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Abstract A new distribution is proposed using the Quadratic Rank Transmutation Map (QRTM), which introduces skew to
an initial symmetric base distribution. The Monsef distribution serves as the baseline. Various statistical properties, including
moments, the moment-generating function, and the characteristic function, are derived. The parameters are estimated using
the maximum likelihood estimation method, and the method’s performance is validated through mean squared errors and
average biases. Additionally, two real datasets are used to demonstrate the flexibility of the proposed distribution.
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1. Introduction

In modern decades proposing new probability distributions became a common enactment. Many researchers are
interested in proposing new probability distributions by attaching an extra parameter to the baseline distribution.
Some researchers are interested in using transformations whereas others introduce new probability distributions
by using generators or by combining two or more distributions. Over the last few years researchers have extensive
desires for the pertinence of inverse transformations of probability distributions and their applications. Modeling
the real-life data is the foremost purpose of such amendment. What differentiates the new distributions with
the existing probability distributions is the increase in model flexibility for modeling complex data structures.
Probability distributions are broadly using in different areas including biomedical, environmental studies,
economics, engineering and reliability. The development of new methods of expanding the existing distributions
is quite rich in the literature of distribution theory. There are several methods to propose new distributions by
the use of some baseline distribution in statistical literature. This has been done through different approaches.
The most popular among them is the power transformation initiated by Gupta et al. (1998). The transformation
based on the generalization of Kumar et al. (2015) called Generalized DUS (GDUS) transformation proposed by
Maurya et al. (2017). The DUS transformation—named after its developers, Dinesh, Umesh, and Sanjay (Maurya
et al., 2016)—is a statistical technique that modifies baseline distributions through exponential adjustments to
the cumulative distribution function (CDF), improving their adaptability for real-world data. Kyurkchiev (2017)
developed a transformation method to create sigmoid functions based on the Logistic distribution. Statisticians
have particularly focused on transformation maps like the sample transformation map (STM) y = G−1[F (x)] and
rank transformation map v = G[F−1(u)].

Apart from the above, in many applied areas like lifetime analysis and insurance analysis we need extended
distributions, that is, new distributions which are more flexible to model real data, since the data can present a
high degree of skewness and kurtosis. Thus, we suggested more flexible distributions by adding a parameter to
existing distribution to generate transmuted distribution. Which is the quadratic rank transmutation map (QRTM)
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proposed by Shaw and Buckley (2007). An application of the quadratic rank transmutation is extended to the
Monsef distribution. The distributional characteristics of the generated transmuted distributions are also simulated
to compare with traditional Monsef distribution. The distributional characteristics of the generated transmuted
distributions are also simulated to compare with traditional Monsef distribution. Using this transformation many
distributions have been derived. By this, there is also an overview of most studied used on the modifications of the
QRTM. For example, Abd El Hady (2014), proposed a new Weibull distribution by using exponentiated QRTM.
Alizadeh et al. (2015) studied generated a new distribution family by considering exponentiated distribution
as a baseline distribution. Merovci (2013), introduced a new distribution by taking a baseline distribution as
exponentiated exponential distribution.

Eltehiwy and Ashour (2013) introduced transmuted exponentiated modified Weibull distribution, and Ashour
and Eltehiwy (2013) introduced transmuted exponentiated Lomax distribution. These last three studies can be seen
as a special case of Alizadeh et al. (2015). Mansour et al. (2015) proposed new transmutation map by adding
two extra parameters to get more flexible distribution. Then, Mansour and Mohamed (2015) introduced a new
Lindley distribution by using this new transmutation map approach. Das and Barman (2015) introduced a kind of
generalization of QRTM by considering sum of k- dimensional vector of transmutation parameters. There are two
similar studies that respectively are the generalized transmuted G family by Nofal et al. (2017) and generalized
transmuted Weibull distribution by Nofal and El Gebaly (2017). Recently in (2022) Onyekwere et al. proposed a
modification of Shanker distribution using the quadratic rank transmutation map.

Researchers are actively building on the DUS (Dinesh-Umesh-Sanjay) transformation, creating more powerful
versions to model complex data. For instance, Gauthami and Chacko (2024) and Thomas and Chacko (2023)
developed a “Power Generalized” variant, while Mohammed, Hassan, and Yahaya (2024) created an entire new
family of distributions based on the DUS-Topp-Leone framework. These new models are being applied to classic
distributions like the Inverse Kumaraswamy (Gauthami and Chacko, 2024), Inverse Rayleigh (Khan and Mustafa,
2023), Weibull, and Lomax (Thomas and Chacko, 2023) to give them more flexibility. The real-world value of
these models is proven through applications in areas like reliability engineering (Gauthami and Chacko, 2024)
and other engineering data fits (Unnikrishnan, Chacko, and Thomas, 2023). The field is even expanding to handle
uncertain data, as Megha, Divya, and Sajesh (2025) introduced a neutrosophic version of the DUS transformation
for imprecise datasets.

According to the Quadratic Rank Transmutation Map (QRTM); a random variable X is said to have a transmuted
distribution if its cumulative distribution function CDF is given by

G(x) = (1 + λ)F (x)− λF 2(x); |λ| ≤ 1

where F (x) is the CDF of the original distribution and G(x) is the CDF of the generated distribution. The
absolute value of λ should be kept below one, as increasing it beyond one result in the function yielding negative
values, which is, of course, unacceptable. Observe that at λ = 0 we have the base distribution. The benefit of using
this map is that its inverse is available in closed form as follows:

G−1(u) = F−1

(
1 + λ−

√
(1 + λ)2 − 4λu

2λ

)

Consequently, QRTM introduces skewness to a symmetric base distribution, although there is no strict
requirement for the base distribution F (x) to be symmetric. If F (x) is symmetric about the origin, then the
distribution of the square of the transmuted random variable will match the distribution of the square of the original
random variable.

