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Abstract Two well-known distributions which are very helpful for modelling data in different areas, are the lognormal and
inverse Weibull distributions. Choosing between the true or false distribution is substantial and of great importance. In order
to determine the correct model, the ratios of biases and mean squared errors will have been computed by performing miss-
specified analysis on the mean of these distributions and decision is made by comparing these ratios. To confirm the achieved
theoretical results, a simulation study has been done. When the correct model is lognormal, then the miss-specification as
the inverse Weibull (IW) model leads to larger values for ratios of biases and mean squared errors, so in this case miss-
specification does not have a significant chance in practice. However, when the correct model is IW, there is a big chance for
false specifying the lognormal model. Finally, this methodology is applied to determine the true distribution for a real data
set of Covid-19 mortality rate in Germany.
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1. Introduction

Recently, the problem of finding appropriate distribution for a data set has been studied by many statisticians. This
subject is called as the model selection which may be performed by using different criteria and methods such as
the probability plots [1], goodness-of-fit and hypothesis testing [2], maximum likelihood estimation (MLE) [3],
scale invariance [4], Bayesian procedures [5], minimum Kolmogorov distance methods [6], probability of correct
selection and other approaches [7, 8, 9].

The effect of mis-specified distribution on some basic estimates is an important aspect. Yu [10, 11] analyzed the
effect of miss-specification on the estimation and confidence interval for the 100pth percentile between two normal
and extreme value distributions. Pascual [12] performed this research to censored data. Yu [13] evaluated the effect
of miss-specification on the precision of selecting significant factors between these two distributions.
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Jia et al. [14] studied the effect of miss-specification on mean and its efficiency on selection between the
Weibull and lognormal models. Their research has been motivated by the gap on the “analysis of the effect of
miss-specification on mean and model selection”.

Since there are numerous similarities between IW and Weibull distributions, hence another distribution which
may arise in the problem of model selection against lognormal is Inverse Weibull (IW). The IW and lognormal
are two distributions which selection between them may be crucial and of great importance in a wide range of
applications. They are widely used to describe the data in engineering, for instance Akgul et al [15], recommended
IW distribution as an alternative of Weibull in modeling the wind speed data. The aim of this article is to perform
some study similar to [14], but by using IW instead of Weibul distribution. Some important and logical motives for
applying this methodology which remains valid for many other distributions have been listed in [14].

Therefore, for miss of redundancy we refer readers only to [14], for benefits of the method which is applied in
this study.

This paper is organized as follows. The influence of unknown lognormal distribution as IW distribution on the
lognormal expectation is analyzed in Section 2. In Section 3, the influence on the IW mean has been investigated
when the IW distribution is not correct one. Finally, Section 4 is devoted to determine the distribution of a set of
real data, corresponding to the Covid-19 mortality rate in Germany by using the method which has been applied in
this paper.

2. Miss-specifying lognormal distribution as IW distribution

In this section, we suppose that the correct distribution is lognormal. The mean of lognormal and its estimation
under the incorrectly specified IW distribution have been investigated. At the end, the effect of this miss-
specification will have been analyzed.

The pdf of the lognormal distribution by µ and σ as its location and scale parameters is

fl(t;µ, σ) =
1√
2πσt

e−
(lnt−µ)2

2σ2 ,

with mean
h(µ, σ) = eµ+

σ2

2 (1)

The MLE of θ = (µ, σ) based on a random sample T1, . . . , Tn would have been obtained by: maximizing the
Log-likelihood function

Ll =

n∑
i=1

lnf l (ti) = −nln
√
2π − nlnσ −

n∑
i=1

ln ti −
n∑
i=1

(ln ti − µ)
2

2σ2 .

The MLE’s are

µ̂ =
1

n

n∑
i=1

ln ti,

σ̂2 =
1

n

n∑
i=1

(ln ti − µ̂)
2
.

So, the MLE of (1) is:
ĥ = eµ̂+

σ̂2

2 . (2)

The Fisher’s information matrix is

J = El

(
−∂

2 lnLl
∂θ2

)
=

[
n
σ2 o
o 2n

σ2

]
.
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In addition, the limiting distribution of ĥ is N (h, Vh|l ), where:

Vh|l =

(
∂h

∂µ
,
∂h

∂σ

)
J−1

(
∂h

∂µ
,
∂h

∂σ

)T
=
σ2 e2µ+σ

2

n

(
1 +

σ2

2

)
(3)

The pdf of IW distribution is
fIW (t;α, λ) = λαt−(α+1)e−λt

−α
,

by α and λ as the shape and scale parameters, with the expected value:

g(α, λ) = λ
1
α Γ

(
1− 1

α

)
. (4)

Suppose that the IW distribution has been incorrectly considered for the random sample T1, . . . , Tn. The log-
likelihood function is then given by:

LIW = n(lnα+ lnλ)− (α+ 1)

n∑
i=1

lnti − λ

n∑
i=1

t−αi ,

where the MLE’s of the parameters α and λ can be calculated by maximizing LIW . Differentiating LIW w.r.t. λ
and then α leads to solving the following equation:

η(α) =
1

α
−
∑n

i=1 lnti
n

+

∑n
i=1 t

−α
i lnti∑n

i=1 t
−α
i

= 0,

by which the MLE of α say α̂, will have been computed firstly and subsequently have been used for calculating the
MLE of λ as

λ̂ =

(
1

n

n∑
i=1

t−α̂i

)−1

.

Moreover, the quasi-MLE (QMLE) of mean for lognormal distribution has the following form:

hq = g
(
α̂, λ̂

)
= λ̂

1
α̂ Γ

(
1− 1

α̂

)
(5)

The asymptotic distribution of (5) is required for achieving the goal of this article.
Let α∗ and λ∗ be the values that maximize the supposed logarithm of likelihood El(LIW ) with reversion to µ

and σ, i.e.
(α∗ , λ∗) = argmax El(LIW )

µ, σ

In order to compute (α∗ , λ∗), first we calculate El(LIW ) and afterwards obtain its partial derivatives w.r.t. α and
λ. Finally by setting the latter’s equal to zero; successively the following calculations have been done:

El (LIW ) = El

[
nlnα+ nlnλ− (α+ 1)

n∑
i=1

ln(T i)− λ

n∑
i=1

T−α
i

]
= n

(
lnα+ lnλ− (α+ 1)El(lnT )− λEl

(
T−α))

then
El (LIW ) = n

(
lnα+ lnλ− (α+ 1)µ− λ e−αµ+

α2σ2

2

)
,
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and

∂El (LIW )

∂α
= n

(
1

α
− µ− λ e−αµ+

α2σ2

2

(
ασ2 − µ

))
= 0,

∂El (LIW )

∂λ
= n

(
1

λ
− e−αµ+

α2σ2

2

)
= 0,

which leads to:

α∗ =
1

σ
, λ∗ = e

µ
σ−

1
2 (6)

Furthermore, denote

El

(
∂2LIW
∂θ2

)
= El

∂2LIW
∂α2

∂2LIW
∂α∂λ

∂2LIW
∂α∂λ

∂2LIW
∂λ2


and

El

(
∂LIW
∂α

∂LIW
∂λ

)
= El

[ (
∂LIW
∂α

)2 ∂LIW
∂α

∂LIW
∂λ

∂LIW
∂α

∂LIW
∂λ

(
∂LIW
∂λ

)2
]
.

