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Abstract This study examines the USD/IQD exchange rate using multivariate time series models. We implement vector
autoregressive (VAR), structural VAR (SVAR), and structural vector error correction (SVEC) models using the ’vars’ package
in R. The analysis includes diagnostic testing, a constrained model estimation, prediction, causality analysis, impulse
response functions, and forecast error variance decomposition. Variables are selected using the Granger causality test,
leading to various model combinations. Model 3, which includes USD, gold, and copper, is identified as optimal for accurate
forecasting. Although the oil variable has a high p-value (0.4674), its inclusion is justified based on economic intuition and
statistical reasoning, given its influence on exchange rates and commodity prices that is crucial for making good investment
decisions.
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1. Introduction

Many time-related variables make up a multivariate time series (MTS), and it is important to realize that each
variable’s dependence is impacted by interactions with other variables in addition to its previous values. This
dependency is used to forecast values for the future. Investigating the intricate relationships between variables
and improving forecast accuracy are the objectives of multivariate time series analysis. Vector autoregressive
models (VARs) became a standard tool in econometrics in the early 1980s after being criticized by the authors
in [1]. Since statistical tests are frequently used to find links and complex correlations among variables, the
addition of non-statistical prior information quickly improves this method. Unlike deterministic repressors, VAR
models use their own histories to fully represent endogenous variables. The explicit modelling of contemporaneous
interdependencies between the variables on the left is made easier by structured vector autoregressive models, or
SVARs. As a result, these models make an effort to rectify the shortcomings of VAR models. The multiple structural
equation model paradigm, which was first created by the Cowles Foundation in the 1940s and 1950s, was put to
the test by Sims. The idea of co-integration, however, was brought to the area of econometrics by Granger in [2]
and then by Engle and Granger in [3] as a potent tool for modelling and assessing economic interactions. The use
of structural vector error correction models (SVEC) and vector error correction models (VECM) has recently led
to a convergence in the research of these domains. Each of these models is thoroughly explained theoretically in
the monographs written by Hamilton [7], Hendry [5], Johansen [6], Banerjee et al. [8], and Lütkepohl [4], [9], [10].
Examining Vector Autoregressive (VAR) techniques for multivariate time series data analysis is the main goal of
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this research, using data from [https://www.investing.com], this study attempts to determine the best method for
modelling four distinct time series variables associated with the Iraqi USD/IQD exchange rate. Using the vars
package in R, the study investigates a number of modelling approaches, such as Vector Autoregressive (VAR),
Structural Vector Autoregressive (SVAR), and Structural Vector Error Correction Models (SVECM). Additionally,
it provides a comprehensive framework for diagnostic testing, model estimation, prediction, causality analysis,
impulse response analysis, and forecast error variance decomposition.

1.1. Methodology

We present the theoretical foundation of the Vector Autoregressive (VAR) model.

1.2. Form of Vector Autoregressive (VAR) Model

The VAR model is a multivariate regression model in which all variables on the right side of the equation represent
the dependent variables’ lagged values. Let Zt = (Z1t · · ·Zkt)

′ represent the vector of variables at time t and let
Φi represent the coefficient matrices. These parameters account for cross-lagged relationships between variables
and the autoregressive effect of a variable on itself across time. The intercepts of the model are designated by
c = (c1 · · · ck)′ and the white noise process, often referred to as perturbations or random shocks, is represented
by at = (a1t · · · akt)′. These innovations are the portions of the present data Zt that cannot be explained by earlier
observations Z(t−1), Z(t−2), . . . , Z(t−p). The innovations are believed to follow a white-noise process, which means
that each has a zero mean and a time-invariant, symmetric, positive-definite covariance matrix, which is frequently
assumed to be block-diagonal. The basic p-lag Vector Autoregressive VAR(p) model is expressed as follows: [11]

Zt = c+Φ1Z(t−1) +Φ2Z(t−2) + · · ·+ΦpZ(t−p) + at; t = 0,±1,±2, . . . (1)

Where:

• Zt = (Z1t · · ·Zkt)
′ is a (k × 1) vector of time series variables.

• Φi are fixed (k × k) coefficient matrices.

• c = (c1 · · · ck)′ is a fixed (k × 1) vector of intercept terms.

• at = (a1t · · · akt)′ is a (k × 1) white noise process, representing independent samples taken from a
multivariate Gaussian distribution with a variance-covariance matrix over time points.
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1.3. Stationary Time Series

Stationarity of the time series is an important assumption in VAR modelling. Stationarity means that the series’
statistical features, such as mean, variance, and autocorrelation, are constant over time. For a time series Z(t) to be
termed stationary, its marginal distribution should not change with time t. The joint distribution of Z(t1), . . . , Z(tn)
must be identical to that of Z(t1 + τ), . . . , Z(tn + τ), for any time shift τ . [12]
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1.4. Unit Root Test

To determine the stationarity of time series, there are different methods, including the augmented Dickey-Fuller
unit root test (ADF), Phillips-Perron unit roots, and Kwiatkowski-Phillips-Schmidt-Shin (KPSS). An additional
technique to ascertain if the data is steady is the autocorrelation function (ACF) and partial autocorrelation function
(PACF) [13].

