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Abstract Prostate cancer is a major health concern, and accurate risk prediction is essential for effective treatment. This
paper presents a novel hybrid model combining near sets and soft sets to enhance prostate cancer risk assessment. By
integrating artificial intelligence with medical data, our model captures uncertainties and provides more precise, personalized
risk evaluations. Experiments focusing on key clinical factors, such as age and PSA levels, demonstrate significant
improvements in early detection and treatment decisions. This research highlights the potential of hybrid AI models to
improve patient care and outcomes in oncology.
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1. Introduction

There is a rising interest among researchers in capturing the fuzziness of data to uncover valuable insights
hidden within ambiguous datasets. This involves developing methods and theories to represent and analyze the
uncertainties within datasets, ultimately unlocking hidden knowledge. These theories include fuzzy set theory [1],
vague set theory [2], interval mathematics theory [3], and intuitionistic fuzzy set theory [4], which, along with
many others, provide tools and frameworks for tackling the complexities of uncertain data.

Moreover, near sets build upon the idea of descriptions, with each object being represented by a list of its key
features. To measure these features, we use special functions called probe functions. These functions assign a real
number to each object, reflecting the specific characteristic being measured. Interestingly, these probe functions
play a double role. They not only define near sets but also act as a special type of parameter in soft set theory,
creating a bridge between the two approaches. This connection discovers intriguing relationships between models
built using soft sets and those built using near sets. Numerous papers have been published, presenting variations of
the traditional near set models (e.g., [5, 6, 7, 8, 9, 10]).

This study sets out to achieve two key goals. Firstly, to introduce a new concept called soft near sets. This
innovative idea builds upon traditional near sets but adds the power of soft sets, which are known as soft near
concepts. Secondly, to use the core principles of near sets and redefine them in the context of soft near sets. The
main focus will be to establish the fundamental properties of soft near approximations, which are a crucial aspect
of this new model. This hybrid model was tested as a Prostate Cancer (PCa) risk prediction system. The soft
near set approach is used to identify patients who can undergo low-risk treatment for prostate cancer. PCa is the
most common cancer affecting men [11]. Early detection is crucial for reducing deaths from this disease. Because
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of this, we will assess two important factors: the patient’s age and prostate-specific antigen (PSA) levels. The
aggressiveness of the cancer (determined by Gleason biopsy and genetic information), cancer stage and location,
duration of the cancer, and whether it is contained within the prostate gland are the key clinical factors that guide
the selection of the most effective and least harmful treatment for prostate cancer [12]. The following step after
a complete diagnosis is established involves the doctor and patient working together to identify the most suitable
choices for treating PCa. This is particularly relevant for cases where PCa is still detected within the gland. Once a
complete diagnosis has been made, the doctor and patient must collaborate to identify the most suitable treatment
plans for PCa. The treatment options for localized PCa (when the disease is confined to the prostate gland) are
determined based on whether the tumor has infiltrated the prostate capsule.

Our approach involves utilizing a novel method that combines soft set and near set theories to assess the risks
associated with treatment. We measure the extent of tumor penetration and analyze the obtained data, which is then
visually represented in a diagram for statistical purposes. Our application is further supported by an algorithm and
a set of decision rules.

The key contributions of this research paper include:

1. Introduction of a novel hybrid model: The paper introduces a unique approach that combines near sets
and soft sets to predict prostate cancer risk, providing a more comprehensive and accurate assessment for
personalized treatment planning.

2. Integration of artificial intelligence: By incorporating artificial intelligence techniques, the model enhances
the accuracy of risk assessments and decision-making processes, leading to more effective patient care.

3. Improved early detection: The model facilitates early detection of prostate cancer by analyzing patient data
and risk factors, enabling timely interventions and improved outcomes.

4. Personalized treatment planning: The hybrid model allows for personalized treatment planning based on
individual patient profiles, considering factors such as cancer aggressiveness, stage, and location.

5. Potential for clinical impact: The integration of this innovative model into clinical practice has the potential
to revolutionize prostate cancer management, leading to better patient outcomes and quality of care.

Overall, the key contributions of this paper lie in its innovative approach, integration of advanced technologies,
focus on personalized care, and potential for significant impact on prostate cancer diagnosis and treatment.

The remaining sections of this paper are organized as follows: Related Work: The study discusses previous
research on soft sets, near sets, and their applications in addressing uncertainties and decision-making challenges. It
highlights the contributions of various researchers in advancing soft set theory and its extensions, as well as the use
of AI in computer-aided detection methods for prostate cancer diagnosis. Methodology: The research methodology
involves data collection, analysis techniques, and model validation for developing and implementing the hybrid
near sets and soft sets model. The approach focuses on assessing patient data, risk factors, and clinical parameters
to predict prostate cancer risk and recommend personalized treatment plans. Results: The results section presents
the findings of the study, including the accuracy of risk assessments, personalized treatment recommendations,
and the potential impact of the hybrid model on clinical practice. It discusses the effectiveness of the model
in early detection, risk prediction, and personalized treatment planning for prostate cancer patients. Conclusion:
The conclusion summarizes the main points of the research, emphasizing the innovative approach, integration of
advanced technologies, focus on personalized care, and potential impact on prostate cancer diagnosis and treatment.