Since

∂LIW
∂α

=
n

α
−

n∑
i=1

lnti + λ

n∑
i=1

t−αi lnti,

∂LIW
∂λ

=
n

λ
−

n∑
i=1

t−αi ,

∂2LIW
∂ α2

= − n

α2
− λ

n∑
i=1

t−αi ln2 ti,

∂2LIW
∂α∂λ

= −
n∑
i=1

t−αi lnti,

∂2LIW

∂λ2
= − n

λ2
,

we obtain that:

El

[(
∂LIW
∂α

)2
]
=
n2

α2
− 2n2

α
El(lnT ) + nEl

(
ln2T

)
+

2n2λ

α
El
(
T−αlnT

)
+ n(n− 1)E2

l (lnT )− 2nλEl
(
T−αln2T

)
+ nλ2El

(
T−2α ln2 T

)
− 2nλ(n− 1)El(lnT )El

(
T−αlnT

)
+ nλ2

(
n− 1)E2

l (T
−αlnT

)
,

El

(
∂LIW
∂α

∂LIW
∂λ

)
=
n2

αλ
− n2

α
El
(
T−α)− n(n− 1)El

(
T−α)El(lnT )− n2

λ
El(lnT )

+ n(n+ 1)El
(
T−αlnt

)
− nλEl

(
T−2αlnt

)
− nλ(n− 1)El

(
T−αlnt

)
El
(
T−α) ,

El

[(
∂LIW
∂λ

)2
]
=
n2

λ2
− 2n2

λ
El
(
T−α)+ nEl

(
T−2α

)
+ n(n− 1)E2

l

(
T−α) .
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After a cumbersome computation we have the following results

El(lnT )|α∗,λ∗ = µ,

El
(
ln2 T

)∣∣
α∗,λ∗ = µ2 + σ2,

El
(
T−αlnT

)∣∣
α∗,λ∗ = (µ− σ) e

1
2

µ
σ ,

El
(
T−α)∣∣

α∗,λ∗ = e
1
2−

µ
σ ,

El
(
T−α ln2 T

)∣∣
α∗,λ∗ =

(
µ2 − 2µσ + 2σ2

)
e

1
2−

µ
σ ,

El
(
T−2α

)∣∣
α∗,λ∗ = e2(1−

µ
σ ),

El
(
T−2αlnT

)∣∣
α∗,λ∗ = (µ− 2σ)e2(1−

µ
σ ),

El
(
T−2α ln2 T

)∣∣
α∗,λ∗ =

(
µ2 − 4µσ + 5σ2

)
e2(1−

µ
σ ).

Now let

J1 = El

(
∂2LIW
∂θ2

)
|
α∗,λ∗

and

J2 = El

(
∂LIW
∂α

∂LIW
∂λ

)
|α∗,λ∗ .

Straight computations show that:

J1 = −n

µ2 − 2µσ + 3σ2 (σ − µ)e
1
2−

µ
σ

(σ − µ)e
1
2−

µ
σ e1−2 µ

σ

 ,
J2 = n(e− 1)

(2σ − µ)2 + e
e−1σ

2 (2σ − µ)e
1
2−

µ
σ

(2σ − µ)e
1
2−

µ
σ e1−2 µ

σ

 .
By following the methodology which is recommended in White [16], the limiting distribution of the QMLE hq
becomes

hq ∼ N(g (α∗, λ∗) , VIW |l),

where
g (α∗, λ∗) = Γ(1− σ)eµ−

σ
2

and

VIW |l =

(
∂g

∂α
,
∂g

∂λ

)
J−1
1 J2J

−1
1

(
∂g

∂α
,
∂g

∂λ

)T ∣∣∣∣∣
α∗,λ∗

.

A cumbersome computation shows the following representation for VIW |l :

VIW |l =
(2e− 1)σ2

4n
Γ2(1− σ)

{[
1

2
+ Ψ(1− σ)− 1

2e− 1

]2
+

4e2 − 4e

(2e− 1)2

}
e2µ−σ, (7)

where

Ψ(x) =
d

dx
(ln Γ(x) )

illustrates the derivative of logarithm gamma function.
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In order to measure the performance of estimators, two various criteria have been considered and computed; bias
and mean squared error (MSE). The bias of the QMLE ( hq) of the correct lognormal mean when incorrect IW
model has been purposed is given by:

bIW |l = E (hq)− h = g (α∗, λ∗)− h =
[
Γ(1− σ)− e

σ2+σ
2

]
eµ−

σ
2 . (8)

The corresponding MSE is
MIW |l = E

[
(hq − h)

2
]

which is determined as follows:

MIW |l = VIW |l +
[
E (hq − h)

2
]
= VIW |l +

[
Γ(1− σ)− e

σ2+σ
2

]2
e2µ−σ (9)

We evaluate the mis-specification effect on the mean by comparing the bias and MSE of QMLE hq with those of
the MLE ĥ under the lognormal distribution. In other words, the ratio of biases under both models and the ratio
of MSE’s of them have been computed. If the lognormal distribution was selected, we have E(ĥ) = h.Therefore,
rbIW |l is the ratio of the bias of (5) to its true value:

rbIW |l =
bIW |l

h
= Γ(1− σ)e−

σ2+σ
2 − 1. (10)

The coefficient of the MSE of hq to the MSE of ĥ is:

rmIW |l =
MIW |l

Vh|l
=
VIW |l

Vh|l
+
n
[
Γ(1− σ)e−

σ2+σ
2 − 1

]2
σ2
(
1 + σ2

2

) . (11)

By un-biasness of ĥ for the lognormal distribution and therefore, MSE
(
ĥ
)

is just its variance, Vh|l , given by (3).
Here a simulation has been done like [14]. All programs of this paper have been written in R software and

included in the Appendix. The simulation results have been compared with the theoretical ones in Table 1. Figures
of this table shows that the theoretic criteria are reliable. Figure 1 presents the heat map based on Table 1.

