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Abstract Financial institutions increasingly rely on machine learning (ML) models to assess credit risk and make lending
decisions. Accurate prediction hinges on effective feature selection, which can significantly enhance model performance.
This paper investigates the efficacy of seven supervised ML algorithms in predicting credit risk: Naive Bayes, Support
Vector Machine, Decision Tree, K-Nearest Neighbor, Artificial Neural Network, Random Forest, and Logistic Regression.
Using a German credit dataset comprising 1000 observations with 20 explanatory variables, we evaluated model performance
using accuracy, kappa statistic, and F1 score. Two data-splitting scenarios (70-30% and 80-20%) were employed to assess
robustness. We addressed outliers through imputation methods to optimize model performance and applied the Boruta
algorithm for feature selection, which identified and eliminated six non-contributing features. Our findings consistently
demonstrate the superiority of the Random Forest algorithm across both scenarios. Regarding accuracy, Random Forest
achieved 77.3% in the 70-30% split and 80% in the 80-20% split, outperforming all other methods. These results underscore
the potential of Random Forest as a valuable tool for credit risk assessment in financial institutions.
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1. Introduction

Machine learning (ML) models, a subset of artificial intelligence (AI), are versatile tools for solving various
problems, including classification tasks. In credit risk assessment, classification models are employed to predict
the likelihood of a borrower defaulting on their loan. This information enables financial institutions to make
informed lending decisions. This research provides a comprehensive review of ML algorithms applied to German
credit data, focusing on their efficacy in predicting credit risk. Table (1) summarizes key studies in this area,
highlighting the diverse methodologies and performance metrics employed. By understanding the state-of-the-
art in ML for credit risk prediction, financial institutions can leverage these techniques to enhance their risk
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management strategies and improve lending outcomes.

Table 1. A Literature Review of German Credit Data.

References Author Algorithmes
1 Pławiak et al. (2020) KNN, PNN and SVM
2 Zhang et al. (2018) KNN, RF, and SVM
3 Arora and Kaur (2020) NB, SVM, RF, and KNN
4 Nalić et al. (2020) NB, DT, GLM, and SVM
5 Saheed et al. (2020) NB, RF, and SVM
6 Religia et al. (2020) RF
7 Imron and Prasetyo (2020) KNN
8 Mardiansyah et al. (2021) LR, RF, and SVM
9 Arun and Venkatachalapathy (2020) LR, DT, and SVM

10 Metawa et al. (2021) SVM
11 Yang et al. (2021) KNN, SVM, and LR
12 Trivedi (2020) NB, RF, and SVM
13 Shi et al. (2022) LR, SVM, ANN, RF, KNN and NB
14 Shen et al. (2021) LR, KNN, NB, SVM and ANN

Data normalization rescales feature values to a standardized range of 0 to 1. This is achieved by transforming
each value into its z-score, calculated using the mean and standard deviation of the feature. By standardizing the
data, we ensure that all features contribute equally to the model, preventing features with larger magnitudes from
dominating the learning process and improving overall model performance. Each value in a variable is replaced by
its z-value; which is expressed by

znorm =
x− x̄

Sx
(1)

where Sx is the standard deviation. We can concentrate on taking care of missing values, and outliers data.
Figure 1 outlines the proposed methodology, which is structured into the following steps:

• Step 1: Data Preprocessing: The raw dataset is acquired from the UCI ML repository. It undergoes
comprehensive preprocessing, including handling missing values and outliers using the treatment of outlier
data as missing values by applying imputation methods (TOMI) technique, normalizing features via
techniques such as Min-Max scaling or standardization (as shown in equation 1), and encoding categorical
variables using one-hot or label encoding to ensure compatibility with ML algorithms.

• Step 2: Data Partitioning: The refined dataset is partitioned into training and testing sets using two distinct
strategies: a 70-30% split for Case 1 and an 80-20% split for Case 2. These splits are stratified to maintain
class distribution and randomized with a fixed seed to ensure reproducibility.