The QRTM outperforms alternative transformation methods like the Exponentiated QRTM (EQRTM) and
Generalized DUS (GDUS) due to its balanced flexibility and simplicity. Unlike EQRTM, which only stretches
tails monotonically via a power parameter F (x)

k, QRTM’s additive skewness term λF (x)
2 allows bidirectional

skewness control λ ∈ [−1, 1], making it adaptable to both left- and right-skewed data. Compared to GDUS, which
relies on exponential transformations eF (x)−1

e−1 , QRTM preserves closed-form quantiles and interpretable parameters
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without overparameterization. Thus, QRTM strikes an optimal trade-off between flexibility, interpretability, and
robustness.

The paper is organized as follows. Constructing the PDF of quadratic rank transformation map Monsef
distribution (QRTMD) in section 2. In section 3, some statistical properties and reliability measures of the QRTMD
are obtained. We introduced the maximum likelihood estimation for the unknown parameters in section 4. In section
5, Simulation study has been conducted for various sample sizes and parameter values. We examine the flexibility
of our model by using two real datasets applications in section 6.

2. Quadratic Rank Transformation Map Monsef Distribution

Monsef distribution is a flexible baseline as its PDF combines polynomial and exponential terms, allowing it to
model right-skewed, non-negative data (e.g., lifetime, financial, or environmental data). Its CDF is analytically
tractable, facilitating derivations of QRTMD’s properties (e.g., moments, hazard functions). Moreover, the scale
parameter θ controls dispersion, making it suitable for data with varying spread.

While the Monsef distribution offers a tractable baseline for non-negative data, its limited flexibility in skewness
and tail behavior motivates the use of QRTM. By transmuting Monsef distribution’s CDF via QRTM, we introduce
a skewness parameter λ that enhances shape versatility without sacrificing closed-form expressions for statistical
properties. The proposed quadratic rank transformation map Monsef distribution (QRTMD) can be attained as
follows:

Let the baseline distribution be Monsef distribution (MD) with,

f(x) =
θ3

2 + θ(2 + θ)
(x+ 1)2e−xθ; 0 < x < ∞.

where the CDF of MD is

F (x) =
2 + θ(2 + θ) + e−xθ (−2− (1 + x)θ(2 + θ + xθ))

2 + θ(2 + θ)
, θ > 0.

Using the following quadratic rank transformation map:

G(x) = (1 + λ)F (x)− λF 2(x); |λ| ≤ 1,

where F (x) is the CDF of the MD and G(x) is the CDF of the QRTMD.
Then the CDF of the QRTMD can be written as:

G(x) = 1− 1

(2 + θ(2 + θ))
2 e

−2xθ (2 + (1 + x)θ(2 + θ + xθ))(
−exθ (2 + θ(2 + θ)) (−1 + λ) + (2 + (1 + x)θ(2 + θ + xθ))λ

)
;

x, θ > 0; |λ| < 1. (1)

and the PDF of the QRTMD is given by

g(x) =
e−2xθ(1 + x)2θ3

(
−exθ

(
2 + 2θ + θ2

)
(−1 + λ) + 2

(
2 + 2(1 + x)θ + (1 + x)2θ2

)
λ
)

(2 + 2θ + θ2)
2 ,

x, θ > 0; |λ| < 1. (2)

The parameter θ scales the probability distribution; if the value of the scale parameter is large then distribution is
more spread out or more stretching and if the value is small then distribution will be concentrated or compressed.
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On the other hand, the parameter λ affects the general shape of the PDF. It’s responsible for changing the skewness
and kurtosis of the distribution. The PDF of the QRTMD can be unimodal or decreasing as shown in Figure 1. The
PDF of the QRTMD tends to θ3(1+λ)

2+θ(2+θ) when x → 0 and tends to zero when x → ∞.

λ = 0.9; θ = 0.7 λ = 0.7; θ = 1.7

Figure 1. PDF behavior of the QRTMD

In addition to the many applications of decreasing probability functions, the skewed unimodal PDFs are useful in
modeling stock returns, which are often asymmetrical due to investor biases and reactions to news. In economics,
income distribution is typically skewed and can be represented by a skewed unimodal PDF to model wealth
or income inequality. In environmental monitoring, skewed unimodal PDFs can model data like air pollutant
concentration levels which are often skewed, with a peak at lower levels and a tail that represents rare high-
pollution events. It also can model the distribution of disease cases, especially when outbreaks have a sharp peak
that diminishes over time or varies by demographic.

3. Statistical Properties

Some statistical properties of the QRTMD will be summarized.