Table 1. The values of rbIW |l and rmIW |l for miss-specified IW distribution.

µ σ n|N =10000 MIW |l rbIW |l rmIW |l
1 0.05 100 simulated 0.0003384081 0.004119081 1.815796

theoretical 0.000393755 0.004729946 2.123581
1 0.05 30 simulated 0.0007517901 0.003617034 1.236474

theoretical 0.0009258257 0.004729946 1.497936
4 0.05 30 simulated 0.3044564 0.003537992 1.230158

theoretical 0.3735048 0.004729946 1.497936
4 0.05 100 simulated 0.134283 0.004181023 1.828597

theoretical 0.1588521 0.004729946 2.123581

At the moment, we compute the ratios of biases and MSE’s (rbIW |l and rmIW |l) by Equations (10) and (11),
respectively. In Figure 2 and Figure 3, the ratio of biases have been plotted for different values of σ. As Figure 2
and Figure 3 demonstrate rbIW |l is an increasing function of σ and it grows rapidly. In fact, for values of σ which
are less than 0.75, the ratio of the biases are less than 1, while for values of σ bigger than 0.95, the rbIW |l s are
greater than 10. This indicates that the absolute values of rbIW |l become greater and tend to the true value of the
lognormal mean, as σ greats. The rbIW |ls are always more than 0, so the mis-specified IW distribution generally
overestimate the lognormal mean.

Stat., Optim. Inf. Comput. Vol. 14, December 2025



M. M. SABER, P. HABIBI, M. H. ZARINKOLAH, ET AL. 2983

Figure 1. Heat map based on Table 1.

The parameters µ, σ, and n in the simulation study are strategically chosen to assess the robustness of metrics
like MIW |l, rbIW |l and rmIW |l under varying conditions, with µ = 1 and µ = 4 representing low and high
baseline mortality rates (e.g., controlled vs. severe outbreak scenarios), σ = 0.05 reflecting minimal variability
to test estimator performance under idealized low-uncertainty conditions, and sample sizes n = 30 (small) and
n = 100 (larger) evaluating finite-sample behavior versus asymptotic stability. While the fixed σ = 0.05 ensures
a baseline analysis of precision, expanding σ to ranges like σ < 0.75 (low variability, e.g., stable public health
interventions) and σ > 0.95 (high variability, e.g., stochastic surges or heterogeneous populations) would better
stress-test estimator reliability in real-world contexts. The data reveal that higher µ (e.g., µ = 4) drastically inflates
MIW |l (e.g., 0.304 vs. 0.000338 for µ = 1), highlighting sensitivity to baseline conditions, while larger n reduces
MIW |l (e.g., 0.000338 for n = 100 vs. 0.000751 for n = 30), aligning with improved precision in larger samples.
Discrepancies between simulated and theoretical values (e.g., simulated MIW |l =0.134 vs. theoretical 0.1588 for µ
= 4, n = 100) suggest finite-sample biases or model limitations. To enhance applicability, future simulations should
incorporate broader µ ranges, σ thresholds (σ < 0.75 and σ > 0.95), and extreme sample sizes (n = 10, 1000) to
validate estimators across epidemiological extremes, ensuring robustness for pandemic response planning under
uncertainty.

Figure 2. The coefficient of biases with smaller σ.
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Figure 3. The coefficient of biases with larger σ.

Figure 4. Left: The values of rmIW |l for small σ. Right: The values of rmIW |l for large σ.
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The plotted proportion of MSE,s in Figure 4, shows that false specification may occur for small sample sizes and
values of σ less than 0.25.

3. Miss-specified lognormal distribution instead of IW distribution

In this section we assume that the correct distribution is IW. In order to analyzing the results of miss-specification,
IW mean and some approximations under the wrong assumption of lognormal distribution have been inspected.

Let X1, ..., Xn be iid with IW(α,λ) distribution. The corresponding MLE’sα̂andλ̂had been presented in Section
2. The Fisher’s matrix of information for parameter θ = (α, λ) is

I = EIW (−∂
2 lnLIW
∂θ2

) = −EIW


∂2 lnLIW

∂α2
∂2 lnLIW
∂α∂λ

∂2 lnLIW
∂α∂λ

∂2 lnLIW
∂λ2


=

n

α2λ2

[
λ2(ψ(1)(1) + (1 + ψ(1)− lnλ)2) αλ(1 + ψ(1)− lnλ)

αλ(1 + ψ(1)− lnλ) α2

]
,

where

ψ(k)(y) =
dk+1

dyk+1
ln Γ(y).

The MLE (α, λ) of IW mean had been presented in (5), the limiting distribution ofĝis N(g, Vg|IW ) where g had
been presented in (4) and by some calculus we arrive at:

Vg|IW =
∂g

∂θ

T

I−1 ∂g

∂θ
=

Γ2(1− 1
α )

nα2ψ(1)(1)
λ

2
α

{
(1 + ψ(1)− ψ(1− 1

α
))2 + ψ(1)(1)

}
(12)

Now suppose that the lognormal distribution has incorrectly selected to explain the data X1, ..., Xn. Formerly, the
MLEsµ̂andσ̂had been presented in Section 2, and the QMLE gq of the IW mean by (2). The limiting distribution
of the (2) will be applied to analyze the findings.

Let µ∗and σ∗ maximize the expected log-likelihood EIW (lnLl) with regard to α and λ., i.e.

(µ∗, σ∗) = argmax
α,λ

EIW (lnLl).

First of all we have

EIW (lnLl) = −n ln
√
2π − n lnσ − nEIW (lnX)− n

2σ2
EIW (lnX − µ)2.

So,

EIW (lnLl) = −n ln
√
2π − n lnσ − n

α
(ψ(1)− lnλ)− nA

2σ2

where

A =
ψ(1)(1)

α2
+

(
1

α
(lnλ− ψ(1))− µ

)2

.

In order to maximize EIW (lnLl), its partial derivatives w.r.t. to µ and σ will be set to 0:

∂EIW (lnLl)

∂µ
=

n

σ2
[
1

α
(ψ(1)− lnλ)− µ] = 0 and

∂EIW (lnLl)

∂σ
= −n

σ
[1 +

A

σ2
] = 0.

