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Abstract This study presents a fractional-order predator-prey dynamics model that considers the impact of fear, refuge, and
harvesting on the population, respectively. The proposed model uses the Caputo fractional derivative to successfully obtain
the memory effects of this interaction between predators and preys. We prove the existence and uniqueness of solution
to ensure the non-negativity and boundedness of the system, which is indispensable for maintaining biologically feasible
populations. The stability analysis is conducted on the equilibrium points at local and global levels, explaining the conditions
that guarantee these points are stable or lead to periodic dynamics through Hopf bifurcation. To support the analytical results,
numerical simulations are provided, which demonstrate the essential roles played by fear, refuge, and harvesting in the
survival of prey and the overall dynamics of the system.
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1. Introduction

In complex wildlife, the predators and prey interactions have become the subject of in-depth and exciting research.
How these creatures interact in ecosystems, affecting each other’s growth and survival, has been the focus of natural
scientists’ attention for centuries. One of the difficulties in understanding this relationship is that predators and prey
always influence each other in an ever-changing environment. In an effort to simplify and explain these complex
dynamics, the predator-prey model has become an important tool in ecology [1].

The predator-prey model is a mathematical tool that allows us to describe and understand changes in predator
and prey populations over time. This model, first developed by Lotka and Volterra in the early twentieth
century, has helped us solve ecological mysteries and uncover several unexpected ecological impacts. Moreover,
numerous mathematical models have been developed using biologically plausible assumptions. A multitude of
researchers have developed predator-prey models by adding some modifications including harvesting [2, 3, 4],
refuge [5, 6, 7, 8, 9, 10], cannibalism [10, 11, 12, 13, 14], fear effects [15, 16, 17, 18, 19, 20, 21], hunting
cooperation [15, 22], migration [23], and more.

On predator-prey interactions, research on the effects of fear is one of the interesting topics to discuss. Fear
effects are physiological changes related to behavior and stress due to the presence of predators, prey remains
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vigilant at all times, anticipating potential assaults from predators. [24]. In 2017, Elliott et al. [25] conducted a field
study on the effects of fear on the fitness of populations of Drasophila melanogaster (prey) and mantids (predators)
in relation to species density. The authors have shown that the reproductive success of drasophila decreases when
they come into contact with mantids, especially when there are few mantids around. This decline occurs during
both the breeding and non-breeding seasons. In recent years, several researchers have studied the modified predator-
prey model with the inclusion of fear effects, one of the studies conducted by Pal et al. [26] in 2019. Pal et al. [26]
conducted a study on the dynamic analysis of Leslie-Gower models. They specifically investigated the impact of
fear on prey and how it affects the cooperation between predators. The study’s findings demonstrated that the fear-
effect parameter exerted an influence on the prey’s condition, leading to a reduction in the prey population that
could ultimately result in extinction.

Protection is an additional factor that influences the interaction between predators and prey. In the process of
predation, predator populations constantly chew prey populations so that the prey population continues to decrease
and is threatened with extinction. To avoid extinction, prey protection factors are needed. In the wild, predator and
prey instincts for shelter are factors that need to be taken into account in modeling. Prey will get out of his shelter
only when he feels safe from predators. The protective effect reduces the likelihood of prey being preyed, thus
avoiding extinction [27]. Zhang et al. [28] investigated a predator-prey model that incorporates the influence of
fear and refuge on prey.

dP

dt
=

r1P

1 + fQ
− bP 2 − ν(1− δ)PQ

1 + η(1− δ)P
,

dQ

dt
= −r2Q+

cν(1− δ)PQ

1 + η(1− δ)P
,

(1)

where all the parameters are non-negative. P (t) and Q(t) are prey and predator densities at time t respectively.r1
is the intrinsic growth rate of prey,f is level of fear, ν is the coefficient of predation, c is the efficiency Food
conversion from prey to predator, δ is the coefficient of refuge on prey, r2 is the predator natural death rate, and b
is the intrinsic growth rate per carrying capacity of prey.

In expansion to the impacts of fear and refuge on prey, there are other variables that impact the dynamics
of predator and prey populaces, specifically harvesting. Harvesting of populations is another vital calculate in
predator-prey elements [3]. Chakraborty et al. [29] have investigated the interaction between predator and prey
with addition harvesting, they considered a basic predator–prey interaction where predator population is subjected
to harvesting. They watched comes about have been tried with the parameter values of Paramecium Aurelia as prey
and Didinium Nasutum as predator.

Moreover, the system of integer order differential equations indicates that the rate of population growth is not
solely determined by the current conditions. Nevertheless, it is an established fact that the rate of population change
is influenced by all preceding conditions, a phenomenon referred to as the memory effect. This memory effect is
referred to as fractional order. A system is considered to be memoryless if its output at any given time t is solely
determined by the input at the same time t, without any dependence on previous inputs. Conversely, if the system
needs to retain past input values in order to determine the present output value, it is referred to as a memory system
[30]. By incorporating memory effects, fractional-order models allow us to represent ecological processes more
realistically, particularly in systems where delayed responses or cumulative interactions significantly influence
population dynamics. For instance, in predator-prey systems, the memory effect can reflect how past predation
events affect prey behavior, reproduction, and refuge-seeking strategies, or how predators adjust their hunting
efficiency based on historical prey availability. These capabilities highlight the advantages of fractional calculus in
ecological modeling compared to traditional integer-order approaches.

This fractional differential equation model provides a more accurate description than the first-order dynamic
system for complex natural dynamics [31]. The development of the predator-prey model of fractional orders has
increased the interest of researchers in analyzing the dynamic system of fractions of orders [32, 33, 34, 35, 36,
37, 38]. Nevertheless, fractional calculus also implement in different fields such as physics, engineering, and more
[39, 40, 41]. The use of fractional calculus thus enables researchers to capture these nuanced dynamics, offering
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insights into long-term system behavior, stability conditions, and the impact of historical interactions. This makes
fractional-order models particularly useful for exploring ecological challenges that involve delayed feedbacks or
cumulative environmental impacts, which are difficult to capture using conventional methods.

The fractional approaches are Riemann-Liouville, Caputo, and Grunwald-Letnikov. Among some of these
approaches, Caputo’s approach is more frequently used by researchers, including the research carried out by
Themairi and Alqudah [42], Das and Samanta [43], Higazy et al. [44] and Jafari et al. [45]. Caputo’s approach
has an advantage over the Riemann-Liouville approach. In Caputo’s approach, there is no need to define the initial
conditions of fractional orders. Furthermore, one of the important advantages in using a Caputo-type fractions is
that the Caputo derivative with a constant is zero. In Caputo’s approach, the initial value can use the same starting
value as in an integer order. Based on that, this research will use the Caputo approach.