2. RELATED WORK

Molodtsov, D., introduced the innovative concept of soft sets [13], a mathematical tool aimed at addressing
uncertainties. Which are associated with a set of parameters, have been applied across various fields. In addition,
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Maji et al. explored the use of soft set theory in addressing decision-making challenges[14], also extending it to
fuzzy soft sets [15]. Yang et al. introduced the concept of interval-valued fuzzy soft sets [16]. Chen et al. proposed
an alternative method to simplify soft sets through parametrization[17]. Recent publications by several researchers
have further developed the classical soft set theory, contributing to its ongoing advancement [18, 19, 20, 21]. Pawlak
introduced the idea of rough set theory [22]. This theory defines a set as ”rough” if the boundary region is non-
empty between its lower and upper approximations. Near set theory, on the other hand, was proposed by Peters as a
more generalized version of rough set theory [23]. It focuses on the process of grouping elements together without
relying on the concept of set approximation boundaries. Peters and his team further explored this theory in several
papers, including [24, 25, 26, 27, 28]. AI-based computer-aided detection methods may be therapeutically useful
in the diagnosis of clinically significant prostate cancer (csPCa), according to a number of studies [29, 30, 31, 32].
One of the most important factors in PCa diagnosis is histopathology [33, 34]. Right now, specimens are examined
under a microscope by a qualified pathologist; this technique invariably results in discrepancies in diagnosis and
subjective interpretation among experts [33]. Several Machine learning (ML) and deep learning (DL) approaches
have been presented in several research to be used on whole slide images (WSIs) for PCa grading, classification,
and detection automatically [33, 35]. One of the main distinctions between DL and ML is the way in which they
extract features. DL automatically collects features from the training data and learns to identify and represent
them, whereas ML does a lot of manual feature engineering to extract meaningful correlations in a dataset [36].
In addition, John T. Wei [37] presented and covered the most important recommendations on the early detection
of PCa and provided a framework to facilitate clinical decision-making in the implementation of prostate cancer
screening, biopsy, and follow-up. In five phase III randomized studies, Daniel E. Spratt et al. [38] used digital
pathology images and clinical data from pre-treatment prostate tissue samples of 5,727 patients. In addition to or
instead of androgen deprivation therapy (ADT), radiation was used to treat these patients. Additionally, as the main
outcome measure, they create and validate a predictive model based on artificial intelligence (AI) that may evaluate
the advantages of ADT in terms of preventing distant metastases.

3. PRELIMINARIES

This section provides an explanation of, soft sets, An information system and near set approximations.

Definition 3.1 [39]

An information system (IS) is methodically represented by (U,E, V, f). In this system, a universe U accommodates
a finite set of objects, attributes E define specific characteristics, and value sets V for each attribute are designated
as {Ve | e ∈ E}.

The function f : U × E → V is universally acknowledged as the information (knowledge) function or
knowledge representation system. If the set of values for every attribute e ∈ E is {0, 1}, then the information
system is known as a Boolean-valued information system (BVIS).

Definition 3.2 [13]

An initial universe set U and a set of parameters E are given. Let A ⊆ E be a subset of the parameter set E. The
power set of U , denoted as P (U), represents all possible subsets of U . Consider a pair S = (F,A), where F is
a mapping from A to P (U). In simpler terms, S is a soft set over U . It consists of a collection of subsets of U ,
where each subset is associated with a parameter from the set A. Stated differently, for each parameter e ∈ A, the
mapping F (e) represents the set of elements in S that are approximately equivalent to e.
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Definition 3.3 [22]

An equivalence class is a set of elements in a set U that are related to each other by an equivalence relation E. It
can be represented as [x]E and is defined as the set of elements x′ ∈ U such that E(x) = E(x′):

[x]E = {x′ ∈ U | E(x) = E(x′)} (1)

The partition of U with respect to E, denoted as U/E, is the collection of all equivalence classes [x]E where
x ∈ U . In other words, U/E is the set of all [x]E for every x ∈ U .

Let A be a family of equivalence relations on U , represented as A = {E1, E2, . . . , En}. The equivalence class
[x]A is the set of elements x′ ∈ U such that Ei(x) = Ei(x

′) for all Ei ∈ A. The partition of U with respect to A,
denoted as U/A, is the collection of all equivalence classes [x]A where x ∈ U .

Definition 3.4

Consider a collection of objects in a set X , where F represents a collection of their features. For each feature
a ∈ F , we establish a function fa ∈ B that connects X to a specific set Vfa (which represents the range of fa). The
measurement associated with a feature a of an object x ∈ X is represented by the value of fa(x). This function fa
is commonly referred to as a probe function.

The exploration of near set theory demonstrates a fascination with categorizing specimens through the utilization
of probe functions that have associations with entities. For instance, in the case of digital images, the defined probe
functions encompass attributes such as color, shape, contour, spatial orientation, and line length segments within
a limited area.