So, the values of µ∗andσ∗ have been obtained as:

µ∗ =
lnλ− ψ(1)

α
, σ∗ =

√
ψ(1)(1)

α
. (13)
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Similar to the approach of previous section, we have:

I1|µ∗,σ∗ = − nα2

ψ(1)(1)

1 0
0 2

 I2|µ∗,σ∗ =
nα2

ψ(1)(1)


1 − ψ(2)(1)

(ψ(1)(1))
3
2

− ψ(2)(1)

(ψ(1)(1))
3
2

ψ(3)(1)

(ψ(1)(1))
2 + 2

 .

Now, asymptotic distribution of QMLE gq is,

gq ∼ N(h(µ∗, σ∗), Vl|IW

where:
h(µ∗, σ∗) = e

lnλ−ψ(1)
α +

ψ(1)(1)

2α2

and

V
∂h

∂µ

∂h

∂σ

−1

1 2

−1

1

∂h

∂µ

∂h

∂σ

T

l|IW
. (14)

By substituting (12) in (14) we haveV ψ(1)(1)

nα2

2
α

{
ψ(1)(1)

2α2
(

ψ(3)(1)

2
(
ψ(1)(1)

)2 + 1)− ψ(2)(1)

αψ(1)(1)
+ 1

}ψ(1)(1)

α2 − 2ψ(1)
α


l|IW

. (15)

Based on the bias and MSE criterias, the results of the miss-specified problem will have been analyzed. The bias
criterion of the (2) of the IW mean versus the incorrect lognormal distribution is:

bq∗∗
1
α

[
e
ψ(1)(1)

2α2 −ψ(1)
α − Γ(1− 1

α
)

]
l|IW

. (16)

The MSE of gqis

Mq22
2

α

[
e
ψ(1)(1)

2α2 −ψ(1)
α − Γ(1− 1

α
)

]2
l|IW

l|IW
l|IW l|IW

. (17)

For simplicity of comparison, (16) and (17) will have been calculated similar to Section 2. Thus:[
rb
ψ(1)(1)

2α2
− ψ(1)

α

−1
1

α

]
l|IW

, (18)

rm
Ml|IWVg|IW =

Vl|IW

Vg|IW+

nα2ψ(1)(1)

eψ(1)(1)

2α2 −ψ(1)
α Γ−1(1− 1

α
)−1


2

(1+ψ(1)−ψ(1− 1
α

))2+ψ(1)(1)


l|IW

. (19)

Similar to Section 2, a simulation study has been employed which again confirms the accuracy of (17)-(19). The
results of this simulation have been presented in Table 2. Therefore, employing Equations 10 and 11 in order to
computing the ratios of biases and MSE’s, say rbl|IW and rml|IW , is valid and justifiable. The criteria rbl|IW as the
ratio of biases have been plotted for different values of α in Figure 6. Figure 1 presents the heat map based on Table
2.
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Table 2. The values of rbl|IW and rml|IW for miss-specified lognormal distribution.

α λ n Ml|IW rbl|IW rml|IW
3.5 0.9 10 simulated 0.03292290 −0.00972015 0.9441920

theoretical 0.03168536 −0.01159774 0.9882228
3.5 0.9 30 simulated 0.01066024 −0.01011047 0.9768248

theoretical 0.01069926 −0.01159774 1.001085
1.25 0.9 100 simulated 3.198000 −0.4074761 1.004237

theoretical 3.278238 −0.4148648 1.380777
1.25 0.9 400 simulated 3.092395 −0.4130553 4.086844

theoretical 3.118075 −0.4148648 5.253269

Figure 5. Heat map based on Table 2.

Figure 6. Left: The graph of rbl|IW for small α. Right: The graph of rbl|IW for large α.

The criterion rbl|IW is less than 0 for all values of parameters, which provide this finding that the miss-specified
lognormal distribution underestimate the IW mean. Again, this criterion is an increasing function of α which
approaches to 0 although it grows very slowly. The rbl|IW is between -1 and 0 for all values of α which imply
on this fact that the absolute value of rbl|IW decreases and appears to reach with the actual value of the IW. The
rml|IW shown in Figure 5 is a steadily increasing function of n which states that for large values of sample size n,
the effect on the mis-estimated IW mean is more significant. Incorrect specifications are more likely to occur for
values greater than 2.5. In short, rbl|IW is determined only by although rml|IW depends on both α and n. Both
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Figure 7. Left: The graph of rml|IW for small α. Right: The graph of rml|IW for large α.

rbl|IW and rml|IW tend to their small values whenever α increases. The false determined lognormal distribution is
accepted for large values of parameter α, especially more than 3.

4. Real data analysis

This section is devoted to an illustrative real data analysis. It will have been shown that for the problem of choosing
a satisfactory distribution for a data set, various selection methods may suggest different distributions. Furthermore,
the model selection, which is proposed in this article, has been applied to determine an appropriate model for this
dataset. The data correspond to the mortality rate of Covid-19 virus in Germany in 2021, provided by World Health
Organization (https://covid19.who.int/). Given that the data corresponds to the mortality rate of the
Covid-19 virus in Germany in 2021, we can expand the interpretation of the Cullen and Frey plot in the context of
real-world implications. The mortality rate data you’re working with is likely to have some important characteristics
due to the nature of the pandemic. Mortality rates for infectious diseases like Covid-19 typically exhibit varying
levels of severity across different regions and time periods. The Covid-19 mortality rates can fluctuate due to factors
like the emergence of new virus variants, government interventions (lockdowns, vaccination rates), healthcare
system capacity, and population age structure.

The summary statistics for Germany’s 2021 COVID-19 mortality rate reveal a right-skewed distribution, with a
median of 1.23 and a higher mean of 1.8375, indicating that extreme values, likely during pandemic surges, pulled
the average upward. The substantial standard deviation (1.438) and wide range (0.3–5.0) underscore significant
variability, reflecting periods of both controlled mortality (as low as 0.3) and severe outbreaks (peaking at 5.0).
The interquartile range (0.63–2.83) captures moderate variability in the central 50% of data, while the gap between
the mean and median, coupled with the high maximum value, highlights skewness driven by outliers. This pattern
likely mirrors real dynamics such as regional disparities in healthcare access, variant-driven waves (e.g., Delta),
vaccination rollout timing, and fluctuating public health measures. The data emphasize the need for targeted
interventions to address uneven mortality outcomes and underscore the value of visualizing trends (e.g., histograms,
time-series plots) to better contextualize outliers and inform adaptive policy responses.

