
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 14, August 2025, pp 611–627.
Published online in International Academic Press (www.IAPress.org)

Optimizing cell load regulation capability in dynamic cell manufacturing
systems

YAO K. Adrien 1,*, KONE Oumar 1,*, EDI K. Hilaire 1, TAKOUDA P. L. Matthias2

1Department of informatique, Université Nangui Abrogoua, Côte d’Ivoire
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Abstract Variation in production cell load arises from machine loads exceeding their capacity and the constraints of cellular
capacity. This issue has become increasingly critical in scheduling cellular manufacturing systems. In this paper, we propose
a novel approach for scheduling in dynamic cellular manufacturing systems. The objective is to minimize cell load variations
and associated costs while achieving a balance between internal manufacturing and subcontracting. To address this, we
developed a mixed-integer linear programming (MILP) mathematical model, which was solved using LINGO 19.0 software.
The model focuses on reducing cell load variation, minimizing associated costs, and optimizing the balance between internal
production and subcontracting. Extensive computational experiments use medium-scale problem instances with randomly
generated demand scenarios. The results demonstrate the effectiveness of the proposed model in generating optimal solutions,
significantly reducing cell load variation and related costs. Furthermore, computational efficiency is notable, with solutions
obtained in very low processing times. This underscores the model’s practical applicability and robustness in addressing
real-world scheduling challenges in cellular manufacturing systems.
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1. Introduction

Many manufacturing companies face numerous production problems, such as planning and scheduling, which
weaken their productivity. Plant design, planning, and replanning are becoming increasingly important in the
dynamic cellular manufacturing system. Cellular manufacturing systems CMS) are increasingly being demanded
as an efficient way to use group technology (TG). These companies seek to maximize their productivity to remain
competitive in an increasingly dynamic market in the age of new technology. Group technology provides the
opportunity to design cellular manufacturing systems that bring flexibility, improved production efficiency, superior
quality, fast delivery, and mass production.

One of the primary goals of cellular manufacturing systems (CMS) is to minimize intercellular or intracellular
material transfer movements. Although the switch from shop floor layout to CMS can reduce material transfer
movements [1], there are many problems in planning or ordering in a system when the optimal parts routes are not
yet identified. In the study of CMS, two main work-in-progress (WIP) movements in the system are unavoidable:
intracellular and intercellular. These different work-in-progress movements are intracellular, the movement of parts
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between machines in the same cell, and intercellular, which is the movement of parts between cells. What procedure
minimizes movements to avoid machine overloads and queues in the other cells? To answer this question, a new
approach has been developed to limit the variation in cell load in dynamic cell production systems.

Hence, a linear integer programming model (L-MIP) is developed to reduce the variation of the cell load. In
formulating the model, all system costs will be taken into account, not forgetting the costs that make product
design possible, such as setup costs, machine purchase costs, operating costs, subcontracting costs, and backorder
costs. This study aims to reduce the costs of material transfer, both intercellularly and intracellularly. The model
also aims to find trade-off values between in-house manufacturing and subcontracting.

2. Literature review

To provide effective part processing and cell load regulation, the part routing problem in cellular manufacturing
systems (CMS) seeks the best set of machines for successive operations within cells. Multiple routing paths can
be considered for all parts when parallel machines are available. Although advantageous, this flexibility creates
problems with intracellular and intercellular mobility, which impacts material transfer costs and cell load balance.
In this review, the main contributions and shortcomings in the literature on part routing, dynamic demand, cell
reconfiguration, and cell utilization are critically examined.

2.1. Parts routing

Because of its significant influence on cost management and production efficiency, the part routing problem has
been the main focus of researchers.[2] focused on reducing intercellular mobility and system underutilization
expenses by utilizing alternative part paths. However, their method might not be as scalable when applied to
complicated industrial processes in the real world. A mathematical framework for multi-routing component
allocation to manage parallel machines was proposed by [3];however, their model assumes that demand is
deterministic, which might not account for the uncertainty present in dynamic CMS contexts. To optimize
routing, [4] discussed multiprocess planning; however, they did not investigate adaptive techniques that could
react dynamically to changing cell loads. In contrast, [5] presented a model that uses absolute robustness and
deviation robustness criteria to reduce both the costs of intracell and intercell movement at the same time. Despite
its effectiveness, this paradigm could not be flexible enough for situations where machine capabilities or layout
changes frequently occur. A genetic algorithm for creating family of components was developed by [6] to reduce
intercellular movements and fluctuations in cell load. Genetic algorithms are often computationally costly despite
their potential and may not work well in dynamic, real-time environments. [7] used genetic algorithms with a
mixed-integer programming model to reduce manufacturing time and intercellular movement. However, using
sequence-dependent setup times may add complexity, making the solution time sensitive and difficult to generalize
across various CMS configurations.

2.2. Dynamics and uncertainty

Dynamic parts demand occurs when part demand in real-world CMS applications fluctuates greatly from one
planning horizon. Bottlenecks and unbalanced cell loads are often the result of such demand fluctuations, fueled
by market changes, product redesigns, and the launch of new products. A material transfer approach that takes
into account machine uncertainty when scheduling under fluctuating product needs was put out by [8]. Although
their method is informative, it may not reflect the real-time dynamics of a CMS since it presupposes static machine
availability.

[9] included intercellular work-in-progress transfer and machine relocation to handle dynamic parts demands.
However, their model is not flexible or scalable for systems that undergo regular layout reconfigurations. The
grouping of machine parts and group scheduling (GS) was combined by [10]; however, the intricacies of concurrent
problem solving may affect the viability of this model in hectic production settings. These studies have significantly
advanced our knowledge of CMS in the face of uncertainty, but often fail to address the rapid adaptation needed in
highly dynamic environments.
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2.3. Cell reconfiguration

In CMS optimization, cell reconfiguration, which involves moving machines or part families to improve material
flows within and between cells, remains a little-studied strategy. Although reconfiguration can improve load
distribution and reduce intercellular movement costs, its implementation is often hampered by its high costs and
time constraints. In their studies, [2, 4, 5] used reconfiguration techniques, but mostly in static environments. A
dynamic reconfigurable D-CMS model that considers machine relocation and maximum cell size was presented
by [11, 12]. Although encouraging, this strategy assumes that machines will be available and relocated at optimal
times, which is impossible in situations with much variation.

A mathematical approach to CMS reconfiguration that considers the costs of replacing faulty parts and preventive
maintenance was later developed by [13]. Despite being novel, this model might not be able to handle high-
frequency reconfigurations. For cell construction and machine movement, [14] used a multiple traveling salesman
formulation; nevertheless, their strategy might use more investigation of real-time adjustment capabilities, which
are crucial in dynamic CMS situations.

