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Abstract The Convolutional Neural Network (CNN) stands out as the most effective deep learning model for image
classification due to its utilization of convolutional kernels for feature extraction. The initialization methods of these kernels
significantly impact a CNN performance, with proper initialization leading to faster convergence and improved overall
performance, while poor initialization can hinder the learning process. Our paper introduces a novel algorithm called BO-
IKM, which leverages Bayesian Optimization to determine the optimal kernel initialization methods for each convolutional
layer in a CNN. This systematic approach enhances the models accuracy and precision by identifying the best initializers. We
validated the effectiveness of BO-IKM using the Plant Pathology 2020 and Plant Disease Recognition datasets, a challenging
image classification problem. The results were compelling, showing significant improvements in accuracy and precision for
CNN models optimized with BO-IKM compared to those using standard initialization methods. These findings underscore
the potential of BO-IKM to enhance CNN performance across various image classification tasks.
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1. Introduction

Agriculture is crucial in the global economy, providing food and raw materials for various industries. However,
one of the significant challenges faced by the agricultural sector is the accurate and timely identification of plant
diseases. Early detection and precise classification of plant diseases are vital to prevent crop loss and ensure food
security [1]. Traditional methods of plant disease detection, which often rely on expert visual inspection, can
be time-consuming, labor-intensive, and prone to human error. In recent years, deep learning algorithms have
emerged as powerful tools for enhancing precision in plant disease classification. These algorithms can analyze
large datasets, learn intricate patterns, and make accurate predictions [2]. Among the various deep learning models,
Convolutional Neural Networks stand out due to their exceptional performance in image classification tasks.
CNNs have been successfully applied to various fields, including medical imaging, autonomous driving, and facial
recognition. In agriculture, CNNs have shown promise in detecting and classifying plant diseases from images of
leaves, stems, and fruits[3, 4, 5].
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Figure 1. CNN for plant disease classification

CNNs are particularly well-suited for plant disease classification because of their ability to automatically learn
and extract features from raw image data. Unlike traditional machine learning methods that require manual feature
extraction, CNNs use convolutional layers to identify patterns such as edges, textures and shapes directly from
images. This capability enables CNNs to achieve high accuracy in distinguishing between healthy and diseased
plants, as well as among different types of diseases [6]. For example, in a study involving the classification of apple
leaf diseases, a CNN model achieved remarkable accuracy by learning from a large dataset of apple leaf images.
Similarly, CNNs have been used to detect diseases in crops such as wheat, rice, and tomatoes with impressive
results. These models not only assist farmers in identifying diseases but also provide valuable insights for taking
timely and appropriate remedial actions [7, 8].
Despite their advantages, CNNs come with their own set of challenges. One of the primary issues is the
complexity of the model. As CNNs grow deeper and more intricate to capture finer details, they require significant
computational resources and time for training. This complexity can lead to overfitting, where the model performs
exceptionally well on the training data but fails to generalize to unseen data [9, 10, 11]. Overfitting is a critical
problem in deep learning, as it undermines the models ability to make accurate predictions on new, real-world data.
A crucial factor influencing the performance of CNNs is the initialization of the kernels in the convolutional
layers. The choice of initialization methods can significantly impact the models convergence speed and overall
accuracy. Poor initialization can cause the model to converge slowly or get stuck in suboptimal solutions, while
good initialization can lead to faster convergence and better performance [12, 13, 14].
To address the issue of kernel initialization, our proposed algorithm, BO-IKM, leverages Bayesian Optimization
to identify the optimal initialization methods for each convolutional layer in the CNN. Bayesian Optimization is a
powerful technique for optimizing hyperparameters in machine learning models. By systematically exploring the
search space of possible initializers, BO-IKM aims to find the best configuration that enhances the models accuracy
and precision while reducing the risk of overfitting.
The BO-IKM algorithm was applied to the Plant Pathology 2020 and Plant Disease Recognition datasets, which
present a challenging image classification problem involving various plant diseases. The results obtained using BO-
IKM were compelling, demonstrating significant improvements in both accuracy and precision compared to CNN
models that used standard initialization methods. Specifically, BO-IKM optimized the initialization methods for
each convolutional layer, leading to faster convergence and more robust learning. The proposed algorithm not only
improved the overall performance of the CNN models but also highlighted the importance of carefully selecting
kernel initialization methods to enhance model efficiency. By reducing the complexity and mitigating overfitting,
BO-IKM provides a valuable tool for developing high-performance CNN models in agricultural applications.
In the end, the BO-IKM algorithm represents a significant advance in the field of deep learning for plant disease
classification. By leveraging Bayesian optimization to optimize kernel initialization methods, BO-IKM improves
the accuracy and precision of CNN models, providing a robust solution to the challenges encountered in agricultural
disease detection. The promising results obtained on the Plant Pathology 2020 and Plant Disease Recognition
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datasets underline the potential of this approach to improve crop health monitoring and contribute to sustainable
agricultural practices.