Figure 8 below gives the Cullen and Frey plot for the mortality rates. He Cullen and Frey plot helps assess the
distribution of the mortality rate data by comparing its skewness (asymmetry) and kurtosis (peaked-ness) against
several well-known distributions. If the data has a positive skew (values with higher mortality are more spread
out), this indicates that most of the data points (mortality rates) are clustered around lower values, but there is
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a tail of higher mortality rates. A negative skew (higher values are clustered) would suggest the opposite: most
regions have higher mortality rates, but a few regions experience very low rates. If the data has a kurtosis around
3 (mesokurtic), this will imply that the data follows a distribution like the normal distribution. Kurtosis greater
than 3 (leptokurtic) indicates that the data is more peaked, meaning that the mortality rates are clustered around
the mean but with a higher frequency of extreme values (outliers). Kurtosis less than 3 (platykurtic) suggests that
the mortality rates are more evenly spread out (flatter distribution), with fewer extreme values. It’s likely that
the data would show positive skewness. This would mean that most of the regions or time periods had relatively
lower mortality rates, but a few regions or periods had significantly higher mortality rates. For instance, areas
with overwhelmed healthcare systems, or later waves of the pandemic, could have had higher mortality rates due
to the surge in cases. Additionally, the inequality in healthcare access, age distribution of the population, and
variant impact could contribute to this positive skew, with more deaths in areas with higher vulnerability, poor
vaccination coverage, or where hospitals were overwhelmed. A positive skew might reflect the fact that most
regions or time periods had low mortality (e.g., after the vaccine rollout), while a few periods (e.g., before the
vaccines were available or during the peak of variants like Delta or Omicron) had much higher mortality. The
kurtosis of the plot will tell us if the distribution is more concentrated around the mean or has a tail with extreme
values. A high kurtosis (greater than 3) could indicate that there were some extreme outliers (periods or regions with
extremely high mortality rates compared to the rest), which is often the case in pandemic data. This would suggest
a leptokurtic distribution, where most mortality rates were within a moderate range, but a few significant spikes
occurred during critical waves of the pandemic (e.g., during the first wave or when new, more virulent variants
emerged). A lower kurtosis (less than 3) would suggest that the mortality rates were relatively spread out, with
no significant peaks—perhaps indicating that no specific regions or periods had dramatically higher rates. If the
data points align with a Log-Normal distribution, it could suggest that the data follows a distribution where small
values are very common (low mortality rates), but the higher values (outliers with much higher mortality) occur
less frequently but still significantly affect the overall distribution. This is plausible in the context of Covid-19,
as the pandemic experienced waves of both low and high mortality rates. Figure 9: The Kernel density estimation
plot (top left), the total time in test plot (top right), the box plot (bottom left) and the Violin plot (bottom right) for
the mortality rates. The Kernel Density Estimation (KDE) plot gives a smooth estimate of the probability density
function for the mortality rates. This plot illustrates the distribution of the data, showing a right-skewed distribution.
The peak of the distribution occurs around 1.0, with a long tail extending to higher mortality rates. This indicates
that most mortality rates are clustered around the lower end, with a few extreme values at the higher end. The KDE
plot highlights the general trend that, while most observations are moderate, there are occasional outliers with
much higher mortality rates. This is important for understanding the overall spread and identifying potential high-
risk events or regions. The right skew suggests that while the majority of mortality rates are concentrated around
moderate levels (1.0), there are significant fluctuations in the data with occasional spikes in mortality, possibly
related to specific events, outbreaks, or regions. The total time in test plot clearly indicates that mortality rates
are increasing by showing the progression of mortality rates over time or across different categories. This upward
trend could be due to a variety of reasons including worsening conditions in the pandemic, system overloads, or
other socio-political factors. The plot helps visualize how mortality has evolved and can provide insights into the
timing of interventions, impact of public health measures, and potential areas of concern that may require further
investigation or intervention.

The Box Plot shows the distribution of mortality rates by illustrating the median, interquartile range (IQR), and
the presence of outliers. The median (Q2) is located at approximately 1.0, indicating that the middle of the dataset
is concentrated around this value. The box shows the range between Q1 (25th percentile) and Q3 (75th percentile),
highlighting the spread of the middle 50% of the data. There is a long whisker on the upper side, indicating
the presence of higher mortality rates (outliers) beyond Q3. This suggests that, while most mortality rates are
moderate, there are extreme values that significantly differ from the majority. The box plot helps to confirm the
skewed distribution identified in the KDE plot. The box plot provides a clear view of the spread of mortality rates,
indicating that while the data is fairly concentrated in the lower ranges, the presence of outliers highlights areas
where the mortality rate spikes. The whisker and outliers suggest that certain extreme values should be further
investigated. The Violin Plot combines the box plot with a kernel density estimate, offering a detailed view of the
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Figure 8. Cullen and Frey plot for the mortality rates.

data’s distribution and density. The wide part of the violin near 1.0 indicates that most mortality rates are clustered
around this value. The long tail extending to the right confirms that a smaller proportion of mortality rates are
higher, creating a skewed distribution. The boxplot overlay within the violin plot clearly shows the median, Q1,
and Q3, helping to reinforce the information from the box plot. This plot is particularly useful for understanding
the density of the data, as it provides both the shape of the distribution and a summary of key statistical measures.
The violin plot effectively highlights the distribution and density of the data. The rightward skew is more apparent
here, showing that while most mortality rates are lower (around 1.0), there are a small number of regions or times
with significantly higher mortality rates. The quartile lines within the violin plot make it easy to identify the central
tendency and spread, and the density plot shows where data points are most concentrated.

Various selection methods discussed in Introduction are applied to choose right distribution between the IW and
lognormal distributions for mentioned data. Results of applying some of these techniques containing Kolmogorov-
Smirnov (KS) test, MLE and scale invariant (SI) methods to Covid19 data has been presented in Table 3. Also,
the graphs of Q-Q plot of this data for lognormal and IW distribution has been shown in Figure 10. As this table
demonstrates, Kolmogorov-Smirnov test and MLE methods recommend lognormal distribution while two other
methods yield in selecting IW distribution.

Table 3. Different methods for selecting appropriate distribution, the estimated parameters in MLE methods are µ̂ = 2.5,
σ̂ = 0.19, α̂ = 1.17 and λ̂ = 0.12.

MSE KS MLE SIstatistics p-value Log(likelihood)
lognormal 0.84 0.16 0.35 −99.54 −100.41

IW 0.77 0.29 0.24 −102.03 −98.15
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Figure 9. The Kernel density estimation plot (top left), the total time in test plot (top right), the box plot (bottom left) and the
Violin plot (bottom right) for the mortality rates.

