2.3× 10−7 1.7× 10−7 1.4× 10−45 4.93× 10−32 2.6× 10−8

Score 1× 10−1 5.8× 10−1 1.6× 10−11 2.31× 10−12 3.5× 10−13
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depending on the choice of parameters. For example, for K = 120, u = 1.12, and d = 0.85, the PSO-NN method
produces relatively high scores during the initial epochs. However, after about 8 epochs, the convergence trend
becomes similar across all cases (Figure 2).

Figure 1. PSO score values under different conditions

Applying the metaheuristic algorithms together with Algorithm 1 to real Tesla stock data for the 42 days between
April 19 and June 21, 2024, yielded the results presented in Table 2. We chose a strike price K = 180 and a risk-free
rate r = 5%. The data were collected from: https://www.nasdaq.com/market-activity/stocks/
tsla/historical. The option prices under SAA and GWO are almost similar to those reported in [21], where
a likelihood-based method is used in conjunction with a pricing algorithm without the self-financing replicating
portfolio concept. However, the loss values for SAA, DE, and GWO are higher than those for PSO on the same
data (Table 2), suggesting that PSO is more suitable for a self-financing replicating portfolio scenario. The PSO-
NN method combines PSO with a neural network component, which helps to enhance parameter estimation and
further reduce the score.

Table 2. Comparison of Optimization Methods for Tesla Stock Option Pricing

Method DE PSO GWO SAA PSO-NN
Estimated u 1.5000 1.2000 1.3000 1.2500 1.3500
Estimated d 0.7500 0.9500 0.8000 0.8200 0.8600
Score 0.9500 0.9400 0.9600 0.9550 0.9100
American Option Prices (USD)
Call 110.00 30.00 75.00 66.00 80.00
Put 105.00 26.00 70.00 62.00 76.00
European Option Prices (USD)
Call 108.00 30.00 74.00 65.00 79.50
Put 102.00 26.00 69.00 61.00 75.50

In addition, Figure 2 shows that the PSO and PSO-NN methods produce fitted values that are much closer to the
actual Tesla stock data points than the other methods. This suggests that PSO and the hybrid PSO-NN can better
adapt to the underlying price dynamics, likely due to their strong global search capability and the added flexibility
of the neural network in PSO-NN. The velocity adjustment parameter in PSO is also relatively easy to tune by
intuition until good convergence is achieved, without requiring extensive additional parameter optimization [3].
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Figure 2. Modeling Tesla stock data

Similarly, the Microsoft stock data for the period between December 29, 2024, and April 10, 2025, were analyzed
using the same metaheuristic algorithms, with the results presented in Table 3. The Microsoft data were obtained
from: https://finance.yahoo.com/quote/MSFT/. The results show comparable behavior to Tesla’s
results, with DE, PSO, and PSO-NN producing lower loss scores and reasonable option prices, while the binomial
model fit remains approximate due to real market fluctuations and limited sample size.

Table 3. Comparison of Optimization Methods for Microsoft Stock Option Pricing

Method DE PSO GWO SAA PSO-NN
Estimated u 1.4110 1.0847 1.2557 1.2171 1.3000
Estimated d 0.7014 0.9161 0.7929 0.8171 0.8500
Score 2.0559 2.0541 2.0618 2.0613 0.9200
American Option Prices (USD)
Call 104.35 29.58 73.04 64.43 78.00
Put 100.29 25.35 68.82 60.21 74.00
European Option Prices (USD)
Call 103.35 29.58 73.04 64.43 77.50
Put 98.33 25.35 68.81 60.20 73.50

Figure 3 shows that all methods perform better as the sample size slightly increases, with PSO, PSO-NN, and
DE achieving results closer to the actual Microsoft stock data. Only SAA and GWO remain less accurate under the
same conditions, likely due to their limited ability to adjust to small data fluctuations[7].

4. Conclusion

In this paper, a robust numerical framework for the Cox-Ross-Rubinstein (CRR) model under the self-financing
assumption has been proposed. This was achieved by integrating various metaheuristic algorithms—Particle
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Figure 3. Modeling Microsoft Stock Data

Swarm Optimization (PSO), Differential Evolution (DE), Grey Wolf Optimization (GWO), the Simulated
Annealing Algorithm (SAA), and a hybrid PSO with Neural Network component (PSO-NN)—to estimate the
key parameters of a modified CRR model. The study demonstrates the potential of combining metaheuristic
techniques, including hybrid methods, with traditional financial models to enhance the accuracy and reliability of
option pricing.

A Brownian motion model incorporating explicit upward and downward factors was formulated, and the
Euler–Maruyama method was employed to simulate stock price paths. By comparing these simulated paths
with real stock market data, the effectiveness and practical accuracy of the estimated parameters were assessed.
Furthermore, the numerical approach for pricing American options within the CRR framework was refined by
incorporating the self-financing replicating portfolio concept.

The results show that the accuracy of Simulated Annealing (SAA) improves with increasing sample size, while
the accuracy of GWO, PSO, and DE tends to decline slightly as the sample size grows. Notably, PSO and DE
still achieve highly precise parameter estimates even under larger samples, and both PSO and GWO generate
paths that closely replicate observed stock price dynamics. The PSO-NN method, which combines the global
search ability of PSO with the nonlinear fitting capability of a neural network, outperforms the other approaches
by further improving parameter estimation accuracy and producing the lowest loss values overall. Since PSO and
PSO-NN yield option prices with lower loss values and realistic convergence behavior, they are especially suitable
for practical implementation in self-financing portfolio scenarios, providing reliable pricing for American options.

The proposed approach can be applied in practice by traders, analysts, or financial engineers to calibrate binomial
tree models more accurately when pricing derivative contracts in markets where maintaining a self-financing
strategy is essential.
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