3.1. Moments

If the random variable X has the QRTMD, then the rth moment can be written as

µ′
r =

∫ ∞

0

xrg(x)dx = − 1

(2 + 2θ + θ2)
2 2

−4−rθ−r(−r4λ− 2r3(7 + 4θ)λ

+ 16
(
2 + 2θ + θ2

)2
(−2r + (−1 + 2r)λ) + r2(−25+r + (−67 + 25+r)λ

+ 8θ2(−21+r + (−3 + 21+r)λ) + 8θ(−22+r + (−9 + 22+r)λ))

+ 2r(−324+r + (−59 + 324+r)λ+ 16θ3(−2r + (−1 + 2r)λ)

+ 16θ(−52r + (−6 + 52r)λ) + θ2(−723+r + (−60 + 723+r)λ)))(1 + r). (3)

From (2) the first and second moments of the QRTMD are,
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µ =
4 (2 + θ(2 + θ)) (6 + θ(4 + θ))− (15 + 2θ (15 + θ (15 + θ(6 + θ))))λ

4θ (2 + θ(2 + θ))
2 (4)

µ′
2 =

8 (2 + θ(2 + θ)) (12 + θ(6 + θ))− 3 (35 + 2θ(3 + θ) (10 + θ(5 + θ)))λ

4θ2 (2 + θ(2 + θ))
2 (5)

Respectively, the variance will be,

µ2 = − 1

16θ2 (2 + 2θ + θ2)
4

(
−4
(
2 + 2θ + θ2

)2
(8 (2 + θ(2 + θ)) (12 + θ(6 + θ))

−3 (35 + 2θ(3 + θ) (10 + θ(5 + θ)))λ) + (−4 (2 + θ(2 + θ)) (6 + θ(4 + θ))

+ (15 + 2θ (15 + θ (15 + θ(6 + θ))))λ)
2
)

(6)

Similarly, the 3rd and 4th moments about the means can be derived as in the Appendix (A.1 and A.2).

3.2. The Skewness and Kurtosis

The skewness of a distribution β1 is defined as the lack of symmetry, while kurtosis β2 is a measure of how fat the
tail is of any probability distribution. β1 and β2 are given in the Appendix (A.3 and A.4).

3.3. The Coefficient of Variation

The coefficient of variation CoV is the ratio between the standard deviation and the average and it’s used to compare
the variation between datasets.

CoV =
1

(4 (2 + θ(2 + θ)) (6 + θ(4 + θ))− (15 + 2θ (15 + θ (15 + θ(6 + θ))))λ)

×
(
(16(2 + θ(2 + θ))

2
(12 + θ(2 + θ)(12 + θ(6 + θ)))− 4(2 + θ(2 + θ))

(30 + θ(90 + θ(135 + 2θ(66 + θ(39 + θ(10 + θ))))))λ− (15 + 2θ(15 + θ(15 + θ(6 + θ))))
2
λ2
)1/2

(7)

3.4. The Moment Generating Function (MGF) and the Characteristic Function (CHF)

If the random variable X has the QRTMD, then the MGF and the CHF of X , denoted by MX(t) and ϕx(t) are
derived as in the Appendix (A.5 and A.6).

3.5. Some Reliability Measures

The survival function is a statistical measure represents the probability of an individual not experiencing an event
before a certain time. Thus, the survival function of the QRTMD is given by

S(x) =
e−2xθB(x, θ)

A(θ)2
×Ψ(x, θ, λ)

where

Ψ(x, θ, λ) = −exθA(θ)(λ− 1) +B(x, θ)λ

A(θ) = 2 + θ(2 + θ)

B(x, θ) = 2 + (1 + x)θ(2 + θ + xθ)

(8)
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The hazard function is defined as the rate of failure of the system, on condition that the failure has not occurred
before to time. Thus, the hazard function of the QRTMD is

H(x) =
(1 + x)2θ3

(
−exθ (2 + θ(2 + θ)) (−1 + λ) + 2 (2 + (1 + x)θ(2 + θ + xθ))λ

)
(2 + (1 + x)θ(2 + θ + xθ)) (−exθ (2 + θ(2 + θ)) (−1 + λ) + (2 + (1 + x)θ(2 + θ + xθ))λ)

(9)

The hazard function of the QRTMD exhibits flexible shape behavior as shown in Figure 2, capable of assuming
increasing and increasing-decreasing-increasing forms, making it suitable for modeling diverse failure patterns.

0.5 1.0 1.5 2.0 2.5 3.0
x
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Figure 2. Hazard function behavior of the QRTMD

The Mills Ratio, presented by Mills 1926, is the reciprocal of the hazard function. The inverse of the Mills ratio
used commonly in regression analysis for detecting the potential selection bias. For the QRTMD, the Mills ratio is

Mills(x, θ, λ) =
1

(1 + x)2θ3
× B(x, θ)

Ψ(x, θ, λ)
×Ψ(x, θ, λ)

where

Ψ(x, θ, λ) = −exθA(θ)(λ− 1) +B(x, θ)λ

A(θ) = 2 + θ(2 + θ)

B(x, θ) = 2 + (1 + x)θ(2 + θ + xθ)

(10)

The analysis and graphical representation of income inequality are frequently conducted using Bonferroni and
Lorenz curves. The Lorenz curve, L(p), represents the proportion of the total income volume that entities with
income equal to or less than volume an accumulate. The Bonferroni curve, B(p), is the scaled conditional mean
curve, calculated as the ratio of the mean income of a group to the total income volume of the population. Lorenz
and Bonferroni curves derived below and illustrated in Figure 3.