Now, we investigate about the impact of miss-specified distribution on the mean. Henceforth, we consider two
cases as follows.

(i) The lognormal distribution is the correct model versus IW.
(ii) The IW distribution is the correct model versus lognormal.

The values of four criteria rbIW |l, rmIW |l, rbl|IW and rml|IW have been computed by using the Equations
(10), (11), (18) and (19), respectively. By the figures of Table 4,

∣∣rbIW |l
∣∣ < ∣∣rbl|IW ∣∣ and rml|IW < rmIW |l which

together by the results of Sections 2 and 3, yields in the conclusion that IW model is better for this dataset may be
more logical.

The analysis also shows the influence of incorrect model selection on the mean estimation under different
conditions. When the correct model is IW, the miss-specified model (lognormal) results in relatively smaller errors
in the mean, particularly for large values of the shape parameter, where rbl|IW tends toward zero and rml|IW
remains below 1.5. When the correct model is lognormal, however, selecting IW results in larger errors in the mean,

Stat., Optim. Inf. Comput. Vol. 14, December 2025



2992 USING MISS-SPECIFICATION EFFECT FOR SELECTION...

Figure 10. The Q-Q plot of data for two distributions.

Table 4. Criteria rbIW |l, rmIW |l, rbl|IW and rml|IW .

Correct model Wrong but selected model rbl|IW rml|IW
IW lognormal −1.24 0.45

lognormal IW 0.004 1.98

with rbl|IW increasing rapidly as the scale parameter σ grows. This suggests that choosing IW when lognormal is
correct can lead to significant errors in the data mean. Below, we provide some recommendation in this regard:

1. When choosing between competing distributions, use a comprehensive set of goodness-of-fit measures to
evaluate the appropriateness of the models. In particular, rely on criteria like Mean Squared Error (MSE),
Kolmogorov-Smirnov (KS) statistics, and log-likelihood values. These measures provide insights into how
well a distribution fits the data and can help prevent the selection of a mis-specified model. This study shows
that while the lognormal distribution may initially appear to fit better according to some fit statistics (MSE,
KS), choosing the IW distribution might be more appropriate for certain datasets. Using multiple fit criteria
will reduce the risk of overfitting and help select the most accurate model for the data.

2. Always assess the impact of miss-specification on the estimated mean, especially when there are uncertainties
in model selection. Use specialized criteria like rb and rm (defined in Equations 10, 11, 19, and 20) to
examine how choosing a wrong distribution (i.e., mis-specified model) influences central tendency estimates
such as the mean and variance. This analysis has demonstrated that incorrect model selection, especially
when choosing IW over lognormal or vice versa, can lead to different bias levels in mean estimation. In
particular, mis-specifying the IW distribution when the true model is lognormal tends to produce significant
errors, whereas the opposite (lognormal misspecification for IW) has less impact. Understanding these biases
is critical for making robust statistical inferences.

3. Perform simulation studies alongside real data analysis to validate the selection of the correct distribution
model. Simulations will allow you to test how well different models perform across a variety of scenarios,
including different parameter settings. The theoretical results from this study were supported by simulation
studies, which is a powerful method to assess model selection and its effects on data. By generating synthetic
datasets and testing model performance in controlled settings, researchers can identify the most reliable
distribution and understand how different models behave under different parameter conditions.
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Conclusion, discussions and limitations

In this article, we have discussed the problem of model selection between lognormal and IW distributions, for a
given data set. The influence of wrong choosing for any of these distributions when another distribution is the
correct one, has been studied. Four criteria rbIW |l, rmIW |l, rbl|IW and rml|IW were applied in order to determine
the influence of miss-specification on the mean. The theoretical results have been approved by a simulation study.
In the case of correct IW distribution, interestingly the criteria rbl|IW and rml|IW does not depend on the scale
parameter λ. For all values of the parameter α, it has been observed that −1 < rbl|IW < 0 and rml|IW < 1.5,
but when α increases we observe that rbl|IW and rml|IW ten to 0 and 1, respectively. So, in the case of right
IW distribution, false choosing of lognormal distribution may occur with no strange estimate in data mean. This
phenomenon may happen more for large values of α, by the fact that rbl|IW and rml|IW are very close to 0 and 1,
respectively. For the other case which the true distribution is lognormal, although rbIW |l and rmIW |l do not depend
on the location parameter µ, but the concluding results are completely different from the previous situation. In this
case only for σ < 0.75, the observed values of rbIW |l is less than 1. For larger values of σ, rbIW |l rapidly increases,
while the criterion rmIW |l is very large for all values of σ. In this case, choosing IW distribution leads to a very
inappropriate estimate of data mean. Therefore, as the final result of paper we can claim that wrong choosing of
lognormal distribution instead of IW distribution may occur with a high chance, but the converse does not hold.
In this article, the problem of model selection between IW and lognormal distributions have been discussed. Same
studies can be done by methodology of the present paper for model selection between other distributions for them
miss-specification may occur. For instance, model selection between Weibull and IW distributions may be purpose
of future work.

The proposed methodology for selecting between IW and lognormal distributions relies on comparing bias
ratios and MSE under misspecification. However, a critical limitation arises when the true data-generating process
deviates significantly from both distributions. If the data follows a third distribution (e.g., Gamma, Weibull, or
a multimodal mixture), neither the IW nor lognormal model may adequately capture the underlying structure.
The bias and MSE ratios could misleadingly favor one misspecified model over another, leading to incorrect
conclusions. The theoretical framework assumes the true model is either IW or lognormal. real data, such
as pandemic mortality rates, often exhibit complexities (e.g., heterogeneity, outliers, or temporal shifts) that
violate these parametric assumptions. For example, Covid-19 mortality data might reflect varying transmission
dynamics, healthcare capacity, or policy interventions, which neither distribution alone can fully model. The current
simulation study focuses on idealized scenarios where the true model is IW or lognormal. If the data deviates from
both, the method’s performance (e.g., bias ratios) may degrade, and the decision rule (e.g., selecting IW when
lognormal is misspecified) could become unreliable.