2.4. Under-utilization of cells

In CMS, the underutilization of machines within cells is a significant problem that frequently arises from the
lack of properly optimized scheduling and routing. [15] addressed the issue by proposing a TOPSIS-based hybrid
memetic algorithm to decrease intercellular mobility and fluctuation in cell load. Although the technique offers a
strong framework for optimization, complex CMS setups can cause it to struggle with computational efficiency.
By modifying the size of the cells and batches, [16] presented a binary scheduling model to reduce intracellular
and intercellular movements; however, the binary nature of the model could restrict its adaptability in practical
applications.

[17] used a genetic algorithm for the creation of part families to balance the cell load and minimize intercellular
movements. Although genetic algorithms are good at producing high-quality solutions, they frequently require
a lot of processing power. They cannot scale well as system complexity increases, [18, 19]. Interestingly, most
scheduling strategies in the literature do not address the need to strike the ideal balance between in-house and
outsourced manufacturing in dynamic CMS.

In conclusion, the literature lacks a comprehensive method for balancing cell load regulation and the flexibility
needed in demand-changing situations, even though dynamic CMS has been extensively studied in areas such
as part routing, cell reconfiguration, and usage. To fill these gaps, this work suggests a mixed-integer linear
programming technique that optimizes cell load regulation in the short term under dynamic cost restrictions and
fluctuating demand.

3. Problem formulation

In this section, we present the mixed-integer linear programming (MILP) model for our target problem, which
is optimizing the regulation of cell load in dynamic cell manufacturing systems. The model aims to minimize
the costs of machine setups, operations, procurement, subcontracting, holding inventory, and material movements
(intra-cellular and inter-cellular). In the following, we define the model’s indices, parameters, decision variables,
objective function, and constraints.

3.1. Assumptions

1) Each machine M has a capacity CM (in terms of production volume), and the total quantity of products that are
processed on machine M must not exceed this capacity.

2) Each cell c is subject to a capacity CL, which defines the total amount of products that can be processed within
that cell. The amount of product processed in a cell must not exceed this total capacity.

3) The demand for parts in each scheduling period follows a distribution that adheres to a probability law, such
as the normal distribution.
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4) Subcontracting services are allowed for specific products; however, the capacity of subcontractors is limited.
5) Backorders are permitted, but are limited. The initial stock (operations stock) is zero and backorders from the

previous period are not allowed.
6) Product types are associated with a certain number of operations (routes) that must be carried out according

to manufacturing priorities.

3.2. Parameters and variables

Below, we define the different indexes of our model (Table 1), the parameters (Table 2), and the optimization
variables (Table 3).

Table 1. Definition of indices used in the model

Index Description
p Index for products
o Index for operations
m Index for machine types
f Index for specific machines
c Index for cells
l Index for subcontractors
t Index for planning periods (in minutes)

3.3. Description of intracellular and intercellular movements

This research investigates the movement of materials within and between manufacturing cells. The model focuses
on tracking work-in-process (WIP) transfers during production, considering both intracellular (within a cell) and
intercellular (between cells) movements. The model employs binary variables to indicate whether a given operation
is performed on a specific machine, and equations are developed to quantify WIP transfers based on the difference
in work completed on different machines. By analyzing these movements, the research aims to understand and
optimize the efficiency of the manufacturing process.

Figure 1. Intracellular and intercellular movements [8].

One of our key contributions is the linearization of the nonlinear integer programming model (NL-MIP)
proposed by [8] into a linear integer programming model (L-MIP).

Objective function
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Table 2. Parameters and their descriptions

Parameter Description
CMm Capacity of machine m for product manufacturing.
Demp,t Random demand for product p at time t following N(µp,t, ρp,t).
OPp,o,m Cost of operation o performed by machine m for product p.
CLc Maximum cell capacity in terms of number due to cell c space limitation.
SubCapacityl Capacity of subcontractor l.
SubCostl Cost of subcontracting production to l.
INTm Initial number of machines of type m.
IntrCostp Intracellular movement cost for product p.
InterCostp Intercellular movement cost for product p.
MCIMp,m Machine incidence matrix indicating the compatibility of product p with machine

m.
HoldCostp Holding cost for delayed production of product p.
Tlotp Batch size for product p.
SetCostm Setup cost for machine m.
Pdefp,t Cost of deferring product p production to time t.
MCostm Purchase cost of machine m.
SalCostm Sale cost of machine m.
LP Maximum number of machines in cell c.
P Number of products.
O Number of operations.
M Number of machine types.
F Number of all machines.
C Number of cells.
L Number of subcontractors.
T Number of planning periods.

Table 3. Variables and Their Descriptions

Variable Description
Zo,p,m,f,c,t Binary: 1 if operation o for product p is performed by machine f of type m in cell

c at time t; 0 otherwise.
Xo,p,m,f,c,t Integer: Number of products p processed by machine f of type m in cell c at time t.
Yp,l,t Integer: Number of products p subcontracted to l at time t.
Bp,t Integer: Number of products p deferred at time t.
NAJm,c,t Integer: Number of machines m added to cell c at time t.
NREm,c,t Integer: Number of machines m removed from cell c at time t.
MNm,c,t Integer: Number of machines m in cell c at time t.

The objective is to minimize variations in cell load and associated costs while balancing internal manufacturing
and subcontracting. This formulation incorporates machine capacity constraints, demand satisfaction, and intra-
and intercellular material movements. The problem is formulated as a Mixed Integer Linear Programming (MILP)
model involving decision variables, cost components, and operational constraints to ensure the feasibility and
efficiency of the manufacturing process.

The model aims to minimize the total cost, denoted by Z, which is the sum of seven distinct components, each
representing a specific cost aspect. The objective function can be written as:

Minimize Z = Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 (1)
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This function encapsulates the setup costs, operational costs, machine acquisition and disposal costs,
subcontracting costs, holding costs for delayed orders, and intra- and intercellular movement costs. In the
following, we detail the individual cost components and their significance in the formulation.

Objective Function Components
The first term, Q1, represents the setup costs for machines in different cells over the planning horizon. It accounts
for the number of operations performed on each type of machine for a specific product, scaled by the setup cost
per unit, and adjusted for the lot size. Mathematically, this can be expressed as:

Q1 =

T∑
t=1

C∑
c=1

P∑
p=1

M∑
m=1

O∑
o=1

F∑
f=1

(
SetCostm

Tlotp

)
Xo,p,m,f,c,t (2)

The second term, Q2, corresponds to the operational costs associated with performing various operations on
machines in cells. This cost is influenced by the machine-product compatibility matrix (MCIM) and the operational
cost per product-machine combination (OP).