The previous model (1) was designed for predator prey model with fear effect and prey refuge only and the
harvesting is not yet implemented. However, this research investigated new model by complementing the harvesting
on the model (1). Beside, the model (1) was built by using a couple of first-order derivative nonlinear differential
equations. Then, this research considered a fractional-order predator prey model with fear effect, prey refuge and
harvesting on both population via Caputo derivative. Therefore, the novelties of this research article is a new model
combination between fear effect, prey refuge and harvesting in both population and memory effect.

The subsequent sections of this paper are structured in the following manner: In Section 2, we present a fractional
order harvested predator-prey model that includes the fear effect and refuge. In Section 3, the fundamental
principles of fractional calculus were examined. In the following section, Section 4, we will discuss the primary
outcome, which includes the existence, uniqueness, non-negativity, and boundedness of equilibrium points, as well
as the existence of equilibrium points, local stability, global stability of equilibrium points, and Hopf-bifurcation.
In Section 5, we presented a numerical simulation to validate the analytical findings and discuss the outcomes of
our research. In the final section, we provided conclusions derived from our study.

2. Mathematical Modelling

The predator-prey model with prey refuge, fear effect, and harvesting in a first-order derivative non-linear
differential equation is as follows:

dP

dt
=

r1P

1 + fQ
− bP 2 − ν(1− δ)PQ

1 + η(1− δ)P
− z1(1− δ)P,

dQ

dt
= −r2Q+

cν(1− δ)PQ

1 + η(1− δ)P
− z2Q,

(2)

where z1 and z2 represents the prey and predator harvesting rate are non-negative.
In this paper we consider the fractional predator prey order model with effects of fear, refuge on prey and

harvesting in both populations.

CDαP (t) =
r1P

1 + fQ
− bP 2 − ν(1− δ)PQ

1 + η(1− δ)P
− z1(1− δ)P,

CDαQ(t) = −r2Q+
cν(1− δ)PQ

1 + η(1− δ)P
− z2Q,

(3)

where condition P (0) > 0, Q(0) > 0 and P (t) and Q(t) represent prey and predator population densities at time t
defined on domain Ω = {(P,Q) ∈ R2}.

3. Preliminary

The preliminary section outlines the mathematical foundations required for fractional-order analysis. Key
definitions and theorems are provided to support the theoretical framework, laying the groundwork for the
subsequent dynamic analysis.
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Definition 3.1
[46, 47, 48] The Riemann-Liouville fractional integral operator of order α applied to a continuous function
f ∈ L1[0, a], for t ∈ [0, a], is defined as

Iαf(t) =
1

Γ(α)

∫ a

0

(t− τ)α−1f(τ) dτ.

Here, Γ(α) denotes the Euler Gamma function.

Definition 3.2
[46, 47, 48] The Caputo fractional derivative of order α for a continuous function f(x) ∈ Cn([t0,+∞]) is defined
by

CDαf(t) =
1

Γ(n− α)

∫ t

t0

fn(τ)

(t− τ)α−n+1
dτ.

Here, Γ(.) denotes the Euler’s Gamma function, and the operator CDα represents the Caputo differential operator
of order α, where t ≥ 0 and n is a positive integer satisfying n− 1 < α < n, with n ∈ N.
Particularly, when 0 < α < 1,

CDαf(t) =
1

Γ(n− α)

∫ t

t0

f ′(τ)

(t− τ)α
, dτ.

If α > 0, n− 1 < α ≤ n(n ∈ N), then for α = n ∈ N the Caputo derivative CDαf coincide with the usual
derivative of order n :

CDαf(t) = (Dnf)(t)(n ∈ N ;D =
d

dx
).

4. Main Result

4.1. Existence and Uniqueness

Theorem 4.1
The system (3) for any non-negative initial conditions (P0, Q0), has a unique solution H(t) ∈ Ω.

Proof
Define Ω := {(P,Q) ∈ R2 : P,Q ≥ 0,max|P |, |Q| ≤M} with M > 0. It will be shown that the model always has
a single solution in [t0, inf)× Ω if the initial value is given in Ω for every t ≥ t0.
Consider H = (P,Q) and H̄ = (P̄ , Q̄) are the solution of the model (3).
Let B(H) = (B1(H), B2(H)), and

B1(H) =
r1P

1 + fQ
− bP 2 − ν(1− δ)PQ

1 + η(1− δ)P
− z1(1− δ)P,

B2(H) = −r2Q+
cν(1− δ)PQ

1 + η(1− δ)P
− z2Q,
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we get,

∥B(H)−B(H̄∥ = |B1(H)−B1(H̄)|+ |B2(H)−B2(H̄)|

= | r1P

1 + fQ
− bP 2 − ν(1− δ)PQ

1 + η(1− δ)P
− z1(1− δ)P − r1P̄

1 + fQ̄
+ bP̄ 2 +

ν(1− δ)P̄ Q̄

1 + η(1− δ)P̄
+ z1(1− δ)P̄ |

+ | − r2Q+
cν(1− δ)PQ

1 + η(1− δ)P
− z2Q+ r2Q̄− cν(1− δ)P̄ Q̄

1 + η(1− δ)P̄
+ z2Q̄|,

= | r1P

1 + fQ
− r1P̄

1 + fQ̄
− bP 2 + bP̄ 2 − ν(1− δ)PQ

1 + η(1− δ)P

+
ν(1− δ)P̄ Q̄

1 + η(1− δ)P̄
− z1(1− δ)P + z1(1− δ)P̄ |

+

∣∣∣∣−r2P + r2Q̄+
cν(1− δ)PQ

1 + η(1− δ)P
− cν(1− δ)P̄ Q̄

1 + η(1− δ)P̄
− z2Q̄+ z2Q̄

∣∣∣∣ ,
≤
[
r1 + z1(1− δ) + b(P + P̄ + r1fQ̄+

(1 + c)ν(1− δ)Q

(1 + η(1− δ)P )(1 + η(1− δ)P̄ )

]
|P − P̄ |

+

[
r1fP̄ + (r2 + z2) +

(1 + c)ν(1− δ)P̄

(1 + η(1− δ)P̄ )

]
|Q− Q̄|,

≤ [r1 + z1(1− δ) + 2bM + r1fM + (1 + c)ν(1− δ)M ] |P − P̄ |
+ [r1fM + (r2 + z2) + (1 + c)ν(1− δ)M ] |Q− Q̄|,
= L1|P − P̄ |+ L2|Q− Q̄|,

where,

L1 = r1 + z1(1− δ) + 2bM + r1fM + (1 + c)ν(1− δ)M,

L2 = r1fM + (r2 + z2) + (1 + c)ν(1− δ)M.