To address these limitations, future work should explore extensions to mixture models and non-parametric
alternatives. Mixture models, such as combining IW and lognormal components, could flexibly capture
heterogeneous data structures by allowing subpopulations to follow different distributions. For example, a mixture
model might disentangle mortality patterns in vaccinated versus unvaccinated groups or regions with varying
healthcare capacities, providing a more nuanced representation of the data. Similarly, Bayesian model averaging
could integrate IW and lognormal fits, weighting their contributions based on posterior probabilities to avoid rigid
model selection. Non-parametric methods, such as kernel density estimation (KDE) or Bayesian non-parametric
approaches (e.g., Dirichlet process mixtures), offer further flexibility by relaxing parametric assumptions entirely.
These methods adapt to the data’s complexity without imposing a fixed distributional form, making them
ideal for modeling unknown or irregular patterns. Hybrid frameworks, such as semi-parametric models that
combine parametric components (e.g., IW/lognormal for the bulk of the data) with non-parametric tails, could
also balance interpretability and flexibility, particularly for capturing extreme values or outliers. Additionally,
integrating machine learning techniques (e.g., random forests or neural networks) could help identify latent
patterns in the data, guiding the choice of parametric models or signaling the need for non-parametric alternatives.
While these extensions introduce computational and interpretability challenges, they would significantly enhance
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the methodology’s robustness, enabling reliable inference even when data deviates from standard parametric
assumptions. Cross-validation or bootstrapping could further validate these approaches, ensuring their applicability
to complex, real scenarios like pandemic modeling.

Finally, to determine whether the IW or lognormal distribution better fits the data, use the following criteria
based on the ratio of biases (rb) and ratio of mean squared errors (rm) under misspecification:

Select IW if:
rmIW |l < 1.5: The IW model’s MSE is sufficiently smaller than the lognormal model’s, indicating better

predictive accuracy.
rbIW |l > −0.5: The bias direction aligns with IW assumptions (e.g., tail behavior or hazard rate characteristics).
Select Lognormal if:
rmIW |l ≥ 1.5: The lognormal model’s MSE is comparable or superior, suggesting IW misspecification.
rbIW |l ≤ −0.5: The bias diverges significantly from IW expectations, favoring lognormal.

Appendix

si1$<$-digamma(1);si11$<$-trigamma(1);si12$<$-psigamma(1,2);si13$<$-psigamma(1,3)
Vh1$<$-function(n,mu,sigma){
a1$<$-(sigmaˆ2/n)*(1+sigmaˆ2/2)
a3$<$-exp(2*mu+sigmaˆ2)
G$<$-a1*a3
return(G) }
Viw1$<$-function(n,mu,sigma){
a1$<$-(2*exp(1)-1)*sigmaˆ2*gamma(1-sigma)ˆ2/(4*n)
a2$<$-(.5+digamma(1-sigma)-1/(2*exp(1)-1))ˆ2+(4*exp(1)ˆ2-4*exp(1))/((2*exp(1)-1)ˆ2)
a3$<$-exp(2*mu-sigma)
G$<$-a1*a2*a3
return(G) }
Viw1m$<$-function(n,mu,sigma){
a11$<$-muˆ2-2*mu*sigma+3*sigmaˆ2
a12$<$-(sigma-mu)*exp(.5-mu/sigma)
a22$<$-exp(1-2*mu/sigma)
J1$<$--n*matrix(c(a11,a12,a12,a22),2,2)
b11$<$-(2*sigma-mu)ˆ2+sigmaˆ2*exp(1)/(exp(1)-1)
b12$<$-(2*sigma-mu)*exp(.5-mu/sigma)
b22$<$-exp(1-2*mu/sigma)
J2$<$-n*(exp(1)-1)*matrix(c(b11,b12,b12,b22),2,2)
c1$<$-exp(mu-sigma/2)*sigmaˆ2*(digamma(1-sigma)*gamma(1-sigma)...
+gamma(1-sigma)*(.5-mu/sigma))
c2$<$-gamma(1-sigma)*sigma*exp(mu-sigma/2+.5-mu/sigma)
mo$<$-matrix(c(c1,c2),1,2)
G$<$-mo%*%solve(J1)%*%J2%*%solve(J1)%*%t(mo)
return(G) }
biw1$<$-function(mu,sigma){
a1$<$-gamma(1-sigma)-exp((sigmaˆ2+sigma)/2)
a3$<$-exp(mu-sigma/2)
G$<$-a1*a3
return(G) }
Miw1$<$-function(n,mu,sigma){
a1$<$-Viw1(n,mu,sigma)
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a3$<$-biw1(mu,sigma)ˆ2
G$<$-a1+a3
return(G) }
rbiw1$<$-function(sigma){
a1$<$-gamma(1-sigma)*exp(-(sigmaˆ2+sigma)/2)
G$<$-a1-1
return(G) }
rMiw1$<$-function(n,sigma){
a1$<$-Miw1(n,1,sigma)
a3$<$-Vh1(n,1,sigma)
G$<$-a1/a3
return(G) }