Q2 =

T∑
t=1

C∑
c=1

P∑
p=1

M∑
m=1

O∑
o=1

F∑
f=1

MCIMp,m · OPp,o,m ·Xo,p,m,f,c,t (3)

The third term, Q3, models the cost of machine acquisition and disposal. Depending on the scenario, adding
or removing machines from cells incurs costs or generates revenue. This term ensures the efficient allocation of
machine resources across the manufacturing system:

Q3 =

T∑
t=1

C∑
c=1

M∑
m=1

[(MCostm · NAJm,c,t)− (SalCostm · NREm,c,t)] (4)

Subcontracting costs, represented by Q4, account for the expenses of outsourcing production to subcontractors.
This term provides flexibility in balancing internal production capabilities with external resources.

Q4 =

T∑
t=1

L∑
l=1

P∑
p=1

SubCostl · Yp,l,t (5)

The fifth cost component, Q5, represents the holding costs for delayed orders. It penalizes delays in fulfilling the
demands of products to encourage timely production.

Q5 =

T∑
t=1

P∑
p=1

HoldCostp ·Bp,t (6)

Q6 captures the costs associated with the movement of materials within a cell. Intracellular movements are
optimized to reduce unnecessary handling of products and components:

Q6 =

T∑
t=1

C∑
c=1

M∑
m=1

F∑
f=1

P∑
p=1

O∑
o=1

IntrCostp ·

 F∑
f=1

Xo+1,p,m,f,c,t −Xo+1,p,m,f,c,t

 (7)

Finally, Q7 accounts for the cost of intercellular movements. These costs are typically higher than intracell
movements and are minimized to enhance system efficiency.

Q7 =

T∑
t=1

C∑
c=1

M∑
m=1

F∑
f=1

P∑
p=1

O∑
o=1

InterCostp ·

 C∑
c=1

F∑
f=1

Xo+1,p,m,f,c,t −
M∑

m=1

Xo+1,p,m,f,c,t

 (8)
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Constraints
Several constraints govern the proposed optimization model to ensure feasibility, operational efficiency, and

logical coherence. These constraints address demand satisfaction, machine capacity, cellular capacity, and machine
movements.

Demand Satisfaction
This ensures that production and subcontracted quantities meet or exceed the demand for product p in the

planning period.

C∑
c=1

M∑
m=1

F∑
f=1

O∑
o=1

[
Xo,p,m,f,c,t∑M
m=1 MCIMp,m

]
+

L∑
l=1

Yp,l,t +Bp,t ≥ Demp,t +Bp,t−1 ∀p, t ≥ 0, Bp,0 = 0 (9)

Machine-Product Compatibility
This ensures that operations are performed only on compatible machines as defined by the machine-product
compatibility matrix (MCIM).

Xo,p,m,f,c,t · (1− MCIMp,m) ≤ 0 ∀p,m, f, o, c, t (10)

Machine Capacity
This constraint ensures that the total workload assigned to a machine does not exceed its capacity.

P∑
p=1

O∑
o=1

Xo,p,m,f,c,t ≤ CMm ∀m, f, c, t (11)

Lot Size
This ensures that the production quantity for each product does not exceed the predefined lot size.

Xo,p,m,f,c,t ≤ Tlotp ∀p,m, f, o, c, t (12)

Binary Decision Linking
This links the binary variable Z(o, p,m, f, c, t) to the production variable X(o, p,m, f, c, t) where BigM is a
sufficiently large constant.

Xo,p,m,f,c,t ≤ Zo,p,m,f,c,t · BigM ∀p,m, f, o, c, t (13)

Subcontracting Capacity
This ensures that the quantities subcontracted to external providers do not exceed their capacity.

P∑
p=1

Yp,l,t ≤ SubCapacityl ∀l, t (14)

Holding Costs for Delayed Orders
This limits the number of delayed products on the basis of a predefined threshold.

Bp,t ≤ Pdefp,t ∀p, t (15)

Machine Movement Balancing
This constraint ensures that at the start of the planning horizon (t=1), the number of machines of type m assigned
to cell c, MN(m, c, t) is equal to the initial number of machines (INTm) available in the system.
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MNm,c,t = INTm ∀t = 1, c (16)

This balances each machine count after accounting for additions and removals for each cell.

NAJm,c,t − NREm,c,t + MNm,c,t−1 = MNm,c,t ∀m, t ≥ 1, c (17)

Cellular Capacity
This constraint enforces the minimum and maximum number of machines in each cell.

LP ≤
M∑

m=1

MNm,c,t ≤ CLc ∀c, t (18)

Machine Utilization
This ensures that the workload assigned to the machines is proportional to their availability in the system.

C∑
c=1

F∑
f=1

P∑
p=1

O∑
o=1

Xo,p,m,f,c,t ≤ CMm ·
C∑

c=1

MNm,c,t ∀t,m (19)

Variable Type Constraints

The following variables are defined as integers:

Xopmfct, NREmct, NAJmct, Yplt, Bpt

The following variable is defined as binary:
Zopmfct

These constraints ensure that production quantities, machine additions/removals, subcontracted units, and stock
decisions are modeled as integer variables, while assignment variables are binary.

The above constraints and the objective function constitute the proposed Mixed-Integer Linear Programming
(MLIP) model to optimize the regulation of cell load in dynamic manufacturing systems. The next chapter will
discuss the experimental setup and present the results to evaluate the effectiveness of the model.

4. Numerical experiments

In the next section, we assess the effectiveness of our MILP model, which was implemented in the LINGO 19.0
optimization solver. For each model, we were interested in whether the optimal solution was achieved and its value,
the optimal production plan, the processing time, and the number of iterations. In addition, we analyze the impact
of cellular capacity on these optimal variables.

4.1. The test problems

We have considered instances taken from the literature, specifically from the work of [8]. Hence, we consider
instances where four products (P1, P2, P3, and P4) are manufactured in a two-cell production shop over two
periods.

Table 1 below presents all the different product data that contribute to the smooth running of the manufacturing
process: demand is the demand for parts in each machine, subcontractors help balance the manufacturing process
and meet deadlines, especially when their capacities are taken into account, manufacturing batch sizes and also
when product carry-overs are taken into account, not forgetting related costs such as intercellular and intracellular
movements, subcontractor costs per product, carry-over costs, etc.
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Table 4. Machine Data

Machine Initial Number Capacity Setup Cost Machine Purchasing Cost Machine Sale Cost
M1 5 100 100 8000 6800
M2 7 150 140 12000 10200
M3 4 75 200 7500 6000

Information about the different types of machines is also included in Table 4
Table 5 describes the production operation process routes. For example, product 1 must visit machine types 1,

2, and 3.