By choosing a positive L = max{L1, L2}, we get

∥B(H)−B(H̄∥ ≤ L∥H − H̄∥.

The function B(H) satisfies the Lipschitz condition. We can conclude that there exist a unique solution H(t) of
the system (3).

4.2. Non-Negativity and Boundedness

Theorem 4.2
All solutions of system (3) with initial values (P (0), Q(0)) ∈ R+ are non-negative.

Proof
To prove this theorem, we use Theorem 6 in Cresson and Szafranka [49]. For α = 1, system (3) can be written to
equation (2) From the first equation,

dP

dt
=

r1P

1 + fQ
− bP 2 − ν(1− δ)PQ

1 + η(1− δ)P
− z1(1− δ)P,

dP

P
=

(
r1

1 + fQ
− bP − ν(1− δ)Q

1 + η(1− δ)P
− z1(1− δ)

)
dt,

ln (P ) =

∫ t

0

(
r1

1 + fQ(τ)
− bP (τ)− ν(1− δ)Q(τ)

1 + η(1− δ)P (τ)
− z1(1− δ)

)
dτ + lnP (0),

P (t) = P (0) exp

{∫ t

0

(
r1

1 + fQ(τ)
− bP (τ)− ν(1− δ)Q(τ)

1 + η(1− δ)P (τ)
− z1(1− δ)

)
dτ

}
≥ 0.
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From the second equation, by applying the same work as in the first equation (see Appendix A), we get

Q(t) = Q(0) exp

{∫ t

0

(
−r2 +

cν(1− δ)P (τ)

1 + η(1− δ)P (τ)
− z2

)
dτ

}
≥ 0.

Since
−→
f (−→x (t)) satisfies Local Lipschitz, P (t) ≥ 0 and Q(t) ≥ 0 for α = 1 and non-negative initial value, then

according Theorem 6 by Cresson and Szafranka [49], model (3) has non-negative solution.

Theorem 4.3
All solutions of system (3) with initial values (P (0), Q(0)) ∈ R+ are uniformly bounded.

Proof
Define function K(t) = P (t) + 1

cQ(t), then we have

CDαK(t) = CDαP (t) +
1

c
CDαQ(t).

For any positive constant ρ, we have

CDαK(t) + ρK(t) =
r1P

1 + fQ
− bP 2 − z1(1− δ)P + ρP + (ρ− r2 − z2)

1

c
Q,

≤ −b

[
P −

r1P
1+fQ − z1(1− δ) + ρ

2b

]2
+

( r1P
1+fQ − z1(1− δ) + ρ)

4b
,

≤
( r1P
1+fQ − z1(1− δ) + ρ)2

4b
.

By employing the Fractional Comparison Principle in Li et al [50], we have

K(t) ≤

(
K(0)−

( r1P
1+fQ − z1(1− δ) + ρ)2

4b

)
Eα(−ρ(t)α) +

( r1P
1+fQ − z1(1− δ) + ρ)2

4b
.

Since t→ ∞ then Eα(−ρ(t)α) → 0, so that K(t) → (
r1P

1+fQ−z1(1−δ)+ρ)2

4b , t→ ∞. That indicates that each solution
of the system (3) that initiates R+ is contained in the region σ, where

σ =

(
(P,Q) ∈ R+ : P +

1

c
Q ≤

( r1P
1+fQ − z1(1− δ) + ρ)2

4b
+ ϵ, ϵ > 0

)
.

4.3. Equilibrium Points

The system (3) contains three equilibrium points, detailed as follows:

1. The trivial equilibrium point E0 = (0, 0), which always exists.
2. The predator free equilibrium pointE1 = ( r1−z1(1−δ)b , 0), which is exists under the condition r1 > z1(1− δ).
3. The interior equilibrium point E2 = (P ∗, Q∗), where P ∗ = r2+z2

(1−δ)(cν−η(r2+z2)) and Q∗ are to be obtained
from quadratic equation as follows:

a0(Q
∗)2 + a1Q

∗ + a2 = 0, (4)
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where,

a0 = νf(1− δ),

a1 = ηbf(1− δ)(P ∗)2 + bfP ∗ + ηz1f(1− δ)2P ∗ + ν(1− δ) + z1(1− δ)f,

a2 = ηb(1− δ)(P ∗)2 + bP ∗ − ηr1(1− δ)P ∗ − r1 + z1(1− δ) + ηz1(1− δ)2.

We can see that a0 > 0 and a1 > 0, with using quadratic equation root properties, the equation (4) has a
positive root if a2 < 0, that is

r1(1 + η(1− δ)P ∗) > bP ∗(1 + η(1− δ)P ∗) + z1(1− δ)(1 + η(1− δ)),

withQ∗ =
−a1+

√
a21−4a0a2
2a0

. Furthermore, the interior equilibrium pointE2 = (P ∗, Q∗) exist under condition
cν > η(r2 + z2) and r1(1 + η(1− δ)P ∗) > bP ∗(1 + η(1− δ)P ∗) + z1(1− δ)(1 + η(1− δ)).

4.4. Local Stability

The linearization technique is used to analyze the local stability of the fractional-order predator-prey model that
incorporates fear, refuge, and harvesting. The first step is to calculate the Jacobian matrix of the system at the
equilibrium points. This matrix provides insight into how small perturbations around these points affect the system,
allowing us to determine whether the system will return to equilibrium (stable) or diverge away from it (unstable).
The Jacobian matrix of the system (3) at an equilibrium point (P∗, Q∗) is given by

J(P,Q) =

[
r1

1+fQ − 2bP − ν(1−δ)Q
1+η(1−δ)P + ην(1−δ)2PQ

(1+η(1−δ)P )2 − z1(1− δ) − r1fP
(1+fQ)2 − ν(1−δ)P

1+η(1−δ)P
cν(1−δ)Q

(1+η(1−δ)P )2 −r2 + cν(1−δ)P
1+η(1−δ)P − z2

]
.