2. Convolutional Neural Networks

In Convolutional Neural Networks, different types of layers play distinct roles in processing and extracting features
from input data, typically images [15, 16, 17]. Here are detailed definitions of the convolutional layer, pooling layer,
and fully connected layer:

1. Convolutional Layer
The convolutional layer is the core building block of a CNN. It consists of a set of learnable filters that slide
over the input data to produce feature maps. Each filter detects specific features such as edges, textures, or
patterns. The operation is defined by a mathematical convolution, which involves:

Zi
k = σ

(
Ni−1∑
l=1

Ki
l,kX

i−1
l

)
, (1)

where denotes the convolution product, σ is the activation function, and K is the trained kernel.
2. Pooling Layer

The pooling layer reduces the spatial dimensions of the input, thereby decreasing the number of parameters
and computations in the network. This layer helps in making the detection of features invariant to scale and
orientation. The two common types of pooling are:

- Max Pooling:
Yi,j = max{Xm,n,m ∈ [i.s, i.s+ p− 1], n ∈ [j.s, j.s+ p− 1]} (2)

- Average Pooling:

Yi,j =
1

P 2

i.s+p−1∑
m=i.s

j.s+p−1∑
n=j.s

Xm,n (3)

3. Fully Connected Layer
The fully connected (FC) layer is typically used in the final stages of a CNN to produce the final output.
Each neuron in an FC layer is connected to every neuron in the previous layer, just like in a traditional neural
network.

3. Bayesian Optimization

Bayesian Optimization (BO) is a powerful and efficient strategy for optimizing black box functions that are
expensive to evaluate, particularly gaining attention in fields like machine learning for hyperparameter tuning.
It utilizes a probabilistic model, typically a Gaussian Process (GP), to model the objective function, defined by
its mean function µ(x) and covariance function k(x, x

′
). The key steps include fitting a GP model to observed

data, optimizing an acquisition function, and iteratively evaluating and updating the model. BOs main advantages
are its sample efficiency, flexibility in handling various types of objective functions, uncertainty quantification,
and its ability to find global optima. However, it faces challenges in scalability with high dimensional search
spaces and computational complexity. Despite these limitations, BO is extensively applied in hyperparameter
tuning, scientific experimentation, robotics, and Automated Machine Learning. These applications highlight BOs
capability to significantly enhance model performance and optimize complex, expensive to evaluate functions,
making it a crucial tool for researchers and practitioners [18, 19, 20].
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Figure 2. CNN Architecture

Figure 3. Bayesian Optimization for Initializer Kernels

4. Proposed Algorithm

The proposed algorithm, BO-IKM (Bayesian Optimization for Initializer Kernels Methods), aims to improve
the performance of Convolutional Neural Network models by optimizing the initialization methods for the
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Algorithm 1 Bayesian Optimization for CNN Tuning