L(x) =
1

4A(θ)C(θ)−D(θ)λ
×



4A(θ)C(θ)−D(θ)λ

+ 4e−xθA(θ)
(
C(θ) + x

(
6 + θ(4 + 3x+ (1 + x)2θ)

))
(λ− 1)

− e−2xθ
(
33 + 2θ

(
25 + 33x+ (1 + x)(17 + 33x)θ

+ 2(1 + x)2(3 + 11x)θ2 + (1 + x)3(1 + 9x)θ3

+ 2x(1 + x)4θ4
))

λ


(11)

where

A(θ) = 2 + θ(2 + θ)

C(θ) = 6 + θ(4 + θ)

D(θ) = 15 + 2θ(15 + θ(15 + θ(6 + θ)))

Stat., Optim. Inf. Comput. Vol. 14, September 2025



6 A MODIFIED MONSEF DISTRIBUTION USING QUADRATIC RANK TRANSFORMATION MAP

For Bonferroni we have,

B(x) =
1

∆(θ, λ)
× 1

1− Φ(x, θ, λ)
×N(x, θ, λ)

where
∆(θ, λ) = 4A(θ)C(θ)−D(θ)λ

Φ(x, θ, λ) =
1

A(θ)2
e−2xθB(x, θ)

(
−exθA(θ)(λ− 1) +B(x, θ)λ

)
N(x, θ, λ) = 4A(θ)C(θ) + 4e−xθA(θ)

(
C(θ) + x

(
6 + θ(4 + 3x+ (1 + x)2θ)

))
(λ− 1)

− e−2xθ
(
33 + 2θ

(
25 + 33x+ (1 + x)(17 + 33x)θ + 2(1 + x)2(3 + 11x)θ2

+(1 + x)3(1 + 9x)θ3 + 2x(1 + x)4θ4
))

λ−D(θ)λ

and
A(θ) = 2 + θ(2 + θ)

B(x, θ) = 2 + (1 + x)θ(2 + θ + xθ)

C(θ) = 6 + θ(4 + θ)

D(θ) = 15 + 2θ(15 + θ(15 + θ(6 + θ)))

(12)
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x

0.2
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Figure 3. Bonferroni and Lorenz curves for the QRTMD at θ = 0.25;λ = −0.5

The Gini index G (Gini 1914) is an inequality indicator computed using the Lorenz curve. The Gini index is
the measurement of the ratio between the concentration area and its theoretical maximum. The Gini Index of the
QRTMD is given by

G =
1

(θ (−4 (2 + θ(2 + θ)) (6 + θ(4 + θ)) + (15 + 2θ (15 + θ (15 + θ(6 + θ))))λ))

×
[
1− (2e−2θ(8eθ(2 + θ(2 + θ))(12 + θ(15 + 2θ(4 + θ)))(−1 + λ)

− (87 + θ(249 + 4θ(83 + 2θ(33 + 4θ(4 + θ)))))λ+ e2θ(192− 4θ(−60− 32θ + 4θ3 + θ4)

+(−105 + θ(−165 + 2θ(−60 + θ(−9 + θ(3 + θ)))))λ))] (13)
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4. Maximum Likelihood Estimation

Let xi, i = 1, 2, 3, . . . , n be a random from the QRTMD with parameters (θ, λ), then the log likelihood function is
given by

L = 3n ln θ − 2n ln
(
2 + 2θ + θ2

)
− 2θ

n∑
i=1

xi + 2

n∑
i=1

ln (1 + xi)

+

n∑
i=1

ln
[
(λ− 1)

(
2 + 2θ + θ2

)
e−xiθ + 2λ (2 + (1 + xi) θ (2 + θ + xiθ))

]
For the parameters are obtained by taking their derivatives partially w.r.t its parameters, are as follows:

∂ L

∂θ
=
3n

θ
− 4n(1 + θ)

A(θ)
+ 2

n∑
i=1

xi

+

n∑
i=1

1

4θA(θ)(−1 + λ)λ(1 + xi)(2θ + θxi)
×(

eθxi

(
4e−θxiθA(θ)(−1 + λ)λ(1 + xi)(2 + xi)

+ 4e−θxiθ(2 + 2θ)(−1 + λ)λ(1 + xi)(2θ + θxi)

+ 4e−θxiA(θ)(−1 + λ)λ(1 + xi)(2θ + θxi)

− 4e−θxiθA(θ)(−1 + λ)λxi(1 + xi)(2θ + θxi)

))

(14)

where A(θ) = 2 + 2θ + θ2.

∂ L

∂λ
=

n∑
i=1

e−θxiA(θ) + 2B(xi, θ)

e−θxiA(θ)(λ− 1) + 2λB(xi, θ)
(15)

where

A(θ) = 2 + 2θ + θ2

B(xi, θ) = 2 + θ(1 + xi)(2 + θ + θxi)

The ML estimators of the parameters θ and λ are obtained by solving the previous nonlinear system of equations.
These equations can be solved iteratively till sufficiently close estimates of the parameters are obtained.

5. Simulation

Several methods were used for estimating the parameters of the QRTMD. Maximum Likelihood Estimation (MLE)
is a premier technique that identifies the parameter values which make the observed data most probable. In
contrast, the Method of Moments (MOM) offers a more intuitive strategy by matching theoretical moments of
the distribution to their empirical sample equivalents. For regression-based models, the Ordinary Least Squares
(LSE) method serves as a cornerstone, finding parameters that minimize the overall sum of squared errors between
the model’s predictions and the actual data. This approach is generalized by Weighted Least Squares (WLS), which
introduces a weighting scheme to adjust for unequal variance across observations, thereby improving efficiency.
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Lastly, the Cramér–von Mises (CVM) estimator belongs to the family of minimum distance estimators, which
operates by minimizing the discrepancy between the empirical and theoretical cumulative distribution functions,
providing a powerful goodness-of-fit criterion for estimation.