Definition 3.5

A generalized approximation space, denoted by GAS = (U,F,Nr, V B), consists of the following components:

• U : A collection of objects in the universe.
• F : A set of functions that describe the features of the objects.
• Nr: A family of neighborhoods defined as follows:

Nr(F ) =
⋃

A⊆Pr(F )

[x]A, (2)

where
Pr(F ) = {A ⊆ F | |A| = r, 1 ≤ r ≤ |F |}. (3)

• V B: (Description not provided in the original text).

Definition 3.6

The lower and upper approximations for set X , regarding probe functions B (selected r at a time), are accurately
represented by:

Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br
, (4)

Nr(B)∗X =
⋃

x:[x]Br∩X ̸=∅

[x]Br
. (5)
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After defining soft sets and near sets separately, it is important to explore the interesting connections between
these two concepts. The philosophy behind near sets is closely tied to the information available about each object of
interest. To illustrate this, let’s consider a scenario where patients with a specific illness are the objects of interest.
In this case, the symptoms of the disorder can be seen as the features of these patients. Each symptom can be
measured using a probe function to obtain a value. By combining all the information about the symptoms and their
corresponding values, we can create an information system.

This information system resembles a table that represents a soft set, where the patients constitute the universe of
this set, and the disease symptoms serve as the parameters. This implies that any soft set can be used to induce an
information system, representing the relationship between objects and their associated features in a specific context.
Near set approximations can be redefined using this table by leveraging the structure of the soft set’s parameterized
subsets.

Remark 3.1

A soft set S = (F,A) over U implies that each a ∈ A generates

F (a) = {x ∈ U | a(x) = 1}.

Thus, each a ∈ A becomes a function a : U → {0, 1}, where

a(x) =

{
1 if x ∈ F (a),

0 otherwise.

Consequently, every soft set S = (F,A) over U is an information system (U,A).
Moreover, near set approximations can be redefined as soft near set approximations, aligning with the concept

of soft sets.

4. SOFT NEAR SET APPROXIMATIONS (SN-SET APPROXIMATIONS

In this section, we establish lower SN-approximations and upper SN-approximations. Additionally, we derive and
demonstrate their characteristics.

Definition 4.1

Let S = (F,A) be a soft collection over a non-empty set U . For a parameter a ∈ A, the basic collection F (a) is
defined as

F (a) = {x ∈ U | a(x) = 1},

representing the set of elements in U that possess the property a. Additionally, for parameters a, b ∈ A, the
collection F (a, b) is defined as

F (a, b) = {x ∈ U | a(x) = 1 and b(x) = 1},

representing the set of elements in U that possess both properties a and b.

Definitions and Remarks

Remark 4.1

By using Definition 4.1, we deduce:
F (a1, a2) = F (a1) ∩ F (a2). (6)
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Consequently, as follows:

F (a1, a2, . . . , ar) = F (a1) ∩ F (a2) ∩ · · · ∩ F (ar) =

r⋂
i=1

F (ai). (7)

This signifies objects possessing properties a1, a2, . . . , ar ∈ A.

Definition 4.2

Let S = (F,A) be a soft set defined over a nonempty set U . The collection of all elementary sets of U , with respect
to each individual parameter from A (considering a single parameter at a time), is:

ξ1 = {F (a) | a ∈ A}. (8)

Remark 4.2

The representation of the set of elementary sets of U , considering all parameters A taken r at a time, is:

ξr =

{
r⋂

i=1

F (ai)

∣∣∣∣ ai ∈ A, 1 ≤ r ≤ |A|

}
. (9)

Definition 4.3

Let S = (F,A) be a soft set defined over a set U (where U contains elements), and let ξr be the collection of all
elementary sets of U . We denote (U, S, ξr) as a Soft Near Approximation Space (SNAS). In this SNAS, for any
subset X ⊆ U , the lower and upper SN-approximations are defined as:

SNrX =
⋃

{Y ∈ ξr | Y ⊆ X}, (10)

SNrX =
⋃

{Y ∈ ξr | Y ∩X ̸= ∅}. (11)

Definition 4.4

Let S = (F,A) represent a soft set over U . Then (U, S, ξr) is an (SNAS) corresponding to S. In the context of
(U, S, ξr), for a set X ⊆ U , the SN-positive region is defined as:

PosrX = SNrX. (12)

The SN-positive region signifies the collection of all elements that definitely belong to X and have r parameters.

Definition 4.5

Consider a soft set (F,A) defined over a nonempty set of patients U . Here, A represents a set of parameters that
measure various symptoms associated with a specific disease. Let ξr denote the collection of all elementary sets of
U . Additionally, assume that each parameter in A carries equal significance when assessing this disease.