1: Step 1: Define the Search Space
2: Define the set of hyperparameters H and their possible values.
3: Step 2: Construct the CNN Model
4: Construct the CNN model using hyperparameters from the search space H.
5: Step 3: Define the Objective Function
6: Given a set of hyperparameters H ∈ H, define the objective function:

Objective(H) = −Validation Accuracy (4)

7: Step 4: Perform Bayesian Optimization
8: Step 4.1: Initialize Trials
9: Initialize trials: T ← Trials()

10: Set the maximum number of evaluations N
11: Step 4.2: Gaussian Process Modeling
12: Use a Gaussian Process to model the objective function. The GP is defined by its mean function µ(x) and

covariance function k(x, x′).

• Mean Function µ(x): Represents the expected value of the objective function at point x.
• Covariance Function k(x, x′): Measures the similarity between points x and x′, providing the

correlation between the objective function values at these points.

f(x) ∼ GP(µ(x), k(x, x′)) (5)

13: Step 4.3: Optimize the Acquisition Function
14: Use the GP model to define an acquisition function (e.g., Expected Improvement, Probability of Improvement,

or Upper Confidence Bound) to determine the next point to evaluate.
15: Optimize the acquisition function to find the next set of hyperparameters H to evaluate:

Hnext = arg max
H∈H

Acquisition(H|T ) (6)

16: Step 4.4: Update the GP Model
17: Evaluate the objective function at Hnext, add the result to trials T , and update the GP model.
18: Step 4.5: Iterate
19: Repeat steps 4.2 to 4.4 until the maximum number of evaluations N is reached.
20: Step 4.6: Find the Best Set of Hyperparameters
21: Find the best set of hyperparameters:

H∗ = arg min
H∈H

Objective(H) (7)

22: Step 5: Train the Final Model with the Best Hyperparameters
23: Construct and train the final model using H∗

24: Compile the model
25: Train the model on the entire training set
26: Evaluate the model on the test set

convolutional kernels. Initializing the kernels properly can lead to faster convergence during training and better
overall model performance [21, 22, 23, 24, 25, 26]. The BO-IKM algorithm systematically searches for the best
initialization methods using Bayesian Optimization, an efficient and effective approach for hyperparameter tuning.
The BO-IKM algorithm 2 enhances Convolutional Neural Network performance by systematically optimizing
the initialization methods of convolutional kernels. This approach is pivotal as the proper initialization of kernels
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significantly influences CNN convergence speed and overall model effectiveness. BO-IKM leverages Bayesian
Optimization, a methodical search technique that efficiently explores the space of initialization strategies, including
random, Glorot [7], He [27], and orthogonal initializers [28]. By minimizing the validation accuracy through
Bayesian Optimization, BO-IKM identifies the optimal set of initializers for each convolutional layer. This
systematic tuning improves model accuracy and precision and ensures computational efficiency by reducing the
number of evaluations needed. Applied to challenging datasets like Plant Pathology 2020 and Plant Disease
Recognition, BO-IKM has demonstrated substantial performance gains over traditional initialization methods,
underscoring its potential to advance CNN capabilities in image classification tasks.

Algorithm 2 BO-IKM: Bayesian Optimization for Initializer Kernels Methods

1: Step 1: Define the Search Space
2: Define the set of initializers:

I = {random uniform, random normal, glorot uniform, glorot normal,
he uniform, he normal, orthogonal}

3: Define the search space for the initializers:

S = {initializeri ∈ I | i = 1, 2, . . . , 6}

4: Step 2: Construct the CNN Model
5: Construct the CNN model using initializers from the search space S.
6: Step 3: Define the Objective Function
7: Given a set of initializers I ∈ S, define the objective function:

Objective(I) = −Validation Accuracy (8)

8: Step 4: Perform Bayesian Optimization
9: Initialize trials: T ← Trials()

10: Set the maximum number of evaluations: N = 50
11: Find the best set of initializers:

I∗ = argmin
I∈S

Objective(I) (9)

12: Step 5: Train the Final Model with the Best Initializers
13: Construct and train the final model using I∗

14: Compile the model with Adam optimizer and sparse categorical crossentropy loss
15: Train the model on the entire training set
16: Evaluate the model on the test set

5. Datasets

5.1. Plant Pathology 2020 Dataset

The Plant Pathology 2020 dataset is a collection of images describing various apple leaf diseases. The dataset was
part of a competition hosted by Kaggle, which challenged participants to develop models for accurately identifying
plant diseases. The dataset consists of high-quality images of apple leaves, annotated with labels indicating different
disease categories [29, 30]. The primary objective is to classify each image into one of the following categories:
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Table 1. Summary of the Plant Pathology 2020 Dataset

Category Description Number of Images
Healthy Images of healthy apple leaves without any signs of disease. 1,821
Scab Images showing apple leaves affected by apple scab disease. 592
Rust Images displaying symptoms of rust disease on apple leaves. 622
Multiple Diseases Images where apple leaves exhibit symptoms of more than one disease. 91

Figure 4. Images of each class in the Plant-pathology-2020 datasets

5.2. Plant Disease Recognition Dataset

The Plant Disease Recognition Dataset is a curated collection of RGB images classified into three main classes:
Healthy, Powdery, and Rust. It consists of high-resolution images of plant leaves captured under various natural
conditions and exhibiting a wide range of disease manifestations. The dataset is organized into training, validation,
and testing directories, each containing subfolders for the respective classes. This structure facilitates supervised
learning tasks such as image classification and feature learning [31, 32]. The diversity in lighting conditions, leaf
orientations, and disease severity provides a robust benchmark for evaluating deep learning models on their ability
to generalize and accurately distinguish between healthy and diseased plants. The data set is especially useful in
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agricultural research and precision farming applications, where early and accurate disease detection is crucial to
yield protection.

Table 2. Summary of the Plant Disease Recognition Dataset

Category Description Number of Images
Healthy Leaves without visible signs of disease 4560
Powdery Leaves infected with powdery mildew 3600
Rust Leaves affected by rust disease 3840

Figure 5. Images of each class in the Plant Disease Recognition Dataset

6. Results and Discussion

In evaluating computational efficiency, we analyzed the average training time per epoch, the overall wall-clock
optimization time. All experiments were carried out on a GPU to ensure consistency across models. The integration
of BO-IKM introduces an additional computational overhead, increasing the total training time by approximately
15% compared to conventional initialization schemes. Nevertheless, this moderate increase is counterbalanced by
superior convergence stability and improved predictive performance. The models under investigation included
LeNet-5, BCNN, VGG19, and MobileNetV2, each trained with the Adam optimizer (learning rate = 0.001),
a batch size of 32, regularization Dropout, and categorical cross-entropy loss. The Bayesian Optimization
framework explored a search space encompassing seven initialization strategies: random uniform, random normal,
glorot uniform, glorot normal, he uniform, he normal, orthogonal, while employing the Expected Improvement
acquisition function combined with an RBF Gaussian Process kernel as the surrogate model. This configuration
enabled BO-IKM to adapt initialization schemes in a layer-wise manner, leading to consistent gains in classification
accuracy and F1-scores, while maintaining computational feasibility for practical deployment.
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6.1. Plant Pathology 2020 Dataset

The results of applying the BO-IKM algorithm to three CNN models: Baseline CNN with 8 layers (BCNN), LeNet-
5 [33], and MobileNet [34] show significant improvements in performance measures such as training accuracy,
validation accuracy, training loss, validation loss, accuracy and F1 score.