1.5. Stable VAR(p) Processes

Process 1 is stable if all of the matrix’s roots are contained within the unit circle and the roots of matrix Φi have
absolute values lower than 1. That is, if det(In − Φ1Z − . . .− ΦpZ

p) ̸= 0 for |Z| ≤ 1, Zt where t = 0,±1,±2, . . .,
is a stationary VAR(p) process that is stable.

a. Stable VAR(p) Process’ Autocovariances

After subtracting the mean from VAR(p), the outcome is

Zt − µ = Φ1(Zt−1 − µ) + . . .+Φp(Zt−p − µ) + at (3)

Once both sides have been divided by (Zt−1 − µ)′, the expectation is calculated, arriving at l = 0 using the
following methods:

Γz(i) = Γz(−i)′ (4)

Γz(0) = Φ1(Zt−1 − µ) + . . .+Φp(Zt−p − µ) + Σa = Φ1Γz(1)
′ + . . .+ΦpΓz(p)

′ +Σa (5)

If µ > 0, then Γz(l) = Φ1Γz(l − 1)′ + . . .+ΦpΓz(l − p)′ +Σa If Φ1, . . . ,Φp and Γz(p− 1) are provided, the
autocovariance functions Γz(l) for l ≥ p can be derived from these equations.

b. Stable VAR(p) Process’s Autocorrelation

A stable VAR(p) process’s autocorrelation may be obtained by taking information out of the matrix:

Rz(l) = D−1Γz(l)D
−1 (6)

The standard deviation of the Zt component is therefore on the major diagonal of D, a diagonal matrix. As such,

D−1 =
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And Zi,t and Zj,t−1 have the following correlation:

ρij(l) =
γij(l)√

γii(0)
√
γjj(0)

′
(8)

This represents only the ij-th element of Rz(l). The inverses of the solutions are once again the distinctive
roots of the model. Consequently, all characteristic roots must have a modulus of less than one in order for
stationarity to occur. For a stationary AR(p) sequence with p ≥ 0, the ACF satisfies the difference equation
(1− Φ1B − Φ2B

2 − . . .− ΦpB
p)p. [14]
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1.6. Estimation Parameters for VAR Model [12]

The VAR(1) model, which is comparable to the VAR(p) model, can be used to illustrate how to estimate model
parameters and the error covariance matrix:

Zt = Φ1Zt−1 + at (9)

where Zt represents a (k × 1) vector, Φi denotes a fixed (k × k) coefficient matrix, and at denotes a white noise
process such that at ∼ N(0,Σ).

We must estimate the model parameters Φ1 and the covariance matrix Σ to estimate the VAR(1) model. Given
certain assumptions, Equation (9) may be expressed as follows:

Z = XB +A (10)

where Z is a (T − p)× k matrix with the ith row being Z ′
p+i, X is a (T − p)× (kp+ 1) matrix with the ith row

being X ′
p+i, and A is a (T − p)× k matrix with the ith row being a′p+i.

1.7. Order Selection by VAR

Determining the VAR lag order is a crucial first step in developing models and conducting impulse response
analyses. This investigation employs several widely utilized lag-order selection criteria, including the Akaike
Information Criterion AIC = ln |Σu(p)|+ 2(pm2)

T and Hannan-Quinn Criterion HQ = ln |Σu(p)|+ 2 ln lnT (pm2)
T ,

the Final Prediction Error FPE =
[
T+sp+1
T−sp−1

]k
|Σp| , the Bayesian Information Criterion BIC = ln |Σu(p)|+

lnT (pm2)
T Here, Σp represents the covariance matrices, s is the number of variables, T is the number of observations,

and p is the lag order. [15]

1.8. Forecasting

Forecasts can be employed if it is found that the fitted model in Section 1.2 is adequate. Forecasts are made using
the following equation:

Zt = c+Φ1Zt−1 +Φ2Zt−2 + · · ·+ΦpZt−p + at, t = 0,±1,±2, . . . (11)

The predictions generated in this way have the minimum mean square error given the forecast origin t. [4]