Based on these assumptions, we can evaluate the prevalence of the disease within any subset X ⊆ U using the
following concept:

Dr(X) = D(ξr) · dr(X), (13)

where
dr(X) =

|Posr(X)|
|X|

and D(ξr) =
r

|A|
, 1 ≤ r ≤ |A|. (14)

It is apparent that this concept seeks to determine the occurrence of a particular illness within a defined specific
area (surrounding region) in order to make an appropriate decision, with clear understanding. The variable r
represents the disease category (in this case, r denotes the number of symptoms that a person must exhibit in
order to be considered a patient).
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5. SOFT NEAR SET CONCEPTS (SN-SET CONCEPTS)

Redefining Near-Set Principles: Understanding Definitions and Properties

Consider the soft set (U, S, ξr), where U represents the universal set, S represents a soft set, and ξr represents some
relation. Let x and y be elements belonging to U . We can say that x is considered soft near y if there exists an
element a ∈ A such that both x and y are part of F (a). This relationship, denoted as x[Sn]ay, signifies the soft
nearness between x and y.

Soft nearness is a concept used to compare object descriptions and determine the proximity between two
elements. However, it’s important to note that an element is not considered soft near to itself. To determine if
two elements are soft near each other, we look at the parameters of Element A. If the two elements satisfy at least
one parameter of A, they are considered soft near each other. By using the idea of soft nearness, we can effectively
evaluate the similarities and relationships between different objects based on their shared characteristics.

Proposition 5.1

Soft Near Approximation Space (SNAS), denoted as (U, S, ξr), a depiction of (SNAS) itself entails a soft set
S = (F,A). Let’s explore the concept of [Sn]a, a soft nearness relation denoted by a parameter a ∈ A as outlined
in Definition 5.1, we can assert that [Sn]a stands as an equivalence relation.

proof Obvious.

Definition 5.2

Let (U,A) represent an information system that builds upon a soft set S = (F,A). A subset Ri of A is referred to
as a reduct of A if Ri is the smallest possible subset of A that satisfies the property:

U/Ri = U/A.

Definition 5.3

Let’s consider an information system (U,A) that is based on a soft set (F,A). In this system, if U/[A− a] is not a
subset of U/A, then the parameter a in the set A cannot be removed. To further clarify this concept, we can define
the core of parameters A in the following way:

cor(A) = {a ∈ A | U/[A− a] ̸= U/A}. (15)

Thus,
cor(A) =

⋂
{Ri | Ri is a reduct of A}. (16)

Definition 5.4

Consider an information system (U,A) built on a soft set S = (F,A). Let R be the family of all reducts of A,
denoted as:

R = {Ri ⊆ A | U/Ri = U/A}.

To calculate the weight of the parameter a ∈ A, we use the relation:

w(a) =
|{Ri ∈ R | a ∈ Ri}|

|R|
. (17)

Proposition 5.2

Suppose we have a soft set (SNAS) represented by (U, S, ξr), where S is a soft set consisting of elements from F
and A. For any element a ∈ A, the following conditions hold:
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1. If the weight of a, w(a) = 0, then a can be removed from the soft set.
2. If the weight of a, w(a) = 1, then a is a member of the core set cor(A).

Proof
Define w(a) = 0. Then |{Ri ∈ R | a ∈ Ri}| = 0. For every reduct Ri ∈ R, we have a /∈ Ri. Therefore, U/A =
U/[A− {a}], implying parameter a can be removed.

Conversely, let w(a) = 1. Then |{Ri ∈ R | a ∈ Ri}| = |R|. For all reducts Ri, a ∈ Ri. Hence, U/A ̸= U/[A−
{a}], implying a cannot be removed. Therefore, a ∈ cor(A).

Finally, if a ∈ cor(A), then a ∈ Ri for all Ri ∈ R. Thus, |{Ri ∈ R | a ∈ Ri}| = |R|, leading to w(a) = 1.

Definition 5.5

Let (U, S, ξr) represent a Soft Near Approximation Space (SNAS), corresponding to a soft set S = (F,A). For
elements x, y ∈ U with x ̸= y, the soft nearness degree between x and y is defined as:

r(x, y) =

∑
{w(a) | x[Sn]ay, a ∈ A}∑

{w(a) | a(x) = 1 or a(y) = 1}
. (18)

Definition 5.6

Consider the soft set representation (U, S, ξr) corresponding to the soft set S = (F,A). For subsets X,Y ⊆ U , we
say X is soft near to Y if and only if there exists x ∈ X , y ∈ Y , and a ∈ A such that x is related to y by ξr. This
relationship is denoted as X[SN ]aY .

Remark 5.1

In the context of Definition 5.6, substituting set Y with set X leads to the inference that X[SN ]aX holds true if
and only if there exist elements x, y ∈ X such that x[Sn]ay. Consequently, a set X is termed soft near if, and only
if, it is a nonempty set comprising distinct elements that exhibit a certain degree of soft nearness to one another.