The QRTMD introduces two key parameters: the scale parameter θ which controls the spread and decay rate
of the distribution and the skewness parameter λ which governs the direction and intensity of asymmetry. For
large θ; the distribution decays rapidly, modeling data with shorter tails and for small θ; the PDF spreads out,
capturing long-tailed processes. The parameter λ acts as a ’skewness switch’: positive values (λ > 0) stretch the
right tail to model rare high extremes (e.g., financial windfalls), while negative values (λ < 0) accentuate the left
tail for frequent low-magnitude events (e.g., minor insurance claims). Meanwhile, θ scales the distribution’s spread,
with small values fitting long-tailed processes (e.g., catastrophe risks) and large values describing concentrated data
(e.g., manufacturing tolerances). This dual interpretability makes QRTMD uniquely suited for fields like hydrology,
finance, and reliability engineering. A simulation study has been conducted for various sample sizes and parameter
values. The simulation study is repeated 1000 times each with sample size n = 20, 40, 60, 80, 100, 500 and 900 and
parameter vectors (θ, λ) = (1.5, 0.5), (0.1, 1) and (0.01,−1). The selection of these values reflects the two shapes
of the pdf (decreasing and unimodal). This helps us to study the properties of the estimators in all pdf behaviours.
The following algorithm was used for generating random samples from the QRTMD:

Algorithm

1. Generate Ui ∼ Uniform(0, 1); i = 1, 2, . . . , n.

2. Set Xi = F−1

(
1+λ−

√
(1+λ)2−4λUi

2λ

)
The MLE, MOM, LSE, WLS and CVM simulation schemes for θ, λ were obtained via numerical optimization

in Mathematica, enforcing −1 ≤ λ ≤ 1 and θ > 0. Convergence was confirmed by letting the process terminated if
θ, λ changes by < 0.001 between iterations. The simulation schemes were presented in Tables 1 – 5 respectively.

Table 1. MLE simulation scheme for different parameters values.

θ = 1.5; λ = 0.5 θ = 0.1; λ = 1.0 θ = 0.01; λ = −1

N MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ

20 0.07848 0.10701 0.10232 0.14344 0.00087 0.02303 0.28151 0.45426 0.00000 0.00028 0.19620 0.16600
40 0.06064 0.06929 0.10065 0.09997 0.00058 0.01643 0.21537 0.34144 0.00000 0.00003 0.09090 0.06560
60 0.05039 0.05795 0.10003 0.07886 0.00042 0.01133 0.15589 0.24365 0.00000 0.00003 0.05450 0.04610
80 0.05018 0.05607 0.09630 0.07663 0.00035 0.00957 0.13484 0.20895 0.00000 0.00002 0.02830 0.02210
100 0.04767 0.05214 0.09419 0.06758 0.00027 0.00758 0.10888 0.16551 0.00000 0.00002 0.01860 0.01450
500 0.0095 0.0104 0.0188 0.0135 0.00001 0.0015 0.0218 0.0331 0.00000 0.00000 0.0037 0.0029
900 0.0053 0.0058 0.0105 0.0075 0.000003 0.00084 0.0121 0.0184 0.00000 0.00000 0.0021 0.0016

Table 2. MOM simulation scheme for different parameters values.

θ = 1.5; λ = 0.5 θ = 0.1; λ = 1.0 θ = 0.01; λ = −1

N MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ

20 0.27880 0.38928 0.57010 -0.46036 0.00029 0.00530 0.04374 -0.01806 0.00000 0.00062 0.20695 -0.07053
40 0.15680 0.17946 0.33528 -0.35502 0.00012 0.00040 0.04318 -0.05330 0.00000 -0.00022 0.10478 0.02245
60 0.29091 0.42654 0.52331 -0.55748 0.00010 0.00105 0.02362 0.04720 0.00000 0.00067 0.08571 -0.16289
80 0.08058 0.12125 0.18037 -0.19611 0.00023 0.00590 0.05925 -0.10650 0.00000 -0.00017 0.08281 0.09288
100 0.07898 0.20037 0.25169 -0.37676 0.00005 -0.00243 0.00821 0.02317 0.00000 0.00003 0.02954 -0.06562
500 0.01576 0.04007 0.05034 -0.07535 0.00001 -0.00049 0.00164 0.00463 0.00000 0.00001 0.00591 -0.01312
900 0.00876 0.02226 0.02797 -0.04186 0.00001 -0.00027 0.00091 0.00257 0.00000 0.00000 0.00328 -0.00729

From Tables 1–5, we noticed that the bias decreases when the sample size increases which indicates
unbiasedness. Consistency is an important property for estimators; by collecting a significant number of
observations, we aim to collect a lot of information about any unknown parameter θ, thus we search for an estimator

Stat., Optim. Inf. Comput. Vol. 14, September 2025



M.M.E. ABD EL-MONSEF, T.A. ALGHAZI AND H.H. EL-DAMRAWY 9

Table 3. LSE simulation scheme for different parameters values.

θ = 1.5; λ = 0.5 θ = 0.1; λ = 1.0 θ = 0.01; λ = −1

N MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ

20 0.14740 0.02423 0.23555 0.22155 0.00104 0.01449 0.34995 -0.12033 0.00000 -0.00001 0.35672 0.15345
40 0.05060 -0.07847 0.14259 0.12334 0.00046 0.00890 0.28933 -0.22890 0.00000 -0.00060 0.20873 0.17419
60 0.07670 -0.08244 0.20925 0.25380 0.00075 0.00963 0.32449 -0.11277 0.00000 0.00005 0.07218 0.02337
80 0.04910 -0.01522 0.08087 0.10705 0.00055 0.01180 0.23079 -0.22412 0.00000 -0.00007 0.05036 0.07263
100 0.04607 -0.08072 0.09741 0.10399 0.00028 0.00283 0.14860 -0.09714 0.00000 -0.00030 0.04766 0.04753
500 0.00921 -0.01614 0.01948 0.02080 0.00006 0.00057 0.02972 -0.01943 0.00000 -0.00006 0.00953 0.00951
900 0.00512 -0.00897 0.01082 0.01156 0.00003 0.00031 0.01651 -0.01079 0.00000 -0.00003 0.00530 0.00528

Table 4. WLS simulation scheme for different parameters values.