TABLE 5
The MCIM matrix for the experiment

Table 5. MCIM Matrix for the experiment

Products M1 M2 M3
P1 1 1 1
P2 0 0 1
P3 0 1 1
P4 1 0 0

TABLE 6 shows the cost of each operation in the different types of machines. For example, the cost required
to perform sequential operations in product 1 is 7 for the operation on machine type 1, 12 for the operation on
machine type 2, and 4 for the operation on machine type 3.

TABLE 6 The operating cost of using each type of machine

Table 6. operating cost

Operation M1 M2 M3
P1 7 12 4
P2 0 0 5
P3 0 9 4.6
P4 8 0 0

4.2. The results

We performed several small-scale experiments using the data above. The results obtained are analyzed in detail
using Python data automation. All models are solved using the LINGO 19.0 optimization solver on a CoreTM I5
personal computer with a 2.60 GHz processor and 8 GB RAM.

Tables 7 and 8 below present all the different scenarios and product data that contribute to the smooth running
of the manufacturing process: demand is the demand for parts in each machine, subcontractors help balance the
manufacturing process and meet deadlines, especially when their capacities are taken into account, manufacturing
batch sizes, and also when product carry-overs are taken into account, not forgetting related costs such as
intercellular and intracellular movements, subcontractor costs per product, carry-over costs, etc.

We first generated 50 instances of problems in one scenario using the cellular capacity (LP=20; CL=30). Detailed
results are provided in Table 9.

The first two columns in this table provide the two parameters of cellular capacity, LP and CL. The following
two columns provide d11 and d12, the two demands for product P1 to be satisfied in Cells 1 and 2. These two
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values are generated randomly from the data in Table 7. The following six columns represent similar data for P2,
P3 and P4.

The column “Optimal Solution” is the best solution by LINGO, and the column “Bound” is the best lower
bound achieved. One can easily see that for all 50 instances, the “Optimal Solution” and the “Bound” are the same.
This indicates that all models were solved to optimality, as expected. Hence, the “Optimal” column indicates “Y”
for Yes. The columns “Production,” “Subcontract,” and “Reported” provided the optimal values for the planned
decisions.

Table 7. Product data set for the experiment

Product Demand Supplier Outsource capacity Batch size Allowed Backorders Outsourcing cost (per product) Backorder cost (per product) Intracellular Cost$ Intercellular cost$
P1 N(100, 122) S1 100 15 [20,0] 50 4 3 4
P2 N(60, 82) S2 50 10 [30,0] 14 3.5 5 8
P3 N(75, 142) S3 60 8 [45,0] 20 3 4 6
P4 N(200, 42) S4 120 15 [60,0] 18 2.4 7 8

Table 8. Product Averages and Standard Deviations by Scenario

Scenario P1 Average P1 Standard Deviation P2 Average P2 Standard Deviation P3 Average P3 Standard Deviation P4 Average P4 Standard Deviation
SCENARIO 1 100 12 70 9 75 14 200 4
SCENARIO 2 120 14 40 6 55 12 200 4
SCENARIO 3 120 14 40 6 75 14 180 2
SCENARIO 4 90 11 70 9 55 12 200 4
SCENARIO 5 120 14 80 10 95 16 190 3
SCENARIO 6 100 12 60 8 85 15 220 6
SCENARIO 7 110 13 80 10 55 12 210 5
SCENARIO 8 120 14 60 8 65 13 220 6
SCENARIO 9 90 11 70 9 95 16 200 4

SCENARIO 10 80 10 40 6 95 16 180 2
SCENARIO 11 120 14 50 7 85 15 190 3
SCENARIO 12 110 13 80 10 65 13 220 6
SCENARIO 13 80 10 50 7 85 15 190 3
SCENARIO 14 120 14 70 9 65 13 190 3
SCENARIO 15 90 11 40 6 75 14 200 4
SCENARIO 16 120 14 70 9 95 16 180 2
SCENARIO 17 120 14 70 9 95 16 210 5
SCENARIO 18 80 10 80 10 85 15 210 5
SCENARIO 19 120 14 70 9 65 13 180 2
SCENARIO 20 80 10 50 7 85 15 190 3

Hence, for the 50 instances, no demand satisfaction has been reported. The demand was satisfied by combining
in-house production and subcontracting (which, in this instance, was always the same amount, 460). The processing
times were reported to be on average 0.56 seconds with a 0.04 standard deviation. On average, the number of
iterations was 39.38 and 2.87 for the standard deviation. Note that our problems have 2,837 variables, including
1,312 integer ones, and 9,284 constraints for all models here.

We have then assessed the impact of cellular capacity, represented here by the two variables LP and CL. Please
recall that these two parameters control the number of machines in the manufacturing system for each cell and
each time. We started this assessment by solving 50 instances of the model for LP=0 and CL=30. This allows the
system to have 0 and 30 machines at any given time.

The results of these second instances are presented in Table 10. All the columns have the same meaning as
before. In the columns “Optimal Solution” and “Bound,” we can observe that we have negative numbers this
time, even though all problems were solved optimally. The columns “Production,” “Subcontract,” and “Reported”
provided the optimal values for the planned decisions. Hence, again, for the 50 instances, no demand satisfaction
has been reported. The demand was satisfied through a combination of in-house production and subcontracting.
This time, neither of the two quantities was fixed (as was the last time subcontracting). On average, the in-house
production time was 383.78, with a standard deviation of 48.36, whereas the subcontracting quantity was 503.98,
with a standard deviation of 34.09.

Stat., Optim. Inf. Comput. Vol. 14, August 2025



YAO K. ADRIEN, KONE OUMAR, EDI K. HILAIRE, TAKOUDA P. L. MATTHIAS 621

Table 9. Summary of optimal solutions and parameters for LP=20 and CL=30

LP CL d11 d12 d21 d22 d31 d32 d41 d42 Optimal Solution Bound Optimal Production Subcontract Reported Time Iterations