Definition 5.7

Consider a soft set S = (F,A) corresponding to (U, S, ξr), where U represents the universe and ξr is associated
with soft nearness. For subsets X,Y ⊆ U , the soft nearness degree between X and Y is defined as:

R(X,Y ) =

∑
(max{r(x, y) | x ∈ X, y ∈ Y })

|X|
, X ̸= ∅. (19)

Remark 5.2

In the present research, we explore the concept of “soft nearness”, which refers to the idea of being close in a
positive sense based on certain criteria. To better understand this concept, consider a soft set that includes a group
of patients and their corresponding symptoms for a specific disease. In this context, two patients are considered to
be softly near each other if there is at least one symptom (or parameter) that they both share, indicating that they
are experiencing a similar illness.

Example 5.1

Let us consider the following soft set S = (F ;A) which describes the conditions of patients suspected of rheumatic
fever,all patients are between 9 and 12 years of age, with a history of arthralgia beginning at 3 to 5 years of age. This
disease has many symptoms, usually starts at a young age, and persists throughout the patient’s life. Suppose that
the universe U = {p1, p2, p3, p4, p5, p6, p7}, consists of seven patients and A = {a1, a2, a3, a4, a5, a6, a7, a8}
is the set of condition parameters.
The ai (i = 1, 2, 3, 4, 5, 6, 7, 8) stand for:
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• a1: Sex,
• a2: Pharyngitis,
• a3: Arthritis,
• a4: Carditis,
• a5: Chorea,
• a6: ESR,
• a7: Abdominal pain,
• a8: Headache.

The soft set S = (F ;A) over U is defined by the following collection of approximations.
The soft set S = (F,A) over U is defined as:

(F,A) = { (sex (male), {p2, p4, p5, p7}), (pharyngitis, {p1, p2, p3, p4, p6, p7}),
(arthritis, {p1, p2, p3, p4, p6, p7}), (carditis, {p1, p2, p3, p5, p6, p7}),
(chorea, {p1, p2}), (ESR, {p2, p6}), (abdominal pain, {p5}), (headache, {p2, p7})}.

It is easy to see that, this soft set can be viewed as a boolean-valued information system corresponding to it,
which is given by Table 1, as follows

Table 1. Boolean tabular representation of the soft set, given in Example 5.1

a1 a2 a3 a4 a5 a6 a7 a8

p1 0 1 1 1 1 0 0 0
p2 1 1 1 1 1 1 0 1
p3 0 1 1 1 0 0 0 0
p4 1 1 1 0 0 0 0 0
p5 1 0 0 1 0 0 1 0
p6 0 1 1 1 0 1 0 0
p7 1 1 1 1 0 0 0 1

From Table 1, we can deduce that,

U/[A] = U/[A− a1] = U/[A− a2] = U/[A− a3] = U/[A− a4] = U/[A− a7] = U/[A− a8] =

{{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}} , U/[A− a5] = {{p1, p3}, {p2}, {p4}, {p5}, {p6}, {p7}} ,
U/[A− a6] = {{p1}, {p2}, {p3, p6}, {p4}, {p5}, {p7}} .

It follows that, a5 and a6 cannot be canceled, then cor(A) = {a5, a6}, and then U/cor(A) =
{{p1}, {p2}, {p6}, {p3, p4, p5, p7}}.

Hence, X = {p3, p4, p5, p7} must be classified again by using the rest of parameters [A− cor(A)] =
{a1, a2, a3, a4, a7, a8}.

For this end, Table 2 is given as follows:

Table 2. Boolean tabular representation of (X, [A− cor(A)]).

a1 a2 a3 a4 a7 a8

p3 0 1 1 1 0 0
p4 1 1 1 0 0 0
p5 1 0 0 1 1 0
p7 1 1 1 1 0 1

From Table 2, we have the following classifications
X/ai = {{p3}, {p4, p5, p7}}, X/a4 = {{p4}, {p3, p5, p7}}, X/a8 = {{p7}, {p3, p4, p5}}, X/a2 = X/a3 =

X/a7 = {{p5}, {p3, p4, p7}}. It is easy to see that, parameters a2, a3 and a7 are equivalent in the classification of
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X . In fact, there is a problem in the soft nearness with this equivalent (of classification), as the values of a
2

and a
3

are equivalent but the values of a2 and a7 are not equivalent. So we can drop one of a2 and a3 , say a2 , but a7 can
not be dropped, as a result we get Table 3

Table 3. Boolean tabular representation of (X, {a1, a2, a4, a7, a8}).

a1 a2 a4 a7 a8

p3 0 1 1 0 0
p4 1 1 0 0 0
p5 1 0 1 1 0
p7 1 1 1 0 1

Consequently, we can deduce the following classifications:

X/{a1, a2} = X/{a1, a7} =
{
{p3}, {p5}, {p4, p7}

}
,

X/{a1, a4} =
{
{p3}, {p4}, {p5, p7}

}
,

X/{a1, a8} =
{
{p3}, {p7}, {p4, p5}

}
,

X/{a2, a4} = X/{a4, a7} = X/{a2, a4, a7} =
{
{p4}, {p5}, {p3, p7}

}
,

X/{a2, a7} =
{
{p5}, {p3, p4, p7}

}
,

X/{a2, a8} = X/{a2} = X/{a2, a7} =
{
{p4}, {p3, p7}

}
,

X/{a3, a4} =
{
{p3}, {p4}, {p5, p7}

}
,

X/{a3, a5} =
{
{p4}, {p5}, {p3, p7}

}
,

X/{a1, a2, a7} =
{
{p3}, {p5}

}
,

X/{a1, a2, a4} = X/{a1, a4, a7} = X/{a1, a7, a8} = X/{a1, a2, a8} = X/{a2, a4, a8}
= X/{a4, a7, a8} = X/A =

{
{p3}, {p4}, {p5}, {p7}

}
.