2. Application

The methods outlined are expanded upon in this section. To illustrate the multivariate time series analysis method,
we examine the USD/IQD exchange rate, symbolized as USD, in conjunction with other correlated variables, such
as gold price (XAU/USD), copper price (HG), and Brent oil (WTI (F) LCOc1), symbolized as Oil. The dataset
monthly time series from 2010 to to the end of April 2023 acquired from https://www.investing.com.
These four variables’ time series data are separated into two sets: 90% of the data are in the training set, while
the remaining 10% are in the testing set. A range of graphical depictions of these variables are shown in Figure 1,
which also offers preliminary insights into their trends and patterns.
The thorough analysis and modeling of these multivariate time series, with an emphasis on USD, gold, copper, and
oil, is the main scientific challenge this study attempts to address. The primary objectives are to uncover complex
correlations, identify important patterns in the data, and develop a robust multivariate model capable of producing
accurate forecasts and detailed analyses.

2.1. Test of Stationarity

Testing the original time series data’s stationarity is the first stage in the analytical process, using the Augmented
Dickey-Fuller test in R (ADF.test). According to the findings, the variables (USD, Gold, Copper, and Oil) are not
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Figure 1. Actual Data for Four Time Series (USD, Gold, Copper, and Oil).

stationary in their initial state. To ascertain whether univariate time series datasets are stationary, the Unit Root test
is employed. This test is based on the idea that a trend-lined series will show a significant p-value and a unit root.
Null Hypothesis (H0) : The data is non-stationary and has a unit root. Table 1 displays the comprehensive findings
of the stationarity tests. The autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for
the time series are also shown in figure 2

Table 1. Data Stationarity Testing

Datasets Augmented Dickey-Fuller Phillips-Perron Unit Root Test KPSS Level
Test Statistic p-value Test Statistic p-value Test Statistic p-value

USD -2.1159 0.528 -9.3088 0.5809 1.8192 0.01
Gold -1.3876 0.8318 -5.5958 0.7938 1.1021 0.01
Copper -1.7329 0.6877 -7.4402 0.6881 0.56493 0.02704
Oil -1.9186 0.6103 -8.3144 0.6379 1.0331 0.01

Based on the p-value in table 1 , we do not reject the null hypothesis (p-value > 0.05) for the Augmented
Dickey–Fuller (ADF) test and Phillips-Perron Unit Root Test. Similarly, we do not reject the null hypothesis for
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, because the p-value< 0.05 indicates that the series does have
a unit root and is thus not stationary.
We take first-order differencing to the non-stationary series. As a result, all four differenced series exhibit
stationarity. As a result, each stationary series that follows an I(1) process has been created from the time series.
Table 2 displays the comprehensive findings of the stationarity tests.

Table 2. Data Stationarity Testing After First-Order Differencing

Datasets Augmented Dickey-Fuller Phillips-Perron Unit Root Test KPSS Level
Test Statistic p-value Test Statistic p-value Test Statistic p-value

USD -4.6114 0.01 -152.92 0.01 0.077163 0.1
Gold -4.4426 0.01 -176.87 0.01 0.13449 0.1
Copper -5.0993 0.01 -178.09 0.01 0.08711 0.1
Oil -5.0691 0.01 -120.48 0.01 0.086416 0.1
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Figure 2. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for the ((USD, Gold, Copper,
and Oil).

Based on the p-value in table 2, we reject the null hypothesis (p-value < 0.05) for the Augmented Dickey–Fuller
(ADF) test and Phillips-Perron Unit Root Test. Similarly, we reject the null hypothesis for the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test because p-value > 0.05, indicating that the series does not have a unit root
and is thus stationary.

2.2. Granger Causality Test

In the event that variable x influences variable Z, the former ought to contribute to enhancing the latter’s
projections. Let us assume that Ωt is the information set that encompasses all pertinent data in the universe up
to and including period t. Define Zt(h | Ωt) to be the best (least MSE) h-step predictor of process Zt at origin t,
given the data in Ωt. Conduct Granger causality tests to identify causal relationships between variables [16].

Zt = β0 +

p1∑
i=1

β
(z)
i Zt−i +

p2∑
i=p0

β
(x)
i xt−i + ϵi (12)

Where: Zt and xt are the time series variables, pi is the number of lags, ϵi are error terms, and β0, β
(Z)
i , β

(x)
i

are parameters of the model. The hypotheses are: H0 : β
(x)
p0 = . . . = β

(x)
p2 = 0 vs H1 : β

(x)
p0 ̸= . . . ̸= β

(x)
p2 ̸=

0 where p0 ≤ p ≤ p2
Accepting the null hypothesis indicates that x is not a Granger cause of Z. The interdependent structure of the

underlying systems of multivariate time series was examined using Granger causality. The Granger causality test
should be conducted to determine which variables should be included in the VAR model. This test is a key tool
in multivariate analysis, used to assess the relationships between the model variables. The results are presented in
Table 3 using data after taking the first difference. In R(causality) We obtain the following outcomes:

According to Table 3, since the p-value for oil is greater than 0.05, it is not a Granger cause of the other variables
(USD, gold, and copper). However, as their p-values are less than 0.05, the other variables (USD, gold, and copper)
are Granger causes of each other. Therefore, for further analysis, we select the three variables (USD, gold, and
copper). To test stability, the modulus of each characteristic root must be less than one. The log-likelihood is
-1590.619, and the roots are 0.1609, 0.1609, and 0.1379.