20 30 126 133 83 77 95 62 179 189 41547.33 41547.33 Y 484 460 0 0.53 48
20 30 115 114 95 85 103 113 194 188 43351.67 43351.67 Y 547 460 0 0.62 40
20 30 128 123 61 64 92 100 188 190 41510.00 41510.00 Y 486 460 0 0.51 37
20 30 102 142 67 65 100 87 193 190 41472.33 41472.33 Y 486 460 0 0.53 35
20 30 99 108 86 60 86 99 192 190 40696.67 40696.67 Y 460 460 0 0.53 39
20 30 103 130 66 92 109 116 197 183 43297.33 43297.33 Y 568 460 0 0.52 39
20 30 143 135 80 75 121 96 185 185 44426.67 44426.67 Y 630 460 0 0.52 42
20 30 127 124 84 86 95 101 186 184 42843.67 42843.67 Y 527 460 0 0.53 38
20 30 97 137 81 80 109 120 188 187 43604.00 43604.00 Y 593 460 0 0.59 38
20 30 130 115 55 66 85 100 189 188 40978.33 40978.33 Y 468 460 0 0.53 36
20 30 97 80 74 77 120 85 185 188 40352.67 40352.67 Y 446 460 0 0.52 39
20 30 114 95 89 71 99 65 186 189 40407.00 40407.00 Y 448 460 0 0.53 39
20 30 135 114 58 84 79 95 191 193 41553.00 41553.00 Y 489 460 0 0.73 37
20 30 109 100 47 100 112 50 190 191 40075.00 40075.00 Y 439 460 0 0.71 35
20 30 112 140 66 66 112 130 188 186 43849.33 43849.33 Y 620 460 0 0.63 38
20 30 112 140 66 66 112 130 188 186 43849.33 43849.33 Y 620 460 0 0.63 38
20 30 127 106 84 75 75 109 190 189 41771.67 41771.67 Y 495 460 0 0.53 37
20 30 118 124 86 79 97 111 190 192 43121.67 43121.67 Y 547 460 0 0.63 38
20 30 109 108 100 80 61 78 191 189 40593.33 40593.33 Y 456 460 0 0.53 35
20 30 140 110 86 89 60 103 187 192 42143.67 42143.67 Y 507 460 0 0.54 38
20 30 125 140 101 78 118 115 189 188 45463.33 45463.33 Y 670 460 0 0.61 44
20 30 122 124 93 75 84 90 190 191 42184.00 42184.00 Y 509 460 0 0.54 43
20 30 110 105 73 74 106 103 188 187 41535.00 41535.00 Y 486 460 0 0.54 40
20 30 130 127 76 90 90 73 191 190 42121.00 42121.00 Y 507 460 0 0.65 40
20 30 104 123 81 91 102 99 189 191 42536.33 42536.33 Y 520 460 0 0.53 44
20 30 101 122 91 78 106 67 191 188 41449.67 41449.67 Y 484 460 0 0.54 37
20 30 114 138 80 91 111 93 195 183 43343.00 43343.00 Y 547 460 0 0.53 40
20 30 114 115 96 91 103 85 189 192 42679.00 42679.00 Y 525 460 0 0.59 38
20 30 129 122 86 77 108 94 190 193 43206.33 43206.33 Y 553 460 0 0.53 41
20 30 130 127 87 91 110 117 189 191 44839.33 44839.33 Y 630 460 0 0.54 39
20 30 122 122 83 69 102 84 187 193 41990.33 41990.33 Y 502 460 0 0.53 42
20 30 139 139 73 75 91 111 185 193 43678.00 43678.00 Y 586 460 0 0.53 40
20 30 126 128 85 87 97 68 185 189 42131.33 42131.33 Y 505 460 0 0.54 44
20 30 113 93 79 63 68 96 189 187 39786.67 39786.67 Y 428 460 0 0.53 37
20 30 117 117 74 74 101 62 191 192 40930.33 40930.33 Y 468 460 0 0.52 41
20 30 137 121 81 85 97 74 188 190 42409.00 42409.00 Y 521 460 0 0.54 42
20 30 130 115 72 71 97 90 190 185 41664.00 41664.00 Y 490 460 0 0.53 38
20 30 117 112 77 95 88 111 191 192 42606.33 42606.33 Y 523 460 0 0.55 37
20 30 122 131 71 82 88 87 188 185 41801.67 41801.67 Y 494 460 0 0.55 38
20 30 114 121 75 87 98 71 191 189 41493.33 41493.33 Y 486 460 0 0.54 41
20 30 120 110 73 71 101 76 187 185 40874.00 40874.00 Y 463 460 0 0.52 40
20 30 119 132 62 72 88 103 184 188 41717.00 41717.00 Y 498 460 0 0.54 37
20 30 102 138 70 90 102 92 193 190 42428.33 42428.33 Y 517 460 0 0.53 35
20 30 110 99 81 84 111 94 189 192 41917.00 41917.00 Y 500 460 0 0.62 38
20 30 135 82 80 87 87 101 194 188 41728.67 41728.67 Y 494 460 0 0.54 45
20 30 126 108 78 76 92 96 196 187 41864.33 41864.33 Y 499 460 0 0.54 39
20 30 93 143 92 76 59 78 187 192 40728.67 40728.67 Y 460 460 0 0.54 38
20 30 138 122 86 74 100 114 189 188 43746.33 43746.33 Y 579 460 0 0.52 45
20 30 109 99 67 72 86 74 189 189 39680.00 39680.00 Y 425 460 0 0.52 38
20 30 116 123 73 59 92 95 192 191 41318.33 41318.33 Y 481 460 0 0.59 42

Number 50 50 50 50 50 50
Minimum 39680 39680 425 460 0.51 35
Average 42105.91 42105.91 513.32 460 0.56 39.38
Median 41890.67 41890.67 499.5 460 0.54 39

Standard deviation 1289.60 1289.60 55.86 0.00 0.05 2.87
Maximum 45463.33 45463.33 670 460 0.73 48

The processing times were reported to be on average 0.65 seconds with a 0.11 standard deviation.

On average, the number of iterations was 830.74 and 1420.39 for the standard deviation.

Finally, the most crucial difference comes from the optimal value. All optimal values were positive when the
cell capacity was LP = 20 and CL = 30. Here, with LP=0 and CL=30, they are negative. This suggests significant
additional costs as a result of selling more machines in the latter case. In fact, with LP = 20, 22 machines were
acquired and 14 sold. With LP=0, an average of 30 machines were sold.

We explored this idea further with two additional analyses.

In the first, we maintain CL at 30 and vary LP from 0 to 28 by increments of 4. For each cellular capacity
scenario, 50 instances were solved. In the second, LP and CL are randomly selected, and again, for each cellular
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Table 10. Summary of optimal solutions and parameters for LP=0 and CL=30

LP CL d11 d12 d21 d22 d31 d32 d41 d42 Optimal Solution Bound Optimal Production Subcontract Reported Time Iterations