θ = 1.5; λ = 0.5 θ = 0.1; λ = 1.0 θ = 0.01; λ = −1

N MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ

20 0.13491 0.02217 0.17564 0.19490 0.00106 0.01636 0.34245 -0.19436 0.00000 0.00008 0.22766 0.11678
40 0.04811 -0.08220 0.11868 0.11411 0.00045 0.00922 0.25954 -0.24716 0.00000 -0.00049 0.12496 0.13107
60 0.07084 -0.08382 0.16401 0.24621 0.00062 0.00872 0.24221 -0.10873 0.00000 0.00015 0.04300 0.00536
80 0.04452 -0.02230 0.06796 0.10383 0.00046 0.01051 0.17454 -0.20537 0.00000 -0.00004 0.02399 0.05727
100 0.04760 -0.09759 0.09093 0.12933 0.00026 0.00180 0.11165 -0.07204 0.00000 -0.00023 0.02495 0.02539
500 0.00952 -0.01952 0.01819 0.02587 0.00005 0.00036 0.02233 -0.01441 0.00000 -0.00005 0.00499 0.00508
900 0.00529 -0.01084 0.01011 0.01437 0.00003 0.00020 0.01241 -0.00801 0.00000 -0.00003 0.00277 0.00282

Table 5. CVM simulation scheme for different parameters values.

θ = 1.5; λ = 0.5 θ = 0.1; λ = 1.0 θ = 0.01; λ = −1

N MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ MSE θ Bias θ MSE λ Bias λ

20 0.15412 -0.05372 0.41048 0.39376 0.00106 0.01636 0.34245 -0.19436 0.00000 0.00008 0.22766 0.11678
40 0.06589 -0.12312 0.20187 0.22110 0.00045 0.00922 0.25954 -0.24716 0.00000 -0.00049 0.12496 0.13107
60 0.08796 -0.10010 0.27156 0.30194 0.00062 0.00872 0.24221 -0.10873 0.00000 0.00015 0.04300 0.00536
80 0.05472 -0.03677 0.10823 0.15186 0.00046 0.01051 0.17454 -0.20537 0.00000 -0.00004 0.02399 0.05727
100 0.05257 -0.09149 0.12630 0.13128 0.00026 0.00180 0.11165 -0.07204 0.00000 -0.00023 0.02495 0.02539
500 0.01051 -0.01830 0.02526 0.02626 0.00005 0.00036 0.02233 -0.01441 0.00000 -0.00005 0.00499 0.00508
900 0.00584 -0.01017 0.01403 0.01459 0.00003 0.00020 0.01241 -0.00801 0.00000 -0.00003 0.00277 0.00282

with a minimal mean square error (MSE). It is clear from Tables 1–5 that as the number of observations increases
the MSE descends to zero.

6. Applications

To examine the flexibility of the proposed model, two datasets are presented. The proposed model has been
compared with Monsef distribution, Rayleigh distribution and Pareto distribution. These distributions are used
to fit the data, and the parameter estimates are calculated. Some goodness-of-fit tests were used as Kolmogorov-
Smirnov (KS), Anderson Darling (AD), Cramer Von-Mises (CVM) and Watson test (WT). Some discrimination
criteria were also calculated such as Akaike Information Criterion (AIC), Bayesian information criterion (BIC),
Corrected Akaike Information Criterion (AICC), Hannan-Quinn Information Criterion (HQIC) and Consistent
Akaike Information Criterion (CAIC).

6.1. Data 1

The first data provided illustrates the the number of days 72 guinea pigs survived after being injected with different
doses of tubercle bacilli (Bjerkedal, 1960).
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2, 24, 34, 44, 54, 57, 60, 61, 65, 70, 76, 84, 95, 109, 129, 146, 233, 297, 15, 32, 38, 48, 54, 58, 60, 62, 67, 72,
76, 85, 96, 110, 131, 175, 258, 341, 22, 32, 38, 52, 55, 58, 60, 63, 68, 73, 81, 87, 98, 121, 143, 175, 258, 341, 24,
33, 43, 53, 56, 59, 60, 65, 70, 75, 83, 91, 99, 127, 146, 211, 263, 376.

The data was modeled using the QRTMD, Monsef distribution, DUS-Powered Inverse Rayleigh Distribution
(DUS-PIR), Power Generalized DUS Transformation of Inverse Kumaraswamy Distribution (PGDUS-IK), DUS
Topp–Leone Exponential Distribution (DUS-TLE) and Exponential distribution. The parameter estimates, the
goodness-of-fit tests and the information criteria were summarized in Tables 6 and 7.

Table 6. Goodness-of-fit tests for Data 1.