Theorem 4.4
The trivial equilibrium point E0 = (0, 0) is stable if r1 < z1(1− δ), otherwise it is unstable (saddle).

Proof
The Jacobian matrix at E0 = (0, 0) is

J(E0) =

[
r1 − z1(1− δ) 0

0 −r2 − z2

]
.

The eigenvalues of the Jacobian matrix J(E0) are λ1 = −(r2 + z2) < 0 and λ2 = r1 − z1(1− δ). For E0 = (0, 0)
to be stable, both eigen values must be negative.When r1 < z1(1− δ), then the eigenvalue λ2 is negative.
Consequently, we get |arg(λ1)| = |arg(λ2)| = π > απ

2 . Hence E0 is asymptotically stable. Therefore, E0 = (0, 0)
is stable if r1 < z1(1− δ) meaning that the natural growth rate of the prey is less than the rate at which it is reduced
by harvesting.

If r1 > z1(1− δ), the one eigenvalue is positive and the other negative then |arg(λ1)| = π > απ
2 and |arg(λ2)| =

0 < απ
2 .Therefore E0 is a saddle point and hence unstable.

Theorem 4.5
The predator free equilibrium point E1 = ( r1−z1(1−δ)b , 0) is stable if cν(1−δ)(r1−z1(1−δ)

b+η(1−δ)(r1−z1(1−δ) < r2 + z2 while saddle

point if cν(1−δ)(r1−z1(1−δ)
b+η(1−δ)(r1−z1(1−δ) > r2 + z2.

Proof
The Jacobian matrix for E1 = ( r1−z1(1−δ)b , 0) is

J(E1) =

[
−r1 + z1(1− δ) − r1f(r1−z1(1−δ))

b − ν(1−δ)(r1−z1(1−δ))
b+η(1−δ)(r1−z1(1−δ))

0 cν(1−δ)(r1−z1(1−δ))
b+η(1−δ)(r1−z1(1−δ)) − r2 − z2

]
.
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The eigenvalues of the Jacobian matrix J(E1) are λ1 = −r1 + z1(1− δ) and λ2 = cν(1−δ)(r1−z1(1−δ))
b+η(1−δ)(r1−z1(1−δ)) − r2 − z2.

Since r1 > z1(1− δ) is the existence of equilibrium E1, so λ1 is always a negative real number and hence
|arg(λ1)| = π > απ

2 . If cν(1−δ)(r1−z1(1−δ)
b+η(1−δ)(r1−z1(1−δ) < r2 + z2, λ2 < 0. Thus |arg(λ2)| = π > απ

2 . We can conclude that
under the above condition, the predator free equilibrium E1 is stable. This condition means that the conversion
efficiency and predation rate of the predator, adjusted for the effects of refuge, must be less than the natural death
rate of the predator combined with its harvesting rate. Otherwise, if cν(1−δ)(r1−z1(1−δ)

b+η(1−δ)(r1−z1(1−δ) > r2 + z2,λ2 > 0. Thus
|arg(λ2)| = 0 < απ

2 . Hence the predator free equilibrium E1 is saddle point.

Prior to an examination of the stability criterion for the interior equilibrium point E2 = (P ∗, Q∗), it is necessary
to formulate the Jacobian matrix J at this point as follows:

J(E2) =

[
J11 J12
J21 0

]
.

where,

J11 = −bP ∗ +
ην(1− δ)2P ∗Q∗

(1 + η(1− δ)P ∗)2
,

J12 = − r1fP
∗

(1 + fQ∗)2
− r2 + z2

c
,

J21 =
cν(1− δ)Q∗

(1 + η(1− δ)P ∗)2
.

Theorem 4.6
The interior equilibrium point E2 = (P ∗, Q∗) is locally asymptotically stable if at least one of the following
conditions is satisfied:

1. J11 ≤ 0,
2. J11 > 0, J2

11 − 4K < 0 and
√

4K − J2
11 > J11 tan

(
απ
2

)
, with K = −J12J21 > 0.

Proof
The characteristic equation of the J(E2) can be written as

λ2 − J11λ− J12J21 = 0. (5)

The roots of equation (5) are

λ1,2 =
J11 ±

√
J2
11 − 4(−J12J21)

2
,

=
J11 ±

√
J2
11 − 4K

2
.

If J11 ≤ 0, then we have three sub-cases. The first sub-case is J11 = 0. In this sub-case, it is evident that both
eigenvalues are purely complex conjugate,thus |arg(λ1,2)| = π

2 >
απ
2 . Therefore equilibrium point E2 is locally

asymptotically stable. The second sub-case is J11 < 0 and J2
11 − 4K ≥ 0. In this second sub-case, we can see that

both eigenvalues are negative real numbers and we have |arg(λ1,2)| = π > απ
2 . Hence equilibrium point E2 is

locally asymptotically stable. The last sub-case is J11 < 0 and J2
11 − 4K < 0, then the eigenvalues are conjugate

complex with negative real part. Hence |arg(λ1,2)| > απ
2 , and equilibrium pointE2 is locally asymptotically stable.

If J11 > 0, J2
11 − 4K < 0 and

√
4K − J2

11 > J11 tan
(
απ
2

)
, with K = −J12J21 > 0, we obtain that Im(λ1) =

−Im(λ2) =
1
2

√
4K − J112 > 0 and Re(λ1) = −Re(λ2) = J112

2 . Hence, it is clear |arg(λ1,2)| > απ
2 and

equilibrium point E2 is locally asymptotically stable.
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Theorem 4.7
The interior equilibrium point E2 = (P ∗, Q∗) is unstable if any one of the following conditions hold:

1. J11 > 0 and J2
11 − 4K ≥ 0,

2. J11 > 0, J2
11 − 4K < 0 and

√
4K − J2

11 < J11 tan
(
απ
2

)
.

Proof
The first case, J11 > 0 and J2

11 − 4K ≥ 0. Both eigenvalues in this case are positive real numbers, such that
|arg(λ1,2)| = 0 < απ

2 . The second case is J11 > 0, J2
11 − 4K < 0 and

√
4K − J2

11 < J11 tan
(
απ
2

)
. In this second

case, we get a couple of complex conjugate eigenvalues and hence Im(λ1) = −Im(λ2) =
1
2

√
4K − J112 > 0 and

|arg(λ1,2)| = tan−1

√
4K−J2

11

J11
< απ

2 . Hence, it is clear that equilibrium point E2 is unstable in both case.