• Step 3: Model Construction: A diverse set of algorithms is employed to construct predictive models,
including Naive Bayes (NB) for baseline performance, Support Vector Machine (SVM) for high-dimensional
spaces, Decision Tree (DT) for interpretability, K-Nearest Neighbors (KNN) for instance-based learning,
Logistic Regression (LR) as a linear benchmark, Random Forest (RF) for ensemble-based robustness, and
Artificial Neural Network (ANN) to capture complex patterns. Hyperparameters are tuned using grid search,
and models are implemented using R libraries.

• Step 4: Performance Evaluation: Model performance is rigorously evaluated using metrics such as
Accuracy (ACC), F1 Score, Precision, and Kappa statistics, with validation conducted via 10-fold cross-
validation.
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• Step 5: Final Model Selection: The top-performing algorithm, selected based on aggregated metrics, is
applied to the testing dataset to generate the final predictive model. This methodological framework ensures
transparency, reproducibility, and alignment with best practices in ML research.

Figure 1. Methodology of the research work.

The literature review highlights the effectiveness of ML algorithms like SVM, RF, KNN, and NB in credit risk
assessment. Hybrid and ensemble models, such as the deep genetic hierarchical network proposed by Pławiak
et al. (2020) and the Bolasso-based feature selection method by Arora and Kaur (2020), outperform traditional
approaches by addressing challenges like imbalanced datasets and high-dimensional data. Interpretable models
(e.g., LR, DT) combined with advanced techniques like Social Spider Optimization Arun and Venkatachalapathy
(2020) and SMOTE-XGBoost Mardiansyah et al. (2021) remain prominent. Advanced methods, including deep
learning (e.g., Deep Belief Networks by Metawa et al. (2021)) and evolutionary algorithms (e.g., neural architecture
search by Yang et al. (2021)), are increasingly applied, showcasing their potential to tackle complex credit risk
challenges. Overall, integrating ML with feature selection, ensemble learning, and deep learning significantly
enhances prediction accuracy and robustness. Seliem (2022) introduced a novel technique called thetreatment of
outlier data as missing values using imputation methods (TOMI), which innovatively addresses outliers by treating
them as missing values rather than eliminating them through conventional approaches. The TOMI technique
effectively bridges the gap between outlier detection and missing value imputation, establishing a comprehensive
framework for data preprocessing in ML applications. The methodology operates through a systematic three-
phase process: a) outlier detection utilizing a sophisticated hybrid approach combining Z-score and IQR methods,
b) strategic transformation of identified outliers into missing values while preserving data structure, and c)
implementation of advanced imputation methods to estimate and replace these values. This methodological
approach distinguishes itself by preserving both the dataset’s volume and intrinsic variable relationships, thereby
overcoming significant limitations inherent in traditional methods such as deletion or winsorization. Extensive
empirical analyses demonstrate TOMI’s capacity to enhance model accuracy and prediction stability across diverse
ML contexts. The technique represents a significant advancement in data preprocessing methodologies, offering a
robust solution for managing outliers while maintaining data integrity in scenarios where precise analysis and
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reliable prediction are paramount. Additionally, TOMI’s adaptability to various data types and its systematic
approach to outlier handling make it particularly valuable for real-world applications where data quality directly
impacts analytical outcomes. We can separate our strategy into four primary segments as follows: data collection,
data pre-processing, data training, and applications of ML algorithms. This paper is structured as follows: Section
2: Presents an overview of the ML algorithms used in the study. Section 3: Discusses the performance metrics
employed to evaluate model accuracy. Section 4: Introduces the German credit dataset and its key characteristics.
Section 5: Delves into the analysis of real-world credit data using the selected ML algorithms. Section 6: Offers
concluding remarks and insights based on the research findings

2. The ML Algorithms

The ML and data mining are powerful tools for addressing a wide range of complex problems. As a branch
of artificial intelligence, ML plays a critical role in data science, enabling the extraction of meaningful insights
and solutions from data. It is an interdisciplinary field that integrates concepts from computer science, statistics,
cognitive science, engineering, and various domains of mathematics and science. One of the most common
applications of ML is predictive modeling, where the goal is to estimate an outcome (the dependent variable) based
on patterns identified in existing data (the independent variables). By learning these patterns from a known dataset,
ML algorithms can generalize and apply them to new, unseen data, thereby making accurate predictions. This
capability makes ML an indispensable tool for decision-making and problem-solving across numerous industries.