0 30 106 87 63 73 116 76 200 205 -226453 -226453 Y 455 471 0 0.58 214
0 30 91 96 75 66 57 70 195 195 -233010 -233010 Y 288 557 0 0.81 440
0 30 102 94 71 80 57 60 205 201 -228295 -228295 Y 405 465 0 0.64 1165
0 30 99 81 70 65 58 82 198 194 -233108 -233108 Y 295 552 0 0.66 415
0 30 91 87 79 66 72 71 196 194 -232927 -232927 Y 308 548 0 0.58 195
0 30 110 115 76 73 90 61 193 196 -226565 -226565 Y 438 478 0 0.77 753
0 30 114 105 66 82 103 88 202 205 -224520 -224520 Y 455 510 0 0.63 220
0 30 97 88 73 78 64 79 194 196 -228003 -228003 Y 397 474 0 0.83 2138
0 30 71 102 72 73 97 88 201 205 -226432 -226432 Y 411 498 0 0.69 223
0 30 80 114 56 53 66 71 196 205 -228697 -228697 Y 368 473 0 0.66 184
0 30 89 103 82 69 78 75 206 199 -227125 -227125 Y 424 477 0 0.72 2393
0 30 95 107 62 71 88 78 201 200 -226882 -226882 Y 416 486 0 0.73 243
0 30 98 107 66 67 68 52 201 201 -232668 -232668 Y 303 557 0 0.8 549
0 30 99 91 75 68 36 79 200 197 -228755 -228755 Y 380 467 0 0.7 609
0 30 116 83 71 77 89 92 195 200 -226282 -226282 Y 441 482 0 0.63 229
0 30 100 102 66 70 92 41 202 202 -232467 -232467 Y 330 545 0 0.6 209
0 30 98 107 80 61 76 80 198 202 -226977 -226977 Y 422 480 0 0.59 224
0 30 104 93 67 65 66 69 190 202 -232657 -232657 Y 297 559 0 0.7 501
0 30 90 92 73 64 95 67 200 203 -231960 -231960 Y 328 556 0 0.83 640
0 30 77 115 71 72 81 63 197 210 -227240 -227240 Y 396 490 0 0.53 192
0 30 124 92 68 84 78 67 201 197 -226850 -226850 Y 441 472 0 0.7 736
0 30 96 90 76 75 85 83 198 194 -227123 -227123 Y 425 476 0 0.72 882
0 30 97 81 72 80 69 58 200 199 -232960 -232960 Y 308 548 0 0.55 205
0 30 103 99 73 59 96 34 201 198 -233318 -233318 Y 343 520 0 0.56 224
0 30 114 87 88 64 74 70 202 200 -231627 -231627 Y 348 551 0 0.61 698
0 30 106 74 74 61 84 81 201 198 -232358 -232358 Y 335 544 0 0.76 216
0 30 81 97 71 77 68 65 199 198 -228485 -228485 Y 387 469 0 0.92 4097
0 30 100 93 66 72 76 86 198 198 -227330 -227330 Y 408 481 0 0.67 373
0 30 83 110 77 73 70 79 198 200 -227097 -227097 Y 398 492 0 0.55 207
0 30 105 99 62 74 71 99 197 207 -226028 -226028 Y 405 509 0 0.54 263
0 30 85 104 78 72 96 72 198 201 -226877 -226877 Y 427 479 0 0.54 223
0 30 91 94 74 79 71 78 194 205 -227303 -227303 Y 400 486 0 0.54 222
0 30 116 100 92 52 73 72 202 204 -231127 -231127 Y 353 558 0 0.60 615
0 30 107 103 57 77 80 74 199 206 -226755 -226755 Y 413 490 0 0.53 240
0 30 86 93 73 76 80 90 195 199 -227063 -227063 Y 403 489 0 0.93 8777
0 30 104 81 67 84 89 56 198 200 -232193 -232193 Y 328 551 0 0.62 644
0 30 115 82 58 80 94 88 211 202 -226205 -226205 Y 448 482 0 0.54 231
0 30 93 88 71 68 78 72 202 199 -232347 -232347 Y 314 557 0 0.59 552
0 30 109 108 66 66 74 77 192 202 -227107 -227107 Y 411 483 0 0.53 211
0 30 102 107 58 66 77 92 201 200 -226672 -226672 Y 408 495 0 0.54 242
0 30 91 93 80 73 51 69 204 203 -228340 -228340 Y 396 468 0 0.58 783
0 30 105 98 76 73 78 95 203 192 -226098 -226098 Y 430 494 0 0.95 3924
0 30 108 90 82 72 71 60 197 202 -232035 -232035 Y 328 554 0 0.6 568
0 30 98 108 72 74 52 70 197 203 -227642 -227642 Y 389 485 0 0.54 240
0 30 114 86 71 75 81 67 196 195 -231957 -231957 Y 332 553 0 0.62 660
0 30 103 93 53 67 74 77 203 201 -228188 -228188 Y 403 468 0 0.66 1912
0 30 88 108 71 84 105 64 200 194 -226469 -226469 Y 434 484 0 0.62 746
0 30 104 112 69 67 103 81 196 203 -225710 -225710 Y 442 493 0 0.53 233
0 30 99 103 67 54 42 68 205 208 -228872 -228872 Y 383 463 0 0.6 638
0 30 93 101 79 84 48 57 202 208 -227827 -227827 Y 392 480 0 0.56 239

Number 50 50 50 50 50 50 50
Minimum -233318 -233318 288 463 0 0.53 184
Average -228820 -228820 383.78 503.98 0 0.56 39.38
Median -227734 -227734 397.5 489.5 0 0.62 394

Standard deviation 2636.80 2636.80 48.36 34.09 0.00 0.11 1420.39
Maximum -224520 -224520 455 559 0 0.95 8777

capacity, 50 instances are solved. We report the results in Table 11 for the first experiment (and Table 12 for the
second experiment). The two tables present the same variables and parameters as Table 9 and Table 10, adding
“Machines Acquired” and “Machines Sold”. The actual values in the table are averages over the 50 instances.

The main result from both tables is that the optimal value of the models is positive or negative depending on
whether the number of machines acquired is higher or smaller than the number of machines sold. This further
appears to be related to the difference between CL and LP and the optimal values. Therefore, we performed a
regression analysis between the slack between LP and CL (CL-LP) and the optimal values. We obtain Figure 1
above. We get a coefficient of correlation of 0.68. A regression analysis shows that the difference CL-LP can
explain about 46% of the optimal value variations.
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Table 11. Summary of average optimal solutions and parameters for CL=30 and LP varying from 0 to 28 by 4.

LP CL Instances Optimal Solution Bound Optimal Production Subcontract Reported Machines Acquired Machines Sold Time Iterations

0 30 50 -228820 -228820 Y 383.78 503.98 0 0 30.32 0.6496 830.74
4 30 50 -193372 -193372 Y 365.02 460.42 0 0 24 0.5964 245.18
8 30 50 -140318 -140318 Y 370.32 460 0 0 16 0.5452 39.36

12 30 50 -80312 -80312 Y 429.6 460 0 6 14 0.5396 38.28
16 30 50 -21850.4 -21850.4 Y 371.06 460 0 14 14 0.5444 34.56
20 30 50 42105.91 42105.91 Y 513.32 460 0 22 14 0.5562 39.38
24 30 50 100486.7 100486.7 Y 467.9 460 0 30 14 0.5404 36.7

Table 12. Summary of average optimal solutions and parameters for randomly selected LP and CL.