4.5. Global Stability

This section focuses on examining the global stability of two equilibrium points:E1, which represents the predator-
free state, and E2, which represents an interior equilibrium. In our work, we employ the Generalized Lasalle
Invariance Principle as described in Huo et al’s publication (reference: [51]), and we also utilize Lemma 3.1 from
Vargas de Leon’s work [52].

Theorem 4.8
The predator free equilibrium point E1 is globally asymptotically stable if r1 ≤ cνz1(1−δ)2+(r2+z2)b

cν(1−δ) .

Proof
Define function of Lyapunov,

V1(P,Q) = P − P1 − P1log
P

P1
+

1

c
Q,

where

P1 =
r1 − z1(1− δ)

b
> 0.

According Lemma 3.1 in Vargas De Leon [52] we can write,

CDαV1 ≤
(
P − P1

P

)
CDαP +

1

c
CDαQ,

= (P − P1)

(
r1

1 + fQ
− bP − ν(1− δ)Q

1 + η(1− δ)P
− z1(1− δ)

)
+

1

c

(
cν(1− δ)PQ

1 + η(1− δ)P
− (r2 + z2)Q

)
,

= − b

1 + fQ
(P − P1)

2 +Q

(
ν(1− δ)P1

1 + η(1− δ)P
− (r2 + z2)

c

)
,

≤ − b

1 + fQ
(P − P1)

2 +Q

(
ν(1− δ)P1 −

(r2 + z2)

c

)
.

If we choose r1 <
cνz1(1−δ)2+(r2+z2)b

cν(1−δ) , then CDαV1 ≤ 0 for any (P,Q) ∈ R2
+. If P = P1 andQ = 0 then CDαV1 =

0. Also if we choose r1 = cνz1(1−δ)2+(r2+z2)b
cν(1−δ) ,the Lyapunov function V1(P,Q) satisfies global stability condition.

Hence, we can conclude that the predator free equilibrium point E1 is globally asymptotically stable under
condition r1 ≤ cνz1(1−δ)2+(r2+z2)b

cν(1−δ) .

Theorem 4.9
The interior equilibrium point E2 = (P ∗, Q∗) is globally asymptotically stable if The interior equilibrium point E2

is locally asymptotically stable.

Stat., Optim. Inf. Comput. Vol. 13, April 2025



S.N. AFIYAH, F. FATMAWATI, W. WINDARTO, A. ABIDEMI 1699

Proof
Define function of Lyapunov

V2(P,Q) = P − P ∗ − P ∗log
P

P ∗ + s1(Q−Q∗ −Q∗log
Q

Q∗ ), s1 > 0.

According Lemma 3.1 in Vargas De Leon [52],

CDαV2(P,Q) ≤
(
P − P ∗

P

)
CDαP (t) + s1

(
Q−Q∗

Q

)
CDαQ(t),

= (P − P ∗)

(
r1

1 + fQ
− bP − ν(1− δ)Q

1 + η(1− δ)P

)
+ s1(Q−Q∗)

(
cν(1− δ)P

1 + η(1− δ)P
− (r2 + z2)

)
,

≤ −
(
b− ην(1− δ)2Q∗

1 + η(1− δ)P ∗

)
(P − P ∗)2 +

(
s1cν(1− δ)

1 + η(1− δ)P
− ν(1− δ)

)(
(P − P ∗)(Q−Q∗)

1 + η(1− δ)P

)
.

Choose s1 for which s1cν(1−δ)
1+η(1−δ)x = ν(1− δ). Thus, we have

CDαV2 ≤ −
(
b− ην(1− δ)2Q∗

1 + η(1− δ)P ∗

)
(P − P ∗)2. (6)

Consider the function V3(P,Q) = 1
2

[
(P − P ∗) + 1

c (Q−Q∗)
]2

and V4(P,Q) = (P − P ∗) + 1
c (Q−Q∗).

Choosing α-order Caputo derivative of V4(P,Q), it gives

CDαV4 = P

(
r1

1 + fQ
− bP − ν(1− δ)Q

1 + η(1− δ)P
− z1(1− δ)

)
+

1

c
Q

(
cν(1− δ)P

1 + η(1− δ)P
− (r2 + z2)

)
,

= −bP (P − P ∗) +
Q∗(P − P ∗)− P ∗(Q−Q∗)

1 + η(1− δ)P ∗ .

(7)

Now choosing α-order Caputo derivative of V3(P,Q), we have

CDαV3 ≤
(
(P − P ∗) +

1

c
(Q−Q∗)

)
CDαV4,

=

(
(P − P ∗) +

1

c
(Q−Q∗)

)(
−bP (P − P ∗) +

Q∗(P − P ∗)− P ∗(Q−Q∗)

1 + η(1− δ)P ∗

)
,

= −bP (P − P ∗)2 − P ∗(Q−Q∗)2

c(1 + η(1− δ)P ∗)
+

(
Q∗(P − P ∗)2

1 + η(1− δ)P ∗ +
bQ∗

c

)
(P − P ∗)2,

− bQ

c
(P − P ∗)2 +

(
Q∗

c(1 + η(1− δ)P ∗)
− P ∗

1 + η(1− δ)P ∗ − bP ∗

c

)
(P − P ∗)(Q−Q∗)

≤
(

Q∗

c(1 + η(1− δ)P ∗)
− P ∗

1 + η(1− δ)P ∗ − bP ∗

c

)
(P − P ∗)(Q−Q∗)

+

(
Q∗(P − P ∗)2

1 + η(1− δ)P ∗ +
bQ∗

c

)
(P − P ∗)2 − P ∗(Q−Q∗)2

c(1 + η(1− δ)P ∗)
.

(8)

Now it is obvious that, (
Q∗

c(1 + η(1− δ)P ∗)
− P ∗

1 + η(1− δ)P ∗ − bP ∗

c

)
(P − P ∗)(Q−Q∗),

≤

[
Q∗

c(1+η(1−δ)P∗) −
P∗

1+η(1−δ)P∗ − bP∗

c

]2
2P∗

c(1+η(1−δ)P∗)

(P − P ∗)2 +
P ∗(Q−Q∗)2

2c(1 + η(1− δ)P ∗)
.
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Suppose that z =

(
Q∗

c(1+η(1−δ)P∗)
− P∗

1+η(1−δ)P∗ − bP∗
c

)2

2P∗
c(1+η(1−δ)P∗

. Thus, we have

(
Q∗

c(1 + η(1− δ)P ∗)
− P ∗

1 + η(1− δ)P ∗ − bP ∗

c

)
(P − P ∗)(Q−Q∗) ≤ z(P − P ∗)2 +

P ∗(Q−Q∗)2

2c(1 + η(1− δ)P ∗)
.