2.1. Logistic Regression

Logistic regression (LR) is a widely used supervised classification algorithm that models the relationship between
a categorical dependent variable and one or more independent variables by estimating probabilities using a logistic
function. It is a special case of the Generalized Linear Model (GLM) and shares similarities with linear regression
(Mohamed et al., 2023; Seliem et al., 2025a). The LR is particularly suited for modeling binary outcomes, where the
response variable Y takes one of two possible values (e.g., 0 or 1). The connection between logistic regression and
the exponential family of distributions is fundamental, as it provides the theoretical foundation for its formulation
and estimation. The exponential family is a broad class of probability distributions that includes many common
distributions, such as the Gaussian (normal), binomial, Poisson, and gamma distributions. A distribution belongs
to the exponential family if its probability mass or density function can be expressed in the form:

f(yi, θi, ϕ) = exp

[
yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ)

]
; i = 1, 2, ..., n (2)

where θ is the natural parameter (related to the mean of the distribution), ϕ is the dispersion parameter (often
a constant for binary data), b(θ) is the cumulant function (related to the moment-generating function), a(ϕ) and
c(yi, ϕ) are known functions. For binary data, the Bernoulli distribution is a member of the exponential family.
Its probability mass function is:

P (Y = y) = py(1− p)1−y, (3)

where p = P (Y = 1). Rewriting this in the exponential family form:

lnP (Y = y) = y ln

(
p

1− p

)
+ ln(1− p). (4)

The natural parameter is θ = ln
(

p
1−p

)
, which is the log-odds or logit of p. The cumulant function is

b(θ) = ln(1 + eθ). The LR models the probability p of a binary outcome as a function of predictor variables
x1, x2, . . . , xk. It consists of three key components:

1. Random Component: The response Y follows a Bernoulli distribution, which is a member of the
exponential family.
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2. Systematic Component: A linear predictor η = β0 + β1x1 + · · ·+ βkxk.
3. Link Function: The logit function (canonical link for the Bernoulli distribution) connects the mean p to the

linear predictor:

g(p) = ln

(
p

1− p

)
= η. (5)

The inverse of the logit function is the logistic function:

p =
1

1 + e−η
. (6)

The exponential family provides a unified framework for GLMs, including logistic regression. Key advantages
include:

• Canonical Link Function: The logit link is the natural choice for binary data, ensuring interpretability and
computational efficiency.

• Mean and Variance Relationship: The variance of Y is p(1− p), which is directly derived from the
exponential family structure.

• Estimation: Maximum likelihood estimation (MLE) is straightforward due to the exponential family’s
properties, often implemented using iteratively reweighted least squares (IRLS).

In summary, LR model is a powerful tool for modeling binary outcomes, rooted in the exponential family
of distributions. By leveraging the Bernoulli distribution and the logit link function, it provides a flexible
and interpretable framework for understanding the relationship between predictors and binary responses. The
exponential family underpins its theoretical and computational foundations, making LR a cornerstone of modern
statistical modeling.