LP CL Instances Optimal Solution Bound Optimal Production Subcontract Reported Machines Acquired Machines Sold Time Iterations

15 38 50 -35326.9 -35326.9 Y 428.96 460 0 12 14 0.5406 37.54
22 33 50 68148.1 68148.1 Y 370.72 460 0 26 14 0.5522 34.76
22 28 50 68188.29 68188.29 Y 366.9 460 0 26 14 0.545 35.08
25 36 50 113075.9 113075.9 Y 367.88 460 0 32 14 0.5464 33.82
14 28 50 -47668.6 -47668.6 Y 523.3 460 0 10 14 0.5522 40.32
20 29 50 40487.34 40487.34 Y 468.38 460 0 22 14 0.5440 37.28
12 39 50 -79923.8 -79923.8 Y 448.3 460 0 6 14 0.5432 37.36
22 40 50 70459.19 70459.19 Y 465.66 460 0 26 14 0.5582 36.82
21 32 50 55128.49 55128.49 Y 444.64 460 0 24 14 0.5614 36.34
13 35 50 -67766.1 -67766.1 Y 327.76 460 0 8 14 0.5876 35.08
24 26 50 99385.16 99385.16 Y 415.56 460 0 30 14 0.5514 36
16 38 50 -18907.1 -18907.1 Y 488.58 460 0 14 14 0.5478 37.62
17 31 50 -7283.17 -7283.17 Y 350.6 460 0 16 14 0.5506 35.22
15 32 50 -35117.5 -35117.5 Y 431.4 460 0 12 14 0.5466 38.14
12 29 50 -82415.5 -82415.5 Y 346.16 460 0 6 14 0.5394 34.76
19 27 50 26081.27 26081.27 Y 472.84 460 0 20 14 0.5396 39.02
18 35 50 12486.8 12486.8 Y 538.14 460 0 18 14 0.5426 38.84
23 29 50 84960.34 84960.34 Y 443.6531 460 0 28 14 0.5533 35.86
25 40 50 114290.5 114290.5 Y 405.76 460 0 32 14 0.5508 36.82
10 27 50 -112433 -112433 Y 344.08 460 0 2 14 0.5398 35.5

Figure 2. Regression between cell capacity and optimal solution

The main result of both tables is that the optimal value of the models is positive or negative depending on whether
the number of machines acquired is higher or lower than the number of machines sold. This further appears to be
related to the difference between CL and LP and the optimal values. Therefore, we performed a regression analysis
between the slack between LP and CL (CL-LP) and the optimal values. We obtain Figure 2 above. We get a
coefficient of correlation of 0.68. A regression analysis shows that the difference CL-LP can explain about 46% of
the optimal value variations.
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4.3. Additionnals results

We conducted additional experiments using a more significant scale dataset to further assess extensibility and
robustness. We consider instances where ten products (P1, P2, P3, P4, P5, P6, P7, P8, P9, and P10) are
manufactured in a four-cell production shop (c=4) over four periods (T=4).

The machines used were the same (see Table 4). The production process routes for the 10 products are provided
in Table 13.

Table 13. MCIM Matrix for the experiment (10 products)

Produits M1 M2 M3
P1 1 1 1
P2 0 0 1
P3 0 1 1
P4 1 0 0
P5 1 1 1
P6 0 0 1
P7 0 1 1
P8 1 0 0
P9 1 1 1
P10 0 0 1

The corresponding operating costs are shown in Table 14.

Table 14. Operations costs (10 products

Opération M1 M2 M3
P1 7 12 4
P2 0 0 5
P3 0 9 4.6
P4 8 0 0
P5 10 14 5
P6 0 0 4
P7 0 9 3
P8 6 0 0
P9 12 7 8
P10 0 0 4.6

Finally, the product data are summarized in Table 15.

Table 15. Product data set for the experiment (10 products)

Product Demand Supplier Outsource capacity Batch size Allowed Backorders Outsourcing cost (per product) Backorder cost (per product) Intracellular Cost$ Intercellular cost$
P1 N(100, 122) S1 100 15 [20,0] 50 4 3 4
P2 N(60, 82) S2 50 10 [30,0] 14 3.5 5 8
P3 N(75, 142) S3 60 8 [45,0] 20 3 4 6
P4 N(200, 42) S4 120 15 [60,0] 18 2.4 7 8
P5 N(190, 62) S5 60 10 [50,0] 50 5 6 4
P6 N(110, 102) S6 70 15 [30,0] 30 3.4 3 6
P7 N(50, 42) S7 120 8 [70,0] 25 6 8 4
P8 N(90, 72) S8 100 10 [20,0] 55 3 4 8
P9 N(210, 52) S9 50 15 [10,0] 60 4 5 5

P10 N(130, 82) S10 80 10 [25,0] 40 2.5 9 7

We proceeded as previously. All the instances solved here were generated following the 20 scenarios proposed
in Table 16. In the first analysis, we maintain CL at 30 and vary LP from 0 to 28 by increments of 4. For each
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Table 16. Products averages and standard deviations (10 products)

Scenario P1 A P1 SD P2 A P2 SD P3 Av P3 SD P4 A P4 SD P5 A P5 SD P6 A P6 SD P7 A P7 SD P8 A P8 SD P9 A P9 SD P10 A P10 SD