Therefore, from equation (8) we get,

CDαV3 ≤
(
Q∗(P − P ∗)2

1 + η(1− δ)P ∗ +
bQ∗

c
+ z

)
(P − P ∗)2 − P ∗(Q−Q∗)2)

c(1 + η(1− δ)P )
. (9)

Now consider the Lyapunov function

V (P,Q) = V2(P,Q) + s2V3(P,Q), s2 > 0.

By selecting the α-order Caputo derivative of V (P,Q) and applying the linearity property, as well as utilizing
equations (8) and (9), we obtain:

CDαV ≤ −
(
b− ην(1− δ)2Q∗

1 + η(1− δ)P ∗

)
(P − P ∗)2

+ s2

(
Q∗(P − P ∗)2

1 + η(1− δ)P ∗ +
bQ∗

c
+ z

)
(P − P ∗)2 − s2P

∗(Q−Q∗)2

c(1 + η(1− δ)P ∗)
,

= −
((

b− ην(1− δ)2Q∗

1 + η(1− δ)P ∗

)
− s2

(
Q∗(P − P ∗)2

1 + η(1− δ)P ∗ +
bQ∗

c
+ z

))
(P − P ∗)2

− s2P
∗(Q−Q∗)2

c(1 + η(1− δ)P ∗)
.

(10)

Now choose the constant s2 such that
(
b− ην(1−δ)2Q∗

1+η(1−δ)P∗

)
− s2

(
Q∗(P−P∗)2

1+η(1−δ)P∗ + bQ∗

c + z
)
= 1

2

(
b− ην(1−δ)2Q∗

1+η(1−δ)P∗

)
,

which gives that
(
b− ην(1−δ)2Q∗

1+η(1−δ)P∗

)
= 2s2

(
Q∗(P−P∗)2

1+η(1−δ)P∗ + bQ∗

c + z
)
> 0. Then, from equation (10) we have,

CDαV ≤ −1

2

(
b− ην(1− δ)2Q∗

1 + η(1− δ)P ∗

)
(P − P ∗)2 − s2P

∗(Q−Q∗)2

c(1 + η(1− δ)P ∗)
.

Thus it gives CDαV < 0 for all (P,Q) ̸= (P ∗, Q∗), and CDαV = 0 for (P,Q) = (P ∗, Q∗). Hence the interior
equilibrium point is globally asymptotically stable.

4.6. Bifurcation Analysis

In this section, we focused on the condition of Hopf-bifurcation in fractional order system. We consider the
following fractional order system:

CDαP = g(ω, P ), (11)

where α ∈ (0, 1), P ∈ R2. Let E∗ is an equilibrium point of system (11), such that the system (11) undergoes
Hopf-bifurcation around equilibrium point E∗ w.r.t the parameter µ at µ = µ∗ if this condition hold as follows:

1. The Jacobian matrix of system (11) at the equilibrium point E∗ has a couple of complex conjugate
eigenvalues λ1,2 = xj ± iyj become purely imaginary at µ = µ∗,

2. ψ1,2(α, µ
∗) = 0,

3. ∂ψ1,2

∂α

∣∣∣
µ=µ∗ ̸=0

,
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with ψi(α, µ) = απ
2 −mini=1,2|arg(λi(µ))|.

Based on the previous sections, we have determined that the stability of the system of dynamics is influenced
by the order of derivative. Now, we will analyze the parameter α as a Hopf-bifurcation parameter in the following
manner:

1. The Jacobian matrix of system (3) at the equilibrium pointE∗ has a couple of complex conjugate eigenvalues
λ1,2 = xj ± iyj become purely imaginary at α = α∗,

2. θ1,2(α∗) = 0,

3. ∂θ1,2
∂α

∣∣∣
α=α∗ ̸=0

,

with θi(α) = απ
2 −mini=1,2|arg(λi(α))|.

Next, we analyze the Hopf-bifurcation conditions of system (3) in the following theorem.

Theorem 4.10

The system (3) undergoes Hopf-bifurcation around E∗(P ∗, Q∗) at α = α∗ = tan−1

∣∣∣∣√4K−J2
11

J11

∣∣∣∣ where 4K >

J2
11, J11 ̸= 0.

Proof

Since, λ1,2 = υ1 ± iυ2, where υ1 = J11
2 , υ2 =

√
4b−J2

11

2 . Hence,

θ1,2(α
∗) = α∗π

2 − tan−1
∣∣∣υ2υ2 ∣∣∣ = tan−1

∣∣∣υ2υ2 ∣∣∣− tan−1
∣∣∣υ2υ2 ∣∣∣ = 0,

and ∂θ1,2
∂α

∣∣∣
α=α∗

= π
2 ̸= 0. So that, all the conditions of Hopf-bifurcation are satisfied.

5. Numerical Simulation and Discussion

In this section, we conduct numerical simulations of the model (3) using the Grünwald–Letnikov scheme [53].The
purpose of numerical simulations is to validate the outcome of a dynamic analysis. The parameter values are
r1 = 2, f = 2, ν = 0.6, c = 0.8, δ = 0.5, η = 0.2, z1 = 0.2, z2 = 0.1, r2 = 0.03 and b = 0.01. The parameter values
are chosen hypothetically as we currently lack any data pertaining to our model. The following case has been used
to categorize various numerical outcomes of model simulation and their corresponding observations:

Case 1 No fear effect. In Case 1, we analyzed the dynamics of the model system (3) in the absence of fear,
by varying the parameters δ and α. This study examines the impact of fear on both integral and fractional order
systems, emphasizing the influence of fear’s absence on system behavior. In the first sub-case (1a), we examined
prey refuge within the integer order system, maintaining α at 1 while systematically increasing the prey refuge
parameter δ from 0 to values nearing 1. As δ increases, the system transitions from unstable periodic oscillations
to a stable state near the interior equilibrium, as illustrated in Figure 1. Figures 1(a) and 1(b) present the time
series and phase portrait for δ = 0.5, 1(c) and 1(d) present the time series and phase portrait for δ = 0.88, whereas
Figures 1(e) and 1(f) depict these for δ = 0.9, with both sets indicating a stable steady state.