It follows that, X/Ai = X/A, where

Ai ∈
{
{a1, a2, a4}, {a1, a2, a8}, {a1, a4, a7}, {a1, a4, a8}, {a1, a7, a8}, {a2, a4, a8}, {a4, a7, a8}

}
.

Then, all reducts of the parameters A (Ri = Ai ∪ cor(A)) can be arranged in Table 4.

Table 4. Reducts of the parameters A, given in Example 4.1.

Reduct Set

R1 {a5, a6, a1, a2, a4}
R2 {a5, a6, a1, a2, a8}
R3 {a5, a6, a1, a4, a8}
R4 {a5, a6, a2, a4, a8}
R5 {a5, a6, a1, a4, a7}
R6 {a5, a6, a1, a7, a8}
R7 {a5, a6, a4, a7, a8}

By using Definition 5.4, the weight of every condition parameter ai ∈ A can be calculated as follows:

w(a5) = w(a6) = 1, w(a1) = w(a4) = w(a8) =
5

7
, w(a2) = w(a7) =

3

7
, and w(a3) = 0.

It follows that a3 can be canceled without losing any data.
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Note that parameters a2 and a3 are equivalent. Hence, we can replace a3 by a2 in all results. In our case study,
a2 is considered and a3 is dropped.

The set of parameters A will be:
A′ =

{
a1, a2, a4, a5, a6, a7, a8

}
,

and the boolean-valued information system corresponding to the soft set S′ = (F,A′) can be presented in Table 5,
as follows.

Table 5. Boolean tabular representation of the soft set S′ = (F,A′) over U

a1 a2 a4 a5 a6 a7 a8

p1 0 1 1 1 0 0 0
p2 1 1 1 1 1 0 1
p3 0 1 1 0 0 0 0
p4 1 1 0 0 0 0 0
p5 1 0 1 0 0 1 0
p6 0 1 1 0 1 0 0
p7 1 1 1 0 0 0 1

Let P = {s1, s2, s3, s4, s5, s6, s7} be the set of standard patients, in which every patient satisfies all parameters
in one reduct of A. The soft set (F,A′) on P , is given in a tabular form , in Table 6

Table 6. Boolean representation of the soft set (F,A′) over P

a1 a2 a4 a5 a6 a7 a8

s1 1 1 1 1 1 0 0
s2 1 1 0 1 1 0 1
s3 1 0 1 1 1 0 1
s4 0 1 1 1 1 0 1
s5 1 0 1 1 1 1 0
s6 1 0 0 1 1 1 1
s7 0 0 1 1 1 1 1

By using Definitions 5.1 and 5.7, the soft nearness degree between p1 and s1 in the soft set S′ = (F,A′) over
U ∪ P is calculated as:

r(p1, s1) =
w(a2) + w(a4) + w(a5)

w(a1) + w(a2) + w(a4) + w(a5) + w(a6)
=

3
7 + 5

7 + 1
5
7 + 3

7 + 5
7 + 1 + 1

=
15

27
.

Table 7 introduces the soft nearness degrees between every element in U and every element in P :
From Table 7, we can deduce Table 8, where si ∈ P , as follows:
By using Definition 5.7 and Table 8, the nearness degree between singleton set {pi}, for all pi ∈ U , and the set

P , can be calculated and arranged in Table 9:

{pi} {p1} {p2} {p3} {p4} {p5} {p6} {p7}
R({pi}, P ) 0.56 0.91 0.30 0.30 0.48 0.56 0.47

Table 9. Soft nearness degree of every singleton set in U and the set P .

Clearly, it is very important for every patient to know the degree of his/her disease because a doctor may decide
that a person, at this moment, has no disease, although he/she might have the disease in a partial degree such as
30%. In classical terms, this person would not be classified as a patient, but after a few days, he/she may transition
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Table 7. Soft nearness degrees between U and P

s1 s2 s3 s4 s5 s6 s7

p1
15
27

12
27

13
27

14
27

10
27

11
27

9
27

p2
18
27

20
27

16
27

15
27

17
27

19
27

14
27

p3
10
27

8
27

9
27

7
27

6
27

5
27

4
27

p4
12
27

11
27

10
27

13
27

8
27

7
27

6
27

p5
14
27

13
27

15
27

12
27

16
27

17
27

11
27

p6
9
27

10
27

8
27

6
27

7
27

5
27

3
27

p7
16
27

18
27

17
27

15
27

14
27

13
27

12
27

Table 8. The maximum soft nearness degree of every element of U and every element of P

p p1 p2 p3 p4 p5 p6 p7

max{r(p, si)} 15
27

29
32

8
27

8
27

13
27

15
27

15
32

into being a patient in a complete form. If the degree of his/her disease can be determined initially, this individual
could then receive preventive treatment to mitigate progression.
From Table 9, we can deduce that, p2 has the rheumatic fever with 91%, p1, p6 with 56%, p5 with 48%, p7 with
47% and p3, p4 with 30%.