Model MLEs KS p-value AD CVM WT

QRTMD
θ̂ = 0.026

λ̂ = 0.515
0.149 0.080 2.316 0.370 0.261

Monsef θ̂ = 0.030 0.181 0.018 3.395 0.599 0.357

DUS-PIR
θ̂ = 0.390

λ̂ = 0.101
0.322 0.000 11.285 2.272 1.688

PGDUS-IK
θ̂ = 0.310

λ̂ = 0.900
0.509 0.000 25.079 5.461 3.649

DUS-TLE
θ̂ = 0.010

λ̂ = 0.151
0.770 0.000 109.264 16.843 3.858

Exponential
θ̂ = 0.010

λ̂ = 0.900
0.210 0.004 4.159 0.770 0.633

Table 7. Information criteria for Data 1.

Model -Loglik AIC BIC AICC HQIC CAIC

QRTMD 397.259 798.519 803.072 798.693 800.332 798.693
Monsef 399.775 801.550 803.826 801.607 802.456 801.607
DUS-PIR 427.999 859.998 864.551 860.172 861.811 860.172
PGDUS-IK 483.658 971.316 975.869 971.489 973.128 971.489
DUS-TLE 510.286 1024.573 1029.126 1024.746 1026.385 1024.746
Exponential 402.689 809.378 813.931 809.552 811.191 809.552

6.2. Data 2

The following data, from Nichols and Padgett (2006), represents the behaviour of the tensile strength about 100
observations of carbon fibres.

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89,
2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2., 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73,
2.87, 3.19, 1.87, 2.95, 2.67, 4.2, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.7, 2.03, 2.82, 2.5, 1.47,
3.22, 3.15, 2.97, 1.61, 2.05, 3.6, 3.11, 1.69, 4.9, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 1.59, 1.73, 1.71, 1.18, 4.38,
0.85, 1.8, 2.12, 3.65

The data was fitted using the same distributions in Data 1. The parameter estimates, the goodness-of-fit tests and
the information criteria were summarized in Tables 8 and 9.

The flexibility of the proposed model was examined using two real-world datasets. Standard goodness-of-
fit tests and information criteria were employed for the evaluation. While information criteria penalize model
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Figure 4. The Q-Q plot of the fitted distributions for the first data

Table 8. Goodness-of-fit tests for Data 2.

Model MLEs KS p-value AD CVM WT

QRTMD
θ̂ = 1.196

λ̂ = −0.900
0.199 0.00198 6.236 1.225 0.579

Monsef θ̂ = 0.8665 0.2320 0.00017 8.0779 1.4325 1.1376

DUS-PIR
θ̂ = 0.997

λ̂ = 0.270
0.249 0.00004 6.559 1.296 0.588

PGDUS-IK
θ̂ = 0.892

λ̂ = 0.900
0.366 0.00000 20.042 4.009 3.451

DUS-TLE
θ̂ = 0.251

λ̂ = 0.901
0.342 0.00000 15.798 3.233 1.799

Exponential
θ̂ = 0.550

λ̂ = 0.219
0.409 0.00000 23.922 5.169 1.890

complexity, the primary goal here was to compare overall fit rather than prioritize parsimony. As shown in Tables
6–9, the QRTMD yields the smallest values across all information criteria and goodness-of-fit statistics against its
competitors. This superior quantitative performance is supported visually by the Q-Q plots for the six fitted models
(Figures 4 and 5). Based on this combined evidence, the QRTMD is selected as the most appropriate model for
both datasets compared to the alternative distributions.
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Table 9. Information criteria for Data 2.

Model -Loglik AIC BIC AICC HQIC CAIC

QRTMD 135.342 274.684 279.616 274.827 276.670 274.827
Monsef 148.76 299.52 301.99 299.57 300.50 299.57
DUS-PIR 158.041 320.082 325.014 320.225 322.068 320.225
PGDUS-IK 208.340 420.680 425.612 420.823 422.666 420.823
DUS-TLE 164.775 333.549 338.481 333.692 335.535 333.692
Exponential 167.346 338.691 343.623 338.834 340.677 338.834
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Figure 5. The Q-Q plot of the fitted distributions for the second data

7. Conclusion

This study introduced a new distribution, the Quadratic Rank Transmuted Monsef Distribution (QRTMD),
generated by applying the Quadratic Rank Transmutation map to the Monsef baseline distribution. We derived
its key statistical properties and reliability measures and evaluated its parameter estimation via a simulation study,
which confirmed that the estimates converge to the true parameter values as the sample size increases. The model’s
practical flexibility was demonstrated through its superior performance over competing distributions in modeling
two real-world datasets. Finally, constructing higher-order rank transmutation maps is identified as a promising
direction for future research.

Appendix

• The 3rd and 4th moments about the means can be derived as:
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µ3 =− 1

32θ3 (2 + θ(2 + θ))
6

(
− 64 (2 + θ(2 + θ))

3
(
24 + θ

(
72 + θ(108 + θ(100

+ θ(54 + θ(12 + θ))))
))

+ 12 (2 + θ(2 + θ))
2
(
20 + θ

(
80 + θ(160 + θ(224

+ θ(269 + 2θ(134 + θ(70 + θ(14 + θ))))
))

λ

+ 6 (2 + θ(2 + θ)) (15 + 2θ (15 + θ (15 + θ(6 + θ))))
(
30 + θ

(
90 + θ(135

+ 2θ(66 + θ(39 + θ(10 + θ)))
))

λ2

+ (15 + 2θ (15 + θ (15 + θ(6 + θ))))
3
λ3

)
(A.1)

µ4 =
1

256θ4(2 + θ(2 + θ))
8 3

(
− λ4(15 + 2θ(15 + θ(15 + θ(6 + θ))))

4

− 8λ3(2 + θ(2 + θ))(15 + 2θ(15 + θ(15 + θ(6 + θ))))
2
(
30 + θ

(
90 + θ(135

+ 2θ(66 + θ(39 + θ(10 + θ))))
))