SCENARIO 1 110 13 60 8 85 15 180 2 110 10 200 4 40 3 70 5 220 6 140 9
SCENARIO 2 120 14 50 7 75 14 180 2 100 9 180 2 30 2 100 8 210 5 150 10
SCENARIO 3 120 14 50 7 85 15 180 2 130 12 190 3 40 3 110 9 200 4 120 7
SCENARIO 4 110 13 70 9 95 16 220 6 130 12 220 6 60 5 110 9 230 7 150 10
SCENARIO 5 120 14 70 9 55 12 190 3 110 10 220 6 40 3 80 6 220 6 110 6
SCENARIO 6 90 11 50 7 65 13 210 5 100 9 210 5 50 4 100 8 220 6 150 10
SCENARIO 7 100 12 70 9 75 14 190 3 110 10 210 5 40 3 80 6 210 5 110 6
SCENARIO 8 80 10 60 8 65 13 220 6 130 12 200 4 30 2 110 9 230 7 120 7
SCENARIO 9 100 12 70 9 65 13 220 6 90 8 220 6 40 3 90 7 210 5 150 10
SCENARIO 10 100 12 40 6 95 16 180 2 130 12 200 4 40 3 90 7 220 6 120 7
SCENARIO 11 90 11 60 8 95 16 180 2 100 9 210 5 40 3 80 6 210 5 150 10
SCENARIO 12 90 11 40 6 65 13 210 5 130 12 220 6 70 6 70 5 230 7 120 7
SCENARIO 13 90 11 70 9 85 15 220 6 130 12 190 3 70 6 70 5 210 5 120 7
SCENARIO 14 80 10 70 9 55 12 190 3 90 8 200 4 30 2 90 7 200 4 110 6
SCENARIO 15 110 13 50 7 75 14 220 6 130 12 210 5 60 5 90 7 230 7 130 8
SCENARIO 16 90 11 80 10 85 15 190 3 100 9 200 4 50 4 80 6 200 4 120 7
SCENARIO 17 100 12 50 7 85 15 190 3 90 8 190 3 70 6 80 6 200 4 130 8
SCENARIO 18 80 10 60 8 75 14 190 3 130 12 210 5 40 3 90 7 210 5 150 10
SCENARIO 19 100 12 50 7 55 12 220 6 130 12 180 2 60 5 100 8 190 3 150 10
SCENARIO 20 110 13 70 9 85 15 190 3 100 9 200 4 40 3 110 9 230 7 140 9

cellular capacity scenario, 50 instances were solved. In the second one, LP and CL are randomly selected, and
again, for each cellular capacity, 50 instances are solved. We report the results in Table 17 for the first experiment
(and Table 18 for the second experiment). The two tables present the same variables and parameters as Table 9 and
Table 10, adding “Machines Acquired” and “Machines Sold”. The actual values in the table are averages over the
50 instances.

Table 17. Summary of average optimal solutions and parameters for CL=30 and LP varying from 0 to 28 by 4 (10 products)

LP CL Instances Optimal Solution Bound Optimal Production Subcontract Reported Machines Acquired Machines Sold Time Iterations

0 30 50 -317126 -317126 Y 3208.76 2266.88 330 0 54.16 51.276 45752.3
4 30 50 -301381 -301381 Y 2676.74 1989.98 330 0 48 46.5906 13145.9
8 30 50 -193026 -193026 Y 2886.36 1985.42 330 0 32 37.5816 592.64

12 30 50 -50737.1 -50737.1 Y 3601.56 2189.36 330 12 28 37.6204 213.26
16 30 50 43344.19 43344.19 Y 2851.82 1989.18 330 28 28 36.7662 204.36
20 30 50 168915.7 168915.7 Y 2906.2 2034.7 330 44 28 36.1184 205.74
24 30 50 345051.9 345051.9 Y 2902.04 1979.76 330 60 28 36.3879 202.42

Table 18. Summary of average optimal solutions and parameters for randomly selected LP and CL (10 products).

LP CL Instances Optimal Solution Bound Optimal Production Subcontract Reported Machines Acquired Machines Sold Time Iterations

15 38 50 14391.94 14391.94 Y 2892.8 1965.56 330 24 28 36.6352 212.02
22 33 50 222287.7 222287.7 Y 2816.84 1945.74 330 52 28 36.5026 204.28
22 28 50 225262.2 225262.2 Y 2918.8 1995.24 330 52 28 36.9786 203.56
25 36 50 343070.3 343070.3 Y 3520.68 2237.2 330 64 28 41.535 215.7
14 28 50 -14397.5 -14397.5 Y 2537.96 2133 330 20 28 38.603 211.26
20 29 50 171814 171814 Y 2680.44 2166.8 330 44 28 38.603 211.26
12 39 50 -76258.1 -76258.1 Y 2487.74 2113.3 330 12 28 37.0156 211.5
22 40 50 231457.2 231457.2 Y 2707.68 2157.52 330 52 28 37.1694 206.06
21 32 50 203238.3 203238.3 Y 2751.26 2168.82 330 48 28 37.5128 208.8
13 35 50 -44169.6 -44169.6 Y 2643.06 2070.64 330 16 28 37.1756 215.56
24 26 50 286771.5 286771.5 Y 2527.7 2137.4 330 60 28 36.6676 209.76
16 38 50 50971.82 50971.82 Y 2692.94 2150.34 330 28 28 36.3344 207.92
17 31 50 81706.49 81706.49 Y 2756.54 2140.62 330 32 28 35.533 205.26
15 32 50 2696.561 2696.561 Y 2165.58 2023.98 330 24 28 35.3286 208.28
12 29 50 -61129.1 -61129.1 Y 2983.12 2183.94 330 12 28 35.1292 219.34
19 27 50 133295 133295 Y 2433.36 2125.98 330 40 28 35.1368 206.7
18 35 50 101642.9 101642.9 Y 2436.86 2080.2 330 36 28 34.8606 199.22
23 29 50 256278.5 256278.5 Y 2505.84 2141.52 330 56 28 36.1012 208.74
25 40 50 318400.6 318400.6 Y 2590.58 2155.4 330 64 28 35.6846 205.26
10 27 50 -124592 -124592 Y 2887.86 2158.3 330 4 28 35.7704 219.72
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Figure 3. Regression between cell capacity and optimal solution (10 products)

The model performs satisfactorily, as shown by the results in Table 17 and Table 18. The previous main result is
confirmed: the optimal value of the models is positive or negative depending on whether the number of machines
acquired is higher or smaller than the number of machines sold. We also confirmed that there was a correlation
between the slack between CL and LP and the optimal values. Please refer to Figure 2 - Regression between cell
capacity and optimal solution (10 products). We get a coefficient of correlation of 0.67. A regression analysis shows
that the slack CL-LP can explain about 46% of the optimal value variations.

In summary, using a small computational analysis, we have shown that the proposed MILP model effectively
generates feasible production plans. We have also demonstrated that cell capacity parameters (LP, CL) impact the
computations of optimal solutions.

This work has limitations that prevent the conclusion from being considered. First, we have to analyze other
parameters that impact solutions. For example, the structures of the costs of each production option and the level
of demand are parameters whose impact should be analyzed. Then, we have the size of the test problems. Instances
with more than four products, two periods, and two cells shall be tested.

5. Conclusion

We introduce a mixed-integer linear programming (MILP) formulation of cellular manufacturing systems to
minimize variation in cell load and associated costs while balancing internal manufacturing and subcontracting.
The model comes from a linearization of the model by [8, 20].

Using LINGO 19.0, and a set of medium-scale instances, we perform extensive tests on problems with random
demands. The results show the effectiveness of the model and the optimal solutions. The calculation of solutions is
effective with very low processing times. In addition, we explore the impact of cell capacity parameters on optimal
values. We have identified limitations in the above work that need to be addressed to enhance the practical relevance
of this analysis.
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