Table 10. PROSTATE DATASET DESCRIPTION

Column Description Name Description NAME

1 Identification code 1- 380 ID
2 Extent of Tumor Penetra-

tion into Prostatic Capsule
0 = no penetration, 1= penetration CAPSULE

3 Patient’s Age (in years) years AGE
4 Patient’s Ethnic

Background
0=white , 1 = black RACE

5 Outcome of Digital Rectal
Examination

1 =NO Nodule 2 =Unilobar Nodule (left)
3 =Unilobar Nodule (right) 4 =Bilobar
Nodule

DPROS

6 Assessment of Capsular
Involvement in Rectal
Exam

0 = no, 1= yes DCAPS

7 Prostate-Specific Antigen
(PSA) level

(mg/ml) PSA

8 Tumor Volume as Deter-
mined by Ultrasound

(cm³) VOL

9 Gleason Score (indicating
the grade of the disease)

0 - 10 GLEASON
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6. AN APPLICATION TO DETERMINE THE PROSTATE CANCER TREATMENT RISK BY NEW
SOFT NEAR SET APPROACHES

A. Dataset

The dataset on prostate cancer comprises baseline examination outcomes obtained from prostate cancer patients
under the supervision of Dr. Donn Y. at the OSUCCC [40] (refer to Table 10). In the design phase, the input
parameters for AGE, RACE, DPROS, DCAPS, PSA, VOL, and GLEASON were utilized, while the output focused
on determining prostate cancer risk.

B. Data Preprocessing

The steps for prostate dataset preprocessing process are as shown in Figure 1

Figure 1. Steps of Data Preprocessing.

B.1 Step 1 Discretization

To implement the soft near set methodology introduced, it is imperative to convert the continuous variable into
a categorical form. To achieve this, we employed the k-means discretization technique as outlined in [41]. The
prostate dataset encompasses three continuous variables (AGE, PSA, VOL). The linguistic variables assigned are
as follows: for AGE - young, middle, old; for PSA - very high (VH), high (H), middle (M), low (L); and for VOL -
small (S), middle (M), big (B). The delineation of each variable is represented by the red line, as depicted in Figure
2

B.2 Step 2 Checks Inconsistent

The analysis evaluates the coherence or incoherence of patients (samples) based on the presence or absence of
consistency. A patient (sample) is considered consistent when there are no other patients exhibiting identical
symptoms but receiving a disparate diagnosis [42]. Following this verification process, the dataset undergoes
reduction, diminishing from 380 samples to 246 samples.

B.3 Step 3 Convert All Attributes to Binary Values

In order to convert a singular variable containing n observations and d unique values into d binary variables, each
with n observations, the One Hot Coding scheme was employed [43]. This method involves contrasting each level
of the categorical variable against a predetermined reference level. Consequently, every observation signifies the
existence (1) or non-existence (0) of the dichotomous binary variable, as illustrated in Table 11.
This section describes the Algorithm for determining the risk treatment for prostate cancer.

C. Algorithm: Application for risk treatment

This section describes the Algorithm for determine the risk treatment for prostate cancer
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Figure 2. K-Means Discretization Technique.

1. Enter the Boolean-valued information system (BVIS) that corresponds to a given soft set S = (F,A) on U .
2. Calculate the core of set A: cor(A).
3. Define X =

⋃
{X ∈ [U/cor(A)− U/A]}.

4. Calculate X/Ai = X/A for every set of parameters Ai ⊆ A.
5. Calculate all reducts for A: R = cor(A) ∪A.
6. Enter A′ =

⋃
{Ri ∈ R}.

7. For every a in A, calculate w(a).
8. Enter the set p = {si}, where a(si) = 1 for every a ∈ Ri.
9. Enter the BVIS that corresponds to (F,A′) on P .

10. For every pi in U and sj in P , calculate r(pi, sj).
11. Calculate R({pi}, p) for every pi in U (representing the patient’s level of illness).
12. Present (pi, R({pi}, p)) for every pi in U in a statistical model.
13. If 0.22588 < λ ≤ 0.305365, conclude that patient p exhibits no tumor penetration of the prostatic capsule.
14. If 0.320492 < λ ≤ 0.445359, infer that patient p has tumor penetration of the prostatic capsule.
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Table 11. Patient Data with Risk Assessment
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2 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 .... 0
3 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 .... 0
4 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 .... 0
5 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 .... 0
6 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 .... 0

Figure 3. The Degree of Tumor Penetration of The Prostatic Capsule for a Patient p as λ