##Fig 1,2
x$<$-seq(0,.75,.005)
x1$<$-x[x!=round(x)]
y$<$-rbiw1(x1)
plot(x1,y,’l’,ylab=expression(paste(’rb’[’ IW|l’])),xlab=expression(sigma))
x$<$-seq(.75,.95,.005)
x1$<$-x[x!=round(x)]
y$<$-rbiw1(x1)
plot(x1,y,’l’,ylab=expression(paste(’rb’[’IW|l’])),xlab=expression(sigma))
## Fig 3
x$<$-seq(.01,.25,.025)
y10$<$-rMiw1(10,x)
y50$<$-rMiw1(50,x)
y80$<$-rMiw1(80,x)
y100$<$-rMiw1(100,x)
plot(x,seq(1,5,length=length(x)),’ n’,ylab=expression(paste(’ rm’[’ IW| l’]))...
,xlab=expression(sigma),pch=20)
lines(x,y100,’ b’,pch=20)
lines(x,y80,’ b’,pch=3)
lines(x,y50,’ b’,pch=17)
lines(x,y10,’ b’,pch=8)
legend(’ topleft’,legend=c(’ n=100’,’ n=80’,’ n=50’,’ n=10’),pch=c(20,3,18,8))
###
si1$<$-digamma(1);si11$<$-trigamma(1);si12$<$-psigamma(1,2);si13$<$-psigamma(1,3)
Vgw$<$-function(n,a,l){
e1$<$-(gamma(1-1/a)/a)ˆ2
e2$<$-lˆ(2/a)/(n*si11)
d1$<$-e1*e2
d2$<$-(1+si1-digamma(1-1/a))ˆ2+si11
d3$<$-d1*d2
return(d3) }
Vlw$<$-function(n,a,l){
d1$<$-(si11*lˆ(2/a))/(n*aˆ2)
e1$<$-si11/(2*aˆ2)
e2$<$-si13/(2*si11ˆ2)
d2$<$-e1*(1+e2)
d3$<$-(-si12/(a*si11))+1
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d4$<$-exp((-2*si1/a)+(si11/(aˆ2)))
d5$<$-d1*(d2+d3)*d4
return(d5) }
Mlw$<$-function(n,a,l){
d1$<$-exp((-si1/a)+(si11/(2*aˆ2)))-gamma(1-1/a)
d2$<$-lˆ(2/a)*d1ˆ2
d3$<$-Vlw(n,a,l)
d4$<$-d3+d2
return(d4) }
rblw$<$-function(a){
d1$<$-exp((-si1/a)+(si11/(2*aˆ2)))
d2$<$-1/gamma(1-1/a)
d3$<$-d1*d2-1
return(d3) }
rmlw$<$-function(n,a) Mlw(n,a,1)/Vgw(n,a,1)
##Fig 4
x$<$-seq(1.000001,4,.005)
y$<$-rblw(x)
plot(x,y,’ l’,ylab=expression(paste(’ rb’[’ l| IW’])),xlab=expression(alpha))
x$<$-seq(4,20,.005)
y$<$-rblw(x)
plot(x,y,’ l’,ylab=expression(paste(’ rb’[’ l| IW’])),xlab=expression(alpha))
##Fig 5
x$<$-seq(1.001,5,.1)
y10$<$-rmlw(10,x)
y50$<$-rmlw(50,x)
y80$<$-rmlw(80,x)
y100$<$-rmlw(100,x)
plot(x,y100,’ n’,ylab=expression(paste(’ rm’[’ l| IW’])),xlab=expression(alpha),...
pch=20)
lines(x,y100,’ b’,pch=20)
lines(x,y80,’ b’,pch=3)
lines(x,y50,’ b’,pch=17)
lines(x,y10,’ b’,pch=8)
legend(’ topright’,legend=c(’ n=100’,’ n=80’,’ n=50’,’ n=10’),pch=c(20,3,18,8))
x$<$-seq(4,18,.5)
y10$<$-rmlw(10,x)
y50$<$-rmlw(50,x)
y80$<$-rmlw(80,x)
y100$<$-rmlw(100,x)
n$<$-length(x)
y0$<$-c(min(y10,y100),y10[2:(n-1)],max(y10,y100))
plot(x,y0,’ n’,ylab=expression(paste(’ rm’[’ l| IW’])),xlab=expression(alpha),pch=20)
lines(x,y100,’ b’,pch=20)
lines(x,y80,’ b’,pch=3)
lines(x,y50,’ b’,pch=17)
lines(x,y10,’ b’,pch=8)
legend(’ topright’,legend=c(’ n=100’,’ n=80’,’ n=50’,’ n=10’),pch=c(20,3,18,8))

Heat map#1:
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# Load required libraries
library(ggplot2)
library(reshape2)

# Manually input the data
data <- data.frame(

mu = c(1, 1, 1, 1, 4, 4, 4, 4),
sigma = rep(0.05, 8),
n = c(100, 100, 30, 30, 30, 30, 100, 100),
Type = rep(c("simulated", "theoretical"), 4),
M_IW_l = c(0.0003384081, 0.000393755, 0.0007517901, 0.0009258257,

0.3044564, 0.3735048, 0.134283, 0.1588521),
rb_IW_l = c(0.004119081, 0.004729946, 0.003617034, 0.004729946,

0.003537992, 0.004729946, 0.004181023, 0.004729946),
rm_IW_l = c(1.815796, 2.123581, 1.236474, 1.497936,

1.230158, 1.497936, 1.828597, 2.123581)
)

# Reshape to long format
data_long <- melt(data,

id.vars = c("mu", "sigma", "n", "Type"),
variable.name = "Metric",
value.name = "Value")

# Create heatmap
ggplot(data_long, aes(x = factor(n), y = factor(mu), fill = Value)) +

geom_tile() +
facet_grid(Metric ˜Type, scales = "free") + # Separate plots for metrics/types
scale_fill_gradient2(low = "blue", mid = "white", high = "red",...
midpoint = 0) + # Color scale
labs(

title = "Heatmap of Metrics (Simulated vs. Theoretical)",
x = "Sample Size (n)",
y = "\U{3bc}",
fill = "Value"

) +
theme_minimal() +
theme(

axis.text.x = element_text(angle = 45, hjust = 1),
strip.background = element_rect(fill = "lightgray")

)

Heat map#2:
# Load required libraries
library(ggplot2)
library(reshape2)

# Manually input the data
data <- data.frame(

alpha = c(3.5, 3.5, 3.5, 3.5, 1.25, 1.25, 1.25, 1.25),
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lambda = rep(0.9, 8),
n = c(10, 10, 30, 30, 100, 100, 400, 400),
Type = rep(c("simulated", "theoretical"), 4),
M_l_IW = c(0.03292290, 0.03168536, 0.01066024, 0.01069926,

3.198000, 3.278238, 3.092395, 3.118075),
rb_l_IW = c(-0.00972015, -0.01159774, -0.01011047, -0.01159774,

-0.4074761, -0.4148648, -0.4130553, -0.4148648),
rm_l_IW = c(0.9441920, 0.9882228, 0.9768248, 1.001085,

1.004237, 1.380777, 4.086844, 5.253269)
)

# Reshape to long format
data_long <- melt(data,

id.vars = c("alpha", "lambda", "n", "Type"),
variable.name = "Metric",
value.name = "Value")

# Create heatmap
ggplot(data_long, aes(x = factor(n), y = factor(alpha), fill = Value)) +

geom_tile() +
facet_grid(Metric ˜Type, scales = "free") + # Separate plots by metric and type
scale_fill_gradient2(

low = "blue", mid = "white", high = "red", midpoint = 0,
limits = c(-1, 6) # Adjust based on your data range

) +
labs(

title = "Heatmap of Metrics (Simulated vs. Theoretical)",
x = "Sample Size (n)",
y = "\U{3b1}",
fill = "Value"

) +
theme_minimal() +
theme(

axis.text.x = element_text(angle = 45, hjust = 1),
strip.background = element_rect(fill = "lightgray"),
panel.spacing = unit(1, "lines") # Space between facets

)

# Subset data for rb_l_IW
rb_data <- subset(data_long, Metric == "rb_l_IW")

# Plot with divergent color scale
ggplot(rb_data, aes(x = factor(n), y = factor(alpha), fill = Value)) +

geom_tile() +
facet_wrap(˜Type) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", midpoint = 0)+
labs(title = "Bias Comparison (rb_l_IW)", x = "n", y = "\U{3b1}") +
theme_minimal()
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