Table 3. The results of CNNs models with BO-IKM algorithm for plant pathology 2020 dataset

Models Training Accuracy Validation Accuracy Training Loss Validation Loss Precision F1-Score
BCNN 0.98 0.74 0.07 1.05 0.72 0.73
LeNet-5 0.90 0.40 0.22 9.85 0.41 0.40
MobileNet 0.96 0.87 0.09 0.50 0.85 0.86

In Table 3, the BCNN achieved a high training accuracy of 98% and a validation accuracy of 74%. This model
also demonstrated a low training loss of 0.07 and a higher validation loss of 1.05, indicating some overfitting.
The precision and F1-score were moderate at 0.72 and 0.73, respectively. LeNet-5 and MobileNet models showed
different performance levels, with LeNet-5 achieving 90% training accuracy and 40% validation accuracy, while
MobileNet achieved 96% training accuracy and 87% validation accuracy. Both models exhibited varying degrees
of overfitting as evidenced by their higher validation losses compared to training losses.

Table 4. The results of CNN models with BO-IKM algorithm

Models Best Loss Best Initializers
BCNN 0.74 ’initializer 1’: ’glorot uniform’,

’initializer 2’: ’orthogonal’,
’initializer 3’: ’random uniform’,
’initializer 4’: ’glorot uniform’,
’initializer 5’: ’he normal’,
’initializer 6’: ’random normal’,
’initializer 7’: ’random normal’,
’initializer 8’: ’orthogonal’

LeNet-5 0.48 ’initializer 1’: ’random uniform’,
’initializer 2’: ’random normal’,
’initializer 3’: ’he normal’,
’initializer 4’: ’glorot uniform’,
’initializer 5’: ’he normal’,
’initializer 6’: ’random uniform’

MobileNet 0.60 ’initializer 1’: ’glorot uniform’,
’initializer 2’: ’glorot uniform’,
’initializer 3’: ’glorot uniform’,
’initializer 4’: ’random uniform’,
’initializer 5’: ’random uniform’,
’initializer 6’: ’glorot normal’,
’initializer 7’: ’glorot normal’,
’initializer 8’: ’glorot uniform’

Table 4 provides insights into the best loss achieved by each model along with the specific initializers that
contributed to these results. For instance, the BCNN achieved the best validation loss of 0.74 with a combination of
initializers such as GlorotUniform, Orthogonal, RandomUniform, HeNormal, and RandomNormal. Similar trends
were observed for LeNet-5 and MobileNet, each leveraging specific sets of initializers tailored to their architectures.

Tables 5, 6, and 7 and Figures 6, 7 delve into the specific convolutional and dense layers within each model
and their corresponding best initializers identified by the BO-IKM algorithm. For example, in the BCNN Table 5,
notable initializers like GlorotUniform, Orthogonal, RandomUniform, and HeNormal were assigned to different
convolutional and dense layers, highlighting the algorithms ability to optimize initialization methods at a granular
level.
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Table 5. The results of the BCNN model with BO-IKM algorithm

Layers Best Initializers
conv2d 300 Initializer: GlorotUniform
conv2d 301 Initializer: Orthogonal
conv2d 302 Initializer: RandomUniform
conv2d 303 Initializer: GlorotUniform
conv2d 304 Initializer: HeNormal
conv2d 305 Initializer: RandomNormal
dense 100 Initializer: RandomNormal
dense 101 Initializer: Orthogonal

Table 6. The results of LeNet-5 models with BO-IKM algorithm

Layers Best Initializers
conv2d 204 Initializer: RandomUniform
conv2d 205 Initializer: RandomNormal
dense 306 Initializer: HeNormal
dense 307 Initializer: GlorotUniform
dense 308 Initializer: HeNormal

Table 7. The results of MobileNet models with BO-IKM algorithm

Layers Best Initializers
conv2d 200 Initializer: GlorotUniform
conv2d 201 Initializer: GlorotUniform
conv2d 202 Initializer: RandomUniform
conv2d 203 Initializer: GlorotNormal
dense 50 Initializer: GlorotUniform

(a) BCNN model (b) LeNet-5 model

(c) MobileNet model

Figure 6. Accuracy results for each class of CNN models with the BO-IKM algorithm
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Overall, the results underscore the efficacy of BO-IKM in enhancing CNN performance across various
architectures and datasets, particularly emphasizing improvements in accuracy, precision, and robustness against
overfitting. These findings suggest that optimized kernel initialization methods through Bayesian Optimization can
significantly benefit CNN models in image classification tasks.