7. Result and Discussion

After applying the steps from step 1 to step 11 to compute the degree of disease by measuring the tumor penetration
of the prostatic capsule, the results in Table 12 show that the patients that have localized disease have a degree
between [0.22588 - 0.305365], and patients that have advanced prostate cancer have a degree between [0.320492 -
0.445359].
Let’s define the degree of tumor penetration of the prostatic capsule for a patient p as λ. The following decision
rules for interpretation can be obtained from Fig. 3:

1. If 0.22588 < λ ≤ 0.305365, then patient p has no tumor penetration of the prostatic capsule.
2. If 0.320492 < λ ≤ 0.445359, then patient p has tumor penetration of the prostatic capsule.
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Table 12. Patient Data with Risk Assessment
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1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 ... 1 0.445359
2 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 ... 1 0.42164
3 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 ... 1 0.403687
4 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 ... 1 0.403687
5 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 ... 1 0.403687
6 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 ... 1 0.396124
7 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 ... 1 0.396124
8 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 ... 1 0.396124
9 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 ... 1 0.392342

10 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 ... 1 0.392342
11 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 ... 1 0.392342
12 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 ... 1 0.380761
13 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 ... 1 0.380761
14 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 ... 1 0.377216
15 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 ... 1 0.372199
16 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 ... 1 0.371792
17 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 ... 0 0.348975
18 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 ... 1 0.348975
19 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 ... 1 0.348975
20 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 ... 1 0.346594
21 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 ... 1 0.346594
22 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 ... 1 0.337765
23 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 ... 1 0.329367
24 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 ... 1 0.328291
25 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 ... 1 0.328055
26 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 ... 1 0.328055
27 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 ... 1 0.328055
28 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 ... 1 0.328055
29 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 ... 1 0.328055
30 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 ... 1 0.328055
31 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 ... 1 0.320728
32 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 ... 1 0.320492
33 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 ... 1 0.320492
34 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 ... 1 0.320492
35 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 ... 1 0.320492
36 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 ... 1 0.320492
37 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 ... 0 0.305365
38 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 ... 0 0.299268
39 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 ... 0 0.299268
40 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 ... 0 0.299268

To evaluate our Hybrid Near Set and Soft Set Model for predicting prostate cancer risk, specifically the degree of
tumor penetration of the prostatic capsule, we compared it against Linear Regression, Ridge Regression, ElasticNet
Regression, and Support Vector Regression (SVR). Using Receiver Operating Characteristic (ROC) curves and
Area Under the Curve (AUC) metrics, as shown in Figure 4, the Hybrid Model achieved an AUC of 0.965,
significantly outperforming SVR (AUC = 0.780), ElasticNet (AUC = 0.770), and Linear and Ridge Regression
(both AUC = 0.760). This indicates the Hybrid Model’s superior ability to accurately classify tumor penetration,
making it a valuable tool for clinical decision-making.
The Hybrid Model’s clear decision rules (e.g., λ thresholds) and focus on key clinical features (e.g., PSA,
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GLEASON) enhance its practical utility, enabling clinicians to make informed decisions about prostate cancer
treatment. Its ability to quantify uncertainty through soft near set approximations aligns with the inherent vagueness
in medical data, providing a robust framework for risk assessment. For instance, the λ thresholds stratify patients
into localized (0.22588 < λ ≤ 0.305365) and advanced (0.320492 < λ ≤ 0.445359) categories, directly linking
computational outputs to actionable clinical protocols.

Figure 4. ROC curves comparing classification performance between the Hybrid Model and regression methods.

8. Conclusion and Future Work

In this paper, we have presented a novel approach to prostate cancer risk prediction by integrating the concepts
of near sets and soft sets into a hybrid model. Our research demonstrates the effectiveness of combining
artificial intelligence with medical knowledge to enhance the accuracy and personalization of prostate cancer risk
assessments. By leveraging the strengths of both near sets and soft sets, our model provides a more nuanced
understanding of patient data, enabling the identification of those who may benefit from low-risk treatment
options. The experimental results underscore the potential of our hybrid model in improving early detection and
management of prostate cancer. Specifically, our approach offers a comprehensive assessment framework that
considers key clinical factors such as patient age, PSA levels, cancer aggressiveness, and other relevant medical
data. This holistic evaluation facilitates more informed and precise treatment decisions, ultimately contributing to
better patient outcomes.
Our study contributes to the growing body of research on the application of artificial intelligence in healthcare,
highlighting the significant benefits of integrating advanced computational techniques with traditional medical
practices. Future work could integrate multi-modal data, such as genomic profiles, proteomic data, or imaging
results (e.g., MRI or PET scans), to provide a more comprehensive risk assessment. Exploring emerging
technologies, such as natural language processing for extracting risk factors from clinical notes or virtual reality for
patient education, could enhance the model’s utility. The model could be tested on datasets for cancers like breast,
lung, or colorectal cancer, which have distinct risk factors and diagnostic criteria.
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In conclusion, the proposed hybrid near sets and soft sets model represents a promising advancement in the field
of prostate cancer risk prediction, offering a robust tool for healthcare professionals to improve patient care and
treatment strategies.
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