Biologically, increasing δ, which represents prey refuge (e.g., the availability of shelters), enhances prey survival
by reducing exposure to predators. This leads to an increase in prey biomass. However, predators, relying on prey
availability as their primary food source, reach maximum biomass when δ is between 0.89 and 0.97. Beyond this
threshold (δ > 0.97), the available prey becomes insufficient to sustain the predator population, ultimately leading
to predator extinction. Ecologically, this can result in imbalances such as unchecked prey population growth and
its cascading effects on community dynamics.

Numerically, the system’s stabilization as δ increases indicates that refuge availability can suppress oscillatory
dynamics, steering the system towards equilibrium. This outcome suggests a strong dependence of predator-prey
interactions on spatial or behavioral refuge mechanisms in real ecosystems.
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Figure 1. Dynamical behavior of the model system for different values of prey refuge δ, and fear effect f = 0 in the system.
The graphs (a) and (b) represent the time series and phase portrait of the solutions of the model when δ = 0.5; the graphs (c)
and (d) represent the time series phase portrait of the solutions of the model when δ = 0.88; the graphs (e) and (f) represent
the time series phase portrait of the solutions of the model when δ = 0.9.
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In the second sub-case (1b), we maintained the fear effect and prey refuge values at f = 0 and δ = 0.5,
subsequently reducing α to zero incrementally. The decrease in α enhances system stability, as illustrated in Figure
2. Figures 2(a) and 2(b) illustrate the time series and phase portrait for α = 0.8, while Figures 2(c) and 2(d) depict
these for α = 0.6. Reducing α results in a shift from instability to stability, attributed to the prey species’ robust
memory, enabling defensive adaptations in response to predators, particularly under conditions of limited food
resources for the predators.

Biologically, lower α reflects reduced predator memory or their ability to ”remember” prey locations effectively.
This gives an advantage to the prey species, as predators become less efficient in hunting. Prey can develop
defensive adaptations, such as avoiding certain areas or increasing the use of refuges, allowing them to survive
better, especially under conditions where predator food resources are limited.

Ecologically, the findings imply that reduced predator efficiency, possibly due to environmental stressors
or reduced cognitive abilities, can stabilize predator-prey dynamics, mitigating over-predation risks. Numerical
simulations corroborate this by illustrating how gradual memory decay (α reduction) shifts system dynamics from
oscillatory to stable.

Overall, the numerical simulations validate the analytical results, highlighting the critical roles of refuge and
memory in determining ecosystem stability. Such insights can inform strategies for habitat design and conservation,
focusing on enhancing natural refuges and mitigating factors that impair predator hunting efficiency.

Case 2 No Prey Refuge. In Case 2, we examined the dynamics of the model system devoid of prey refuge by
modifying the parameters f and α, concentrating on the impact of the lack of prey refuge on both integral and
fractional order systems. In the initial sub-case (2a), we examined the influence of fear within the integer order
system, maintaining α at 1 while systematically increasing the fear effect parameter f from 0 to 5. The behavior
of the model system near the interior equilibrium point E2 = (2.6316, 5.6566) transitions from initially unstable
periodic oscillations to a stable state, as illustrated in Figure 3. Figures 3(a) and 3(b) illustrate the time series
and phase portrait for f = 1, figures 3(c) and 3(d) illustrate the time series and phase portrait for f = 2.1 whereas
Figures 3(e) and 3(f) depict these for f = 4, indicating a stable state at E2 = (2.6316, 5.6566). In the absence
of prey refuge, the system exhibits instability under conditions of low fear effect. In the biology perspective,
f increases, it reflects heightened fear in prey due to predator presence, resulting in reduced prey movement,
activity, and reproduction rates. This behavioral adaptation minimizes predation risk but also decreases the prey
population’s reproductive output. For predators, reduced prey availability due to fear-induced inactivity stabilizes
population dynamics by preventing over-predation.

In the ecological perspective,the absence of prey refuge exacerbates the effects of low fear levels, leading to
instability. However, with higher fear, the predator-prey interaction stabilizes, balancing populations. This suggests
that fear acts as a regulatory mechanism in ecosystems where physical refuges are unavailable.

In the second sub-case (2b), with prey refuge and fear factor established at δ = 0 and f = 1, we systematically
decreased α. This reduction enhances stability within the model system, as demonstrated in Figure 4. Figures 4(a)
and 4(b) present the time series and phase portrait for α = 0.98, whereas Figures 4(c) and 4(d) illustrate these for
α = 0.92, highlighting the stabilizing effect of a reduction in α on the system dynamics.

Case 3 No Harvesting, In this case, we removed harvesting from both populations and examined the effect
of refuge on the system’s dynamics. As the level of refuge increased, the system moved from unstable periodic
behavior to a stable steady state. For example, at low refuge values (δ = 0.1), the population showed oscillatory
behavior (see Figure 5 in (a) and (b)), but as refuge increased to δ = 0.4, the system stabilized (see Figure 5 in (c)
and (d)). Decreasing α further increased system stability, as shown in Figure 7, where lower values of α lead to
more stable population levels.

Refuge plays a critical role in moderating population dynamics by providing a safe space for individuals to
escape predation or adverse conditions. At low levels of refuge (δ = 0.1), the oscillatory behavior observed in the
population indicates a high level of predator-prey interaction or inter-species competition, which can lead to boom-
and-bust cycles. These cycles are characteristic of systems where individuals are highly exposed to environmental
pressures or predation risks.

As the level of refuge increases to δ = 0.4, the stabilization of the system suggests that the availability of safe
areas reduces the intensity of these interactions, allowing populations to recover more effectively and maintain
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Figure 2. The dynamic behavior of the model system is examined in the context of varying values of the prey refuge δ and
the fear effect f = 0, δ = 0.5. The time series and phase portrait of the model’s solutions are depicted in the graphs (a) and
(b), respectively, when α = 0.8. The time series and phase portrait of the model’s solutions are depicted in the graphs (c) and
(d) when α = 0.6.

more consistent levels over time. This demonstrates the importance of refuge in buffering populations against
environmental fluctuations and preventing extreme population crashes or explosions.

Additionally, decreasing α, which represents factors such as interaction strength or environmental carrying
capacity, further enhances stability. Lower α values could imply reduced competition for resources or less frequent
encounters between predators and prey, leading to a more balanced and sustainable population dynamic. These
findings highlight the critical role of habitat features, such as refuge and resource availability, in shaping the long-
term stability and resilience of ecological systems.