2.2. Naive Bayes

The NB algorithm is a probabilistic classification method based on Bayes’ theorem, which operates under the
assumption that the features are conditionally independent of each other given the class label. This assumption,
known as the “naive” assumption, simplifies the computation and makes the algorithm computationally efficient,
even for large datasets. NB calculates the probability of each potential classification and assigns the class with the
highest probability to the given instance (Seliem, 2022; Seliem et al., 2025b). The core of the algorithm relies on
the following equation derived from Bayes’ theorem:

P

(
A

B

)
=

P
(
B
A

)
· P (A)

P (B)
, (7)

where P
(
A
B

)
is the posterior probability of class A given the features B, P

(
B
A

)
is the likelihood of observing

the features B given class A, P (A) is the prior probability of class A, P (B) is the marginal probability of the
features B, which acts as a normalizing constant. By leveraging this probabilistic framework, NB is particularly
effective for tasks such as text classification, spam filtering, and other applications where feature independence is
a reasonable assumption. For example, in spam filtering, the algorithm calculates the probability of an email being
spam based on the presence of certain words, assuming that the occurrence of each word is independent of others.
Despite its simplicity, NB often performs competitively with more complex models, especially in high-dimensional
spaces. However, its performance may degrade if the feature independence assumption is significantly violated.

2.3. Support Vector Machine

The SVMs are a powerful and versatile machine learning algorithm widely used for classification tasks. They
excel at handling both linear and nonlinear data by finding an optimal hyperplane that separates data points into
distinct classes while maximizing the margin—the distance between the hyperplane and the nearest data points
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from each class (Abd El-Salam et al., 2019). This margin maximization helps improve the model’s generalization
to unseen data. SVMs leverage kernel functions to transform input data into higher-dimensional spaces, enabling
the classification of data that is not linearly separable in its original feature space. Common kernel functions include
linear, polynomial, radial basis function (RBF), and sigmoid kernels. For instance, the RBF kernel measures the
similarity between data points, allowing SVMs to capture complex patterns and nonlinear relationships in the data.
The optimization problem in SVMs is formulated as follows:

min
w,b

1

2
∥w∥2 subject to yi(w · xi + b) ≥ 1 for all i = 1, 2, . . . , n, (8)

where w is the weight vector defining the orientation of the hyperplane, b is the bias term that shifts the
hyperplane, xi represents the feature vector of the i-th data point, yi is the class label of the i-th data point
(yi ∈ {−1, 1}), and n is the total number of data points. Let us consider a dataset (A1, B1, . . . , An, Bn), where
(A1, . . . , An) is the set of input variables, (B1, . . . , Bn) is the output variable, and ’C’ is the intercept. Then, the
SVM classifier is given as the following equation:

SVM =

n∑
i=1

βi −
1

2

n∑
i=1

n∑
j=1

bibjC(ai, aj)βiβj (9)

In equation (9), i = 1, 2, 3, . . . , n, and C = biβi + bjβj . By solving this optimization problem, SVMs identify
the hyperplane that not only separates the classes but also ensures the largest possible margin, thereby improving
generalization to unseen data. This makes SVMs highly effective for a wide range of applications, including
image classification, text categorization, and bioinformatics. The primary advantage of SVM lies in its ability to
handle a wide variety of classification problems, including high-dimensional and non-linearly separable datasets,
by leveraging kernel functions to transform the data into a higher-dimensional space. However, one of the major
drawbacks of SVM is that it depends on the careful selection of key parameters, such as the regularization
parameter C and the kernel parameters, to achieve optimal classification performance Reddy et al. (2019). The
general workflow of SVM involves two main steps: (1) identifying boundaries that correctly classify the training
dataset, and (2) selecting the boundary with the maximum margin from the closest data points Rawal (2020).

2.4. Decision Tree

The DT algorithm is a robust, nonparametric supervised learning method widely used for classification and
regression tasks. It operates by recursively partitioning the dataset based on attribute selection, which is determined
by calculating information gain. Information gain is derived from entropy, a measure of impurity or uncertainty in
the dataset, as defined by the equation:

Entropy(S) =
c∑

i=1

−pi log2 pi (10)

where pi represents the proportion of instances in the dataset S that belong to class i, and c is the total number
of classes. The algorithm evaluates the information gain for each attribute using the formula:

Gain(S,A) = Entropy(S)−
∑

ϑ∈values(A