We evaluate the accuracy of four models, as presented in Table 4, and select the best model to focus on in our
study.
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Table 3. Granger causality test results.

Z\ X USD Gold Copper Oil
USD NA 0.4475 0.0214 0.1869
Gold 0.02819 NA 0.7031 0.8309

Copper 0.0111 0.0274 NA 0.3777
Oil 0.4701 0.7016 0.8194 NA

Table 4. Comparing the performance of models for (USD, Gold, Copper, and Oil).

Models Series MAE RMSE MAPE
Model 1 USD 10.1455 11.20563 0.7751695

Copper 0.4286295 0.528262 10.07754
Model 2 USD 7.400091 8.743237 0.5654111

Gold 190.0743 271.8869 7.926284
Model 3 USD 3.774073 4.338757 0.2883554

Gold 190.8006 273.1234 7.951968
Copper 0.2470051 0.3250794 5.82204

Model 4 USD 3.769328 4.340726 0.287995
Gold 190.7362 273.0184 7.9497

Copper 0.2464144 0.3224625 5.816971
Oil 4.874683 5.759674 5.963201

Model 4 is the best option for our VAR analysis based on the variables listed in Table 4. However, when looking
at Table 3, Model 3, which has three variables (USD, copper, and gold), turns out to be the best option. This
VAR(1) model balances significant causal relationships with robust accuracy metrics, making it a comprehensive
and effective option for our thesis on multivariate time series analysis.

2.3. Co-integration Test

It is the I(0) process that is particularly the stationary series. A series is considered co-integrated if it is composed
of two or more non-stationary, I(d) processes, and a stationary linear combination of these series. Multivariate
variables xt = (x1t, . . . , xkt) are said to be co-integrated if they satisfy the following conditions: xit is an I(d)
process, ∀i = 1, . . . , k; and ∃β = (β1, . . . , βk) ̸= 0, such that β1x1t + . . .+ βkxkt is stationary [17].

There are two main tests for co-integration:
a. Engle-Granger two-step method: Time series are considered integrated if they have the same order of

integration and can be combined linearly to form a stationary time series (integrated of order one). Co-integration
relationship estimation is done using the two-step Engle and Granger test, which is suitable for a single co-
integrating relation when the second series xt regresses the first series Zt. Stability is checked on the resultant
error series Zt following the first step [18].

Zt = µ+ bxt + xt (13)

b. Johansen test: When looking for a relationship between the dependent and explanatory variables over an
extended period of time, Johansen co-integration is utilized. As a crucial tool for estimating models involving time
series data, the Johansen technique provides estimates of all co-integrating relationships that could be present in a
vector of stationary or non-stationary variables, and it can be applied to analyze multiple co-integrating relations
[19].

Xt = Π1Xt−1 + . . .+ΠkXt−k + ϵt, t = 1, . . . , T (14)
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∆Xt =

k−1∑
i=1

Γi∆Xt−i +ΠXt−1 + ϵt, t = 1, . . . , T (15)

Where: Γi = −I +Π1 + . . .+Πi with i = 1, . . . , k − 1, Π = −(I −Π1 − . . .−Πk) , λtrace =
−T

∑p
i=r+1 ln(1− λ̂i), λmax = −T ln(1− λ̂r+1)

The long-term link between the variables in the nexus is ascertained by applying the co-integration test
(Johansen’s), and the hypotheses are H0 : no co-integration among variables vs H1 : co-integration among
variables. The results in Table 5 represent Johansen’s co-integration result in two methods: the trace and maximum
eigenvalue for three series’ time series after taking the first difference (USD, Gold, Copper). In R (ca.jo).

Table 5. Results of Johansen’s Co-integration test for three series’ time series after taking first difference (USD, Gold,
Copper)

Unrestricted Co-integration Rank Test (Trace)
Co-integration Rank (r) Eigenvalue Trace Stat. Critical Value (5%)

r = 0∗ 0.4476093 200.54 42.44
r ≤ 1∗ 0.3541572 107.36 25.32
r ≤ 2∗ 0.2185695 38.72 12.25

Unrestricted Co-integration Rank Test (Maximum Eigenvalue)
Co-integration Rank (r) Eigenvalue Max Eigenvalue Stat. Critical Value (5%)

r = 0∗ 0.4476093 93.18 25.54
r ≤ 1∗ 0.3541572 68.64 18.96
r ≤ 2∗ 0.2185695 38.72 12.25

We reject the null hypotheses in both Rank Test (Trace) and Rank Test (Maximum Eigenvalue), indicating there
are co-integration relations.

2.4. Cross-Correlation Matrices

A statistical technique called cross-correlation may be used to assess how similar time series variables are to one
another and establish whether one series is ahead of or behind another. The degree of the association between the
time series reflects how strongly they are related.[20] For every sample CCM, a basic matrix Sϕ[Sϕ,ij ] is created in
this way:

Sϕ,ij =


(+) if ϕij ≥ 2√

T

(−) if ϕij ≤ 2√
T

(.) if ϕij < 2√
T

(16)

where ρ̂ϕ is a consistent estimate of ρ̂ϕ, and T is the total number. [21]
Table 6 displays the simplified CCM for the month of (USD, Gold, Copper). It is evident that significant cross-

correlations at the estimated 5% stage are mostly visible at lag 1.

2.5. Model Selection

AIC, BIC, and HQC at various lags are shown in Table 7, which represents the data. A three-selection process
reaches the minimal values (the bolded values). VAR(1) is, therefore, the model of choice in Table 7: Empirical
Lag Selection.

Table 7 displays the AIC, SC, and HQC at various delays for the three series’ time series after taking the first
difference (USD, Gold, Copper).

Stat., Optim. Inf. Comput. Vol. 13, May 2025



D. H. HANA AND S. A. OTHMAN 1907

Table 6. Sample Cross-Correlation Matrices of three series time series after taking first difference (USD, Gold, Copper)
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. . .
. . .

 . + .
. . .
. . .

 . . .
. . .
. . .


Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12. . .

. . .

. . .

 . . .
. . .
. . .

 . . .
. . .
. . .

 . . .
. . .
. + +

 . . .
. . .
. . .

 . . .
. . .
. . .


Table 7. Empirical Lag Selection (a) for the data after first difference.

Lag (n) AIC(n) HQ(n) SC(n) FPE(n)
1 11.82958 11.92787 12.07151 137258.26521
2 11.83924 12.01125 12.26262 138614.52585
3 11.89480 12.14053 12.49962 146591.42179
4 11.94435 12.26379 12.73061 154149.71944
5 11.90397 12.29714 12.87169 148221.92715
6 11.97747 12.44436 13.12663 159797.33736
7 12.04680 12.58740 13.37741 171669.05708
8 12.09451 12.70883 13.60656 180613.55157
9 12.18556 12.87361 13.87906 198615.34375
10 12.19611 12.95787 14.07105 201713.18596

2.6. Model Presentation

The VAR(1) model with significant parameters is presented in matrix form using equation 2 in the technique, as
indicated in table 7 that reflects the difference data the best lag number, based on the criteria, is p = 1. This can
be expressed explicitly as follows for the three variables (USD,Gold,Copper) after take first difference as (Z1t,Z2t,
Z3t respectively.Z1t

Z2t

Z3t

 =

 1.0000302
6.29920671
0.0066103439

+

 0.01158580 −0.05326705 28.6601909
−0.04091837 −0.14349430 10.50426879
0.0007577117 −0.0005912646 −0.0297217793

Z(1t−1)

Z(2t−1)

Z(3t−1)

+

a1ta2t
a3t


From this, we can derive the following equations:

Z1t = 1.0000302 + 0.01158580Z1t−1 − 0.05326705Z2t−1 + 28.6601909Z3t−1 + a1t (17)
Z2t = 6.29920671− 0.04091837Z1t−1 − 0.14349430Z2t−1 + 10.50426879Z3t−1 + a2t (18)
Z3t = 0.0066103439 + 0.0007577117Z1t−1 − 0.0005912646Z2t−1 − 0.0297217793Z3t−1 + a3t (19)

Lagged copper prices play a substantial effect in determining the USD exchange rate, as evidenced by the
big coefficient (28.6601909 Z3−1). This relationship emphasizes the need of including commodity prices in
economic models, as well as the potential benefits of using copper price swings to predict currency fluctuations.
By completely comprehending the ramifications and validity of this result, stakeholders can make more informed
decisions and negotiate the intricacies of the global economic scene.

2.7. Diagnostic Testing

We must confirm that the VAR(1) model fit is accurate. To this purpose, the diagnostic methods listed below are
employed.
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a. Residual Autocorrelation Function: The hypothesis is: H0 : ρuv,i = 0 vs H1 : ρuv,i ̸= 0 We reject H0 if
|ruv,i| > 2√

N

b. Test for Autocorrelation for Serial Correlation (PT): ACF and PACF of the discrepancies are displayed
on the graphs, one for each equation, together with a realistic distribution chart and a discrepancy plot. The plot
method offers more explanations for altering its layout.

c. The Covariance and Correlation Matrix of Residuals:

Cov(residual) =

Z1t

Z2t

Z3t

656.13739 101.328 0.02021
101.32788 4772.346 4.69206
0.02021 4.692 0.04317


Corr(residual) =

Z1t

Z2t

Z3t

 1 0.057262 0.003798
0.057262 1 0.326906
0.003798 0.2690 1


The residual autocorrelation function for the three series’ [22] time series after taking the first difference (Z1t

,Z2t , Z3t) is shown below in Figure 3, the Top figure show considerable differences between fitted and actual
values, there is no discernible partial autocorrelation at lower delays. And the middle figure suggests independent
residuals and model adequacy due to its zero residuals and low autocorrelation. And the lowest figure shows
substantial swings in residuals, with minimal autocorrelation.

2.8. Autoregressive Conditional Heteroskedasticity Test (ARCH)

When it comes to studying and forecasting the volatility of macroeconomic and financial variables, scholars and
practitioners have focused especially on the ARCH models. This test is used to determine the heteroscedasticity of
the VAR(1) model [23].

2.9. Jarque-Bera Test

This test, which was introduced by Jarque and Bera in 1987, determines whether or not the residuals are normally
distributed. The test statistics are as follows: [24]

JB =
Ŝ2(r)

6/T
+

(K̂(r)− 3)2

24/T
(20)

Here, T represents the sample size, skewness Ŝ(r) is defined as Ŝ(r) = 1
(T−1)σ̂3

r

∑T
t=1(rt − r̄)3 and kurtosis

K̂(r) is given by K̂(r) = 1
(T−1)σ̂4

r

∑T
t=1(rt − r̄)4 These are calculated from sample data as Ŝ2(r), K̂(r), and

{r1, . . . , rT } is a variable containing T observations, in R(Serial.test, ARCH.test, Normality.test)

Table 8. Diagnostic tests of VAR (1) for three series’ time series (Z1t , Z2t , Z3t ) Null Hypothesis test Statistic p-value

Null Hypothesis Test Statistic p-value
No autocorrelation PT 120.4 0.8111
No heteroscedasticity ARCH 282.74 1.53e-06
Not normality JB 32848 2.2e-16

Kurtosis 32111 2.2e-16
Skewness 736.73 2.2e-16

The null hypothesis of no autocorrelation is accepted because 0.8111 > 0.05, while the null hypothesis of no
heteroscedasticity is rejected because 1.53e− 06 < 0.05. The null hypothesis of not normality (for JB, Kurtosis,
Skewness) is rejected because 2.2e− 16 < 0.05. The rejection of the normalcy assumption, as seen by substantial
Jarque-Bera, kurtosis, and skewness test results is a prevalent problem with financial data. Non-normal residuals
can affect the effectiveness of parameter estimates and inference processes in Vector Autoregression (VAR) models.

Stat., Optim. Inf. Comput. Vol. 13, May 2025



D. H. HANA AND S. A. OTHMAN 1909

−
1

0
0

0
1

0
0

2
0

0

Diagram of fit and residuals for USD

0 50 100 150
−

1
0

0
0

1
0

0
2

0
0

0 2 4 6 8 10 12

−
0

.2
0

.6

ACF Residuals

2 4 6 8 10 12

−
0

.1
5

0
.1

0

PACF Residuals

−
2

0
0

−
1

0
0

0
1

0
0

2
0

0

Diagram of fit and residuals for Gold

0 50 100 150

−
1

0
0

0
1

0
0

2
0

0

0 2 4 6 8 10 12

−
0

.2
0

.6

ACF Residuals

2 4 6 8 10 12

−
0

.1
5

0
.1

0

PACF Residuals

−
1

.0
−

0
.5

0
.0

0
.5

Diagram of fit and residuals for Copper

0 50 100 150

−
1

.0
−

0
.5

0
.0

0
.5

0 2 4 6 8 10 12

−
0

.2
0

.6

ACF Residuals

2 4 6 8 10 12

−
0

.1
5

0
.1

0

PACF Residuals

Figure 3. Residual autocorrelation function for three series’ time series after taking the first difference (Z1t ,Z2t , Z3t ).
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2.10. Structural Stability (SVC)