− 64λ2(2 + θ(2 + θ))
2
(15 + 2θ(15 + θ(15

+ θ(6 + θ))))
(
100 + θ

(
400 + θ(800 + θ(964 + θ(778 + θ(437

+ θ(157 + 2θ(14 + θ)))))
))

+ 256(2 + θ(2 + θ))
4
(
240 + θ

(
960 + θ(1920

+ θ(2304 + θ(1816 + θ(944 + θ(304 + 3θ(16 + θ)))))
))

− 64λ(2 + θ(2 + θ))
3(

600 + θ
(
3000 + θ(7500 + θ(12048 + θ(13550 + θ(10974 + θ(6519

+ 2θ(1396 + θ(386 + 3θ(18 + θ)))))
)))

(A.2)

• β1 and β2 are given as follows:

β1 =−
[
4
(
−64A(θ)3B(θ) + 12A(θ)2C(θ)λ+ 6A(θ)D(θ)E(θ)λ2 +D(θ)3 λ3

)2]
÷
(
−16A(θ)2G(θ) + 4A(θ)E(θ)λ+D(θ)2 λ2

)3
where

A(θ) = θ(θ + 2) + 2

B(θ) = 24 + θ(72 + θ(108 + θ(100 + θ(54 + θ(12 + θ)))))

C(θ) = 20 + θ(80 + θ(160 + θ(224 + θ(269 + 2θ(134 + θ(70 + θ(14 + θ)))))))

D(θ) = 15 + 2θ(15 + θ(15 + θ(6 + θ)))

E(θ) = 30 + θ(90 + θ(135 + 2θ(66 + θ(39 + θ(10 + θ)))))

G(θ) = 12 + θ(2 + θ)(12 + θ(6 + θ)) (A.3)
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and

β2 =
3

(−16A(θ)2G(θ) + 4A(θ)E(θ)λ+D(θ)2λ2)
2×(

256A(θ)4 J(θ)− 64A(θ)3 K(θ)λ−D(θ)4 λ4

− 64A(θ)2 D(θ)L(θ)λ2 − 8A(θ)D(θ)2 E(θ)λ3
)

where:

A(θ) = θ(θ + 2) + 2

J(θ) = 240 + θ(960 + θ(1920 + θ(2304 + θ(1816 + θ(944 + θ(304 + 3θ(16 + θ))))))

K(θ) = 600 + θ(3000 + θ(7500 + θ(12048 + θ(13550 + θ(10974 + θ(6519

+ 2θ(1396 + θ(386 + 3θ(18 + θ))))))))

L(θ) = 100 + θ(400 + θ(800 + θ(964 + θ(778 + θ(437 + θ(157 + 2θ(14 + θ))))))

D(θ) = 15 + 2θ(15 + θ(15 + θ(6 + θ)))

E(θ) = 30 + θ(90 + θ(135 + 2θ(66 + θ(39 + θ(10 + θ)))))

G(θ) = 12 + θ(2 + θ)(12 + θ(6 + θ)) (A.4)

• The MGF and the CHF of X , denoted by MX(t) and ϕx(t) are derived as follows:

MX(t) =− θ3

(t− 2θ)5(t− θ)3A(θ)2
×[

(t− 2θ)5A(θ)
(
2 + t2 − 2t(1 + θ) +A(θ)

)
+ tλ

(
t6A(θ)− 2t5

(
2 + θ

(
14 + θ(13 + 5θ)

))
+ 8θ4D(θ)− 8tθ3

(
30 + θ

(
75 + 2θ(45 + θ(21 + 4θ))

))
+ 4t2θ2

(
40 + θ

(
140 + θ(215 + 2θ(59 + 13θ))

))
− 4t3θ

(
10 + θ

(
60 + θ(130 + θ(85 + 22θ))

))
+ t4

(
4 + θ

(
48 + θ(168 + θ(132 + 41θ))

)))]

where

A(θ) = θ(θ + 2) + 2

D(θ) = 15 + 2θ(15 + θ(15 + θ(6 + θ))) (A.5)
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ϕx(t) =
θ3

(t+ iθ)3(t+ 2iθ)5A(θ)2
×[

32θ5A(θ)2 + it7A(θ)(1 + λ)

− 8t2θ3
(
2A(θ)

(
10 + θ(20 + 17θ)

)
+K(θ)λ

)
+ 4it3θ2

(
10A(θ)

(
2 + θ(6 + 7θ)

)
+ L(θ)λ

)
+ 2t4θ

(
5A(θ)

(
2 + θ(10 + 17θ)

)
+ 2M(θ)λ

)
− 2t6

(
2(1 + λ) + 14θ(1 + λ) + 13θ2(1 + λ) + θ3(6 + 5λ)

)
− 8itθ4

(
5(8 + 3λ) + 2θ

(
48 + 15λ+ θ(56 + 15λ+ θ(32 + 6λ+ θ(9 + λ)))

))
− it5

(
4(1 + λ) + θ

(
48(1 + λ) + θ

(
168(1 + λ) + θ(144 + 132λ+ θ(61 + 41λ))

))]

where

A(θ) = θ(θ + 2) + 2

K(θ) = 30 + θ
(
75 + 2θ(45 + θ(21 + 4θ))

)
L(θ) = 40 + θ

(
140 + θ(215 + 2θ(59 + 13θ))

)
M(θ) = 10 + θ

(
60 + θ(130 + θ(85 + 22θ))

)
(A.6)
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