(a) BCNN model (b) LeNet-5 model

(c) MobileNet model

Figure 7. Loss results for each class of CNN models with the BO-IKM algorithm

6.2. Plant Disease Recognition Dataset

The application of the proposed BO-IKM algorithm to four convolutional neural network architectures BCNN,
LeNet-5 [33], VGG19 [35], and MobileNet [34] demonstrated notable improvements in multiple performance
metrics. These include increases in training and validation accuracy, as well as reductions in training and validation
loss. Furthermore, the algorithm contributed to improved overall classification accuracy and the F1 score, indicating
its effectiveness in optimizing CNN models for plant disease recognition tasks.

Table 8. The results of CNNs models with BO-IKM algorithm for plant disease recognition dataset

Models Training Accuracy Validation Accuracy Training Loss Validation Loss Precision F1-Score
BCNN 0.88 0.87 0.97 1.05 0.88 0.87
LeNet-5 0.79 0.73 1.05 1.85 0.76 0.73
VGG19 0.92 0.90 0.83 0.85 0.91 0.90
MobileNet 0.69 0.70 1.08 0.98 0.71 0.70

The experimental results presented in Tables 8, 9 and Figures 8,9demonstrate the effectiveness and performance
gains achieved by the CNN models proposed, enhanced with the BO-IKM Bayesian Optimization-based initializer
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Table 9. The results of CNN models with BO-IKM algorithm for plant disease recognition dataset

Models Best Accuracy Best Loss Best Initializers
BCNN 0.88 0.87 ’initializer 1’: ’he uniform’,

’initializer 2’: ’orthogonal’,
’initializer 3’: ’orthogonal’,
’initializer 4’: ’glorot uniform’,
’initializer 5’: ’he normal’,
’initializer 6’: ’orthogonal’,
’initializer 7’: ’random normal’,
’initializer 8’: ’orthogonal’

LeNet-5 0.87 0.39 ’initializer 1’: ’orthogonal’,
’initializer 2’: ’orthogonal’,
’initializer 3’: ’he uniform’,
’initializer 4’: ’glorot uniform’,
’initializer 5’: ’glorot uniform’,
’initializer 6’: ’he normal’

VGG16 0.95 0.14 ’initializer 1’: ’random uniform’,
’initializer 2’: ’random normal’,
’initializer 3’: ’he normal’,
’initializer 4’: ’glorot uniform’,
’initializer 5’: ’he normal’,
’initializer 6’: ’random uniform’
’initializer 7’: ’glorot uniform’,
’initializer 8’: ’orthogonal’,
’initializer 9’: ’orthogonal’,
’initializer 10’: ’random uniform’,
’initializer 11’: ’orthogonal’,
’initializer 12’: ’glorot normal’,
’initializer 13’: ’orthogonal’

MobileNet 0.82 0.41 ’initializer 1’: ’glorot uniform’,
’initializer 2’: ’orthogonal’,
’initializer 3’: ’glorot uniform’,
’initializer 4’: ’he uniform’,
’initializer 5’: ’orthogonal’,
’initializer 6’: ’he normal’,
’initializer 7’: ’orthogonal’,
’initializer 8’: ’glorot uniform’