The stability test evaluates the presence of structural breakdowns, which, if neglected, can result in erroneous
estimates. To overcome this issue, we use the CUSUM (Cumulative total of Recursive Residuals) test, which
visually examines the cumulative total of residuals over time. When data points exceed predetermined criteria,
structural alterations are detected. Figure 4 shows the outcomes for the three time series (USD, Gold, and Copper)
following the initial difference. The results confirm the system’s stability, since the cumulative sum remains inside
the red border lines, indicating no substantial structural fractures [25].
In addition to the VAR model, the SVAR and SVECM techniques provide useful insights. SVAR improves analysis
by including structural constraints and allows for simultaneous interactions, which can better capture immediate
economic shocks and increase model interpretability if structural cracks are discovered. In contrast, SVECM is
advantageous when variables have long-term equilibrium relationships, as it allows for a better differentiation
between short-term fluctuations and long-run adjustments if cointegration exists.
The stability test findings indicate that the existing VAR model produces accurate estimates with no structural
fractures. However, additional study with SVAR could improve the model by integrating economic constraints,
whereas SVECM could test the robustness of long-run correlations. Exploring these models could lead to a better
understanding of the dynamic interactions between financial factors, hence improving the analysis’ predictive
potential. In R (stability).

OLS−CUSUM of equation USD

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

1
.0

OLS−CUSUM of equation Gold
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−
1
.0

1
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OLS−CUSUM of equation Copper
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−
1
.0

1
.0

Figure 4. CUSUM Test for (Z1t , Z2t , Z3t)

This figure of cumulative sum control (CUSUM) shows that the system is stable because there are no points that
go beyond the two red lines.

2.11. Forecast Error Variance Decomposition (FEVD)

An Estimated Error Variance Decomposition uses the VAR model to analyze how variables affect each other,
and FEVD is a method used in econometrics and other multivariate time series analytic applications to aid in the
understanding of a fitted VAR model [26]. The moving average formulation of the VAR model serves as the
mathematical basis for the FEVD. The moving average is given by:

Zt = µ+

∞∑
i=0

θiωt−i (21)
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With Σω = Ik, the error of the optimal h-step forecast is:

Zt+h − Zt(h) =

h−1∑
i=0

ϕiut+h−i =

h−1∑
i=0

ϕiPP
−1ut+h−i =

h−1∑
i=0

ϕiωt+h−i (22)

Using θmn,i to denote the mn-th element of θi, as previously, the h-step forecast error of the j-th component of
Zt is:

Zj,t+h − Zj,t(h) =

h−1∑
i=0

(
θj1,iω1,t+h−i + · · ·+ θjk,iωk,t+h−i

)
(23)

Zj,t+h − Zj,t(h) =

h−1∑
i=0

(
θjk,0ωk,t+h−i + · · ·+ θjk,iωk,t+h−i

)
(24)

Consequently, all of the innovations ω1,t, . . . , ωk,t may be included in the forecast error of the j-th component.
It is possible for some of the θmn,i to be zero, of course. Since the unit variances and lack of correlation between
the ωk,t, the MSE of Zj,t(h) is:

E
(
(Zj,t+h − Zj,t(h))

2
)
=

K∑
k=1

(
θ2jk,0 + · · ·+ θ2jk,h−1

)
(25)

θ2jk,0 + · · ·+ θ2jk,h−1 =

h−1∑
i=0

(
e′jθiek

)2
(26)
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Figure 5. Forecast Error Variance Decomposition (FEVD) from VAR(1).
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This is occasionally understood to be the part that innovations in variable k contribute to the MSE or prediction
error variance of the variable j’s h-step forecast. The k-th column of Ik is represented here by the letter ek.
Partitioning via:

MSE[Zj,t(h)] =

h−1∑
i=0

K∑
k=1

θ2jk,i (27)

The FEVD is:

ωjk,h =

∑h−1
i=0

(
e′jθiek

)2
MSE[Zj,t(h)]

(28)

This represents the percentage of variable j’s h-step forecast error variation that may be explained by ωk,t

innovations [4]. FEVD is a method used in econometrics to aid in the understanding of a fitted vector autoregression
(VAR) model, as shown in Figure 5, which depicts three series’ time series after taking the first difference (USD,
Gold, Copper).

The primary plot highlights the FEVD of the USD set in figure 5, illustrating how shocks in copper and gold
can affect USD projection values. The middle plot reveals how gold price changes are affected by USD and copper
shocks, while the bottom plot represents the FEVD for the Copper diff training set.

2.12. Impulse Response Function (IRF)

With an emphasis on adjusting endogenous variables and identifying dynamic correlations among
contemporaneous values, the impulse response test examines how an exogenous shock affects a process over time
[27]. The VAR can be represented as an infinite-order moving average:

Zt = µ+ εt +Ψ1εt−1 +Ψ2εt−2 + · · · (29)

where Ψs are the matrices of (n× n) moving averages. The (i, j)-th element of the matrix Ψs, denoted as Ψs,ij ,
can be interpreted as the dynamic multiplier or impulse response:

∂Zi,t+s

∂εj,t
=

∂Zi,t

∂εj,t−s
= ψs

ij , i, j = 1, . . . , n (30)

This interpretation is only valid when var(εt) = Σ is a diagonal matrix, indicating that the elements of εt are
uncorrelated.
The VAR equations can be expressed as:

Z1t = c1 + γ′11Zt−1 + · · ·+ γ′1pZt−p + η1t (31)

Z2t = c2 + β21Z1t + γ′21Zt−1 + · · ·+ γ′2pZt−p + η2t (32)
...

Znt = cn + βn1Z1t + · · ·+ βn,n−1Zn−1,t + γ′n1Zt−1 + · · ·+ γ′npZt−p + ηnt (33)

The triangular structural VAR(p) model is represented as:

BZt = c+ Γ1Zt−1 + · · ·+ ΓpZt−p + ηt (34)

where:

B =


1 0 · · · 0
β21 1 · · · 0

...
...

. . .
...

βn1 βn2 · · · 1


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In practice, the triangular VAR(p) orthogonal IRF can be calculated from the non-triangular VAR(p) parameters.
The residual covariance matrix Σ is decomposed as Σ = ADA′, where A is a lower triangular matrix that can be
inverted, and D is a diagonal matrix with positive diagonal elements. The structural errors are defined as:

ηt = A−1εt (35)

These structural errors are orthogonal by construction since var(ηt) = A−1ΣA−1′ = A−1DA′A−1′ = D.
Finally, the process can be expressed as:

Zt = µ+AA−1εt +Ψ1AA
−1εt−1 +Ψ2AA

−1εt−2 + · · · (36)
= µ+Θ0ηt +Θ1ηt−1 +Θ2ηt−2 + · · · (37)

where Θj = ΨjA. The impulse responses to the orthogonal shocks ηj,t are given by:

∂Zi,t+s

∂ηj,t
=

∂Zi,t

∂ηj,t−s
= θsij , i, j = 1, . . . , n (38)

Here, θsij represents the (i, j)-th element of Θs. The orthogonal impulse response function (IRF) of Zi with
respect to ηj is shown by plotting θsij against s. With n variables, n2 alternative impulse response functions can be
obtained. The impulse response test explores how an exogenous shock influences a process over time.
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Figure 6. Impulse response function (IRF) form VAR(1).

In figure 6, which depicts the time series for three variables after taking their first differences (USD, Gold,
Copper). In IRF from USD show that Gold initially experiences a sudden drop in response to USD shock, but this
impact fades over several months before stabilizing around zero. Copper appears to not respond to the shock, and
in IRF from Gold show that Gold shocks USD initially negatively but eventually becomes positive and zero after a
few months. Copper responds negligibly or almost nonexistent to Gold shocks, with confidence intervals close to
zero, and the IRF from Copper show in the first response to a shock, either positive or negative, is significant and
rapidly decreases over several months.

2.13. Validation

When the predictions of Model 3 and Model 4 are compared, it is clear that the introduction of the oil variable in
Model 4, despite exhibiting white noise (p-value = 0.4674), improves prediction accuracy. This shows that, despite
the presence of white noise, the oil variable adds value to the model’s performance by offering extra insights
for prediction. Oil prices are widely recognized as a critical economic indicator influencing currency rates and
commodity prices; therefore, their inclusion offers a larger and more thorough framework for anticipating USD
developments.
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Figure 7. The comparison of model 1-4’s predictions.

3. Conclusion

The Granger causality test was performed to determine the variables in the models. Despite the high p-value
=0.4674, the inclusion of the oil variable is justified by both economic intuition and statistical analysis. Oil prices
are an important economic indicator that influence exchange rates and commodity prices, offering a broader context
for USD forecasts. Residual analysis further confirms its role in minimizing model bias and improving residual
stability.
When comparing Model 3 and Model 4 predictions, the addition of white noise enhances accuracy, resulting in
the lowest error metrics and a tight alignment with actual values. While Model 4 is the most accurate for USD
predictions, Model 3 captures crucial causal links and has a broader use for predicting USD, Gold, and Copper.
These findings highlight the relevance of including relevant economic variables to improve forecast accuracy and
dependability. The findings emphasize the need of including varied factors, such as oil prices, into economic
models in order to improve prediction accuracy and resilience. Policymakers, investors, and businesses can use
these insights to create efficient hedging strategies, make informed investment decisions, and develop policies that
encourage economic stability. Understanding the intricate effects of many factors on currency movements allows
stakeholders to traverse the global economic landscape more successfully.
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