Case 4 Combined Effects of Fear, Refuge, and Harvesting, Dynamics of the model system in presence of fear
effect, prey refuge and harvesting.In this case, we demonstrate three simulation i.e. stability of equilibrium point
E0, E1, and E2 in Figure 6, 8, and 9. Furthermore, in the last simulation, Lastly, adjusting the fractional-order
parameter α = 0.98, and α = 0.93 further highlighted changes in stability, as seen in Figure 10.
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Figure 3. The dynamical behavior of the model system is analyzed for varying values of fear f and with prey refuge set to
δ = 0. The graphs (a) and (b) illustrate the time series and phase portrait of the model’s solutions for f = 1, the graphs (c)
and (d) present the time series and phase portrait for f = 2.1, whereas the graphs (e) and (f) present the time series and phase
portrait for f = 4.
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Figure 4. Dynamical behavior of the model system for varying values of fear f and prey refuge δ = 0, f = 1 in the system.
The graphs (a) and (b) illustrate the time series and phase portrait of the model’s solutions when α = 0.98, while the graphs
(c) and (d) illustrate the time series and phase portrait of the model’s solutions when α = 0.92.
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Figure 5. The dynamic behavior of the model system is examined in the context of varying prey refuge values δ and harvesting
z1 = z2 = 0. The time series and phase portrait of the model’s solutions at δ = 0.1 are depicted in the graphs (a) and
(b),respectively. The time series and phase portrait of the model’s solutions at δ = 0.4 are depicted in the graphs (c) and (d).
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Figure 7. The dynamic behavior of the model system is investigated for varying values of prey refuge δ and harvesting
z1 = z2 = 0, δ = 0.1 in the system. The time series and phase portrait of the model’s solutions are depicted in the graphs (a)
and (b), respectively, when α = 0.98. The time series and phase portrait of the model’s solutions are depicted in the graphs
(c) and (d) when α = 0.95.
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Figure 9. Graphic Solution system (3) with respect to time t are shown when the case a2 < 0 and J11 = −0.1925 < 0. This
demonstrates the existence and stability of the interior equilibrium point E2(2.0208, 0.2316).
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Figure 10. The time series and phase portrait of the model’s solutions are depicted in graphs (a) and (b), respectively, when
α = 0.98. Similarly, the time series and phase portrait of the model’s solutions are depicted in graphs (c) and (d) at the
interior equilibrium point E2 = (0.5727, 1.4402) when α = 0.92.
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6. Conclusions

This study introduced a fractional-order predator-prey model incorporating the effects of fear, refuge, and
harvesting using the fractional Caputo derivative. By capturing memory effects in predator-prey dynamics, the
model provides a more accurate depiction of population interactions over time. Rigorous analysis confirmed the
existence, uniqueness, and biological viability of the model’s solutions, ensuring non-negativity and boundedness.
Stability analysis also revealed conditions for equilibrium or periodic oscillations through Hopf bifurcation,
highlighting the value of fractional calculus in improving traditional predator-prey models.

The findings of this study offer significant insights into the management and conservation of ecological systems.
By incorporating factors such as fear effects, prey refuge, and harvesting into the predator-prey model, this research
underscores the importance of considering both direct and indirect interactions in ecosystems. For instance, the
fear-induced stress on prey populations, while reducing predation risk, also impacts reproductive rates, which
could guide the design of protected areas to balance prey safety and ecosystem stability. Our findings on the
effects of fear, refuge, and optimal harvesting provide actionable insights for designing conservation policies. For
example, controlling predator populations to balance prey species survival can mitigate over-predation and maintain
biodiversity. Additionally, the identification of optimal harvesting rates serves as a guideline for policymakers
to implement sustainable harvesting strategies that prevent ecosystem destabilization while supporting economic
activities. The model highlights the importance of incorporating behavioral dynamics, such as fear-induced changes
in prey behavior, into conservation planning. These factors can inform the design of protected areas and the
regulation of human activities in sensitive ecosystems.

Moreover, the inclusion of harvesting parameters highlights the delicate balance required in resource
management. Excessive harvesting, as demonstrated in the model, risks destabilizing ecosystems, potentially
leading to the collapse of both predator and prey populations. These insights could inform regulatory strategies
for sustainable harvesting practices, emphasizing the need for adaptive management that considers ecological
thresholds. Future applications of this model could involve exploring its predictions in the context of real-world
conservation strategies. For example, it could assist in optimizing the size and placement of wildlife corridors or
assessing the impact of selective harvesting practices. Such interdisciplinary approaches would enhance the utility
of this model in addressing complex ecological challenges.

The physical interpretation of the model shows that fear induces stress in prey, reducing reproductive rates, while
refuge offers protection but can destabilize the system if overutilized, leading to predator extinction. Harvesting,
representing human intervention, introduces additional mortality rates, and the model demonstrates that excessive
harvesting could destabilize ecosystems by collapsing both predator and prey populations. These findings have
significant implications for ecosystem management, emphasizing the need for sustainable harvesting practices and
adaptive strategies that account for both direct and indirect effects of predation and human activity on population
dynamics.

Despite its valuable insights, the model has limitations. It assumes constant environmental conditions, focuses
on a single predator-prey pair, and does not consider spatial heterogeneity or multi-species interactions, which
are essential for understanding complex ecological systems.Future research can explore incorporating dynamic
elements, such as spatial variability and variable harvesting strategies. There is also potential to integrate
interdisciplinary approaches, such as noise modeling from electrical systems, as seen in the study of SiGe bipolar
phototransistors [54] , or using algorithms for managing complex systems like battery datasets [55], which could
offer insights into sustainable ecological practices. Additionally, deep learning techniques, such as those used in
sentiment analysis on social networking data [56], could be applied to simulate complex ecological networks and
predict outcomes based on various environmental factors. These interdisciplinary methods may further enhance the
model’s applicability to real-world scenarios, including wildlife conservation, sustainable resource management,
and ecological restoration.
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Appendix

Explanation note Proof of Theorem 4.2 (second equation). From the second equation, we have

dQ

dt
= −r2Q+

cν(1− δ)PQ

1 + η(1− δ)P
− z2Q,

dQ

Q
=

(
−r2 +

cν(1− δ)P

1 + η(1− δ)P
− z2

)
dt,

ln (Q) =

∫ t

0

(
−r2 +

cν(1− δ)P (τ)

1 + η(1− δ)P (τ)
− z2

)
dτ + lnP (0),

Q(t) = Q(0) exp

{∫ t

0

(
−r2 +

cν(1− δ)P (τ)

1 + η(1− δ)P (τ)
− z2

)
dτ

}
≥ 0.
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