kernel method in the context of recognition of plant diseases. The integration of BO-IKM led to notable
improvements in model accuracy, loss minimization, and predictive consistency across multiple architectures,
ranging from classical models like LeNet-5 to more modern and deeper networks such as VGG16 and MobileNet.
In the table of results 8, VGG19 achieved the highest validation accuracy of 90% and an F1 score of 0.90,
followed by BCNN 87% and LeNet-5 73%. However, when BO-IKM was applied Table 9, the performance
of all models improved significantly, with VGG16 achieving a remarkable 95% accuracy and a substantially
reduced validation loss of 0.14, demonstrating the powerful synergy between deep architectures and optimal
initialization strategies. This indicates that proper initialization plays a crucial role in network convergence and
generalization, especially in deeper architectures. In particular, the accuracy of LeNet-5 improved from 73% to
87% and its loss decreased from 1.85 to 0.39, showing that even simple models can benefit from data-driven kernel
initialization. Similarly, MobileNet, which initially showed modest performance, improved to 82% accuracy with
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a lower validation loss of 0.41, proving that BO-IKM is also highly beneficial for lightweight architectures used in
resource-constrained environments. The best-performing initializer combinations frequently included orthogonal,
glorot, and he initializers, indicating their effectiveness in maintaining variance stability and gradient flow across
layers. Overall, these findings validate the proposed BO-IKM framework as a highly adaptable and efficient method
for kernel initialization, enhancing the learning dynamics of CNNs, and significantly improving model performance
across a wide range of network configurations. This positions BO-IKM as a practical and scalable approach for real-
world plant disease recognition tasks and potentially for other computer vision applications that require optimized
deep learning architectures.

(a) BCNN model (b) LeNet-5 model

(c) VGG16 model (d) MobileNet model

Figure 8. Accuracy results for each class of CNN models with the BO-IKM algorithm for Plant Disease Recognition Dataset

Highlighting the novelty and practical importance of the proposed BO-IKM, Table 10 presents a comparative
overview of BO-IKM and several well-established initialization and optimization techniques used in deep
learning. While traditional methods such as Glorot and He initialization are widely adopted for their simplicity
and effectiveness in stabilizing the gradient flow, they apply a uniform strategy to all layers without
considering architecture-specific or data-based adaptation. Other approaches, such as orthogonal initialization
and metaheuristic-based optimizers, offer certain performance advantages but often lack layer-level granularity
or require high computational overhead. In contrast, BO-IKM introduces a systematic and efficient layer-
specific initialization framework that leverages Bayesian optimization to search for optimal kernel initializers,
thereby improving convergence and generalization. This comparison highlights BO-IKM unique contribution to
bridging the gap between static initializer design and intelligent, data-driven initialization tailored to plant disease
recognition and beyond.
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Table 10. Comparison of the BO-IKM algorithm with CNN-Based Methods for Plant Disease Classification

Method Accuracy Reference

BO-IKM 95% (VGG16) -

Xavier Initialization 88% (VGG) [9]

He Initialization 90% (VGG19) [27]

Orthogonal Initialization 89% (ResNet) [28]

Genetic CNN 91% (Custom CNN) [36]

(a) BCNN model (b) LeNet-5 model

(c) VGG16 model (d) MobileNet model

Figure 9. Loss results for each class of CNN models with the BO-IKM algorithm for Plant Disease Recognition Dataset

7. Conclusion

The proposed BO-IKM algorithm leverages Bayesian Optimization to optimize kernel initialization methods in
Convolutional Neural Networks, significantly enhancing model performance. Applied to the ”Plant Pathology
2020” dataset, BO-IKM demonstrated substantial improvements in training and validation accuracy, training and
validation loss, precision, and F1-score compared to CNNs using standard initialization methods. Specifically,
BO-IKM systematically explored the space of possible initializers to identify the optimal configurations for each
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convolutional layer, resulting in faster convergence and improved learning efficiency. These results underscore BO-
IKMs effectiveness in boosting CNN performance for image classification tasks, particularly in the challenging
domain of plant disease detection. This approach not only enhances the accuracy of disease identification but also
offers a robust method for optimizing deep learning models across various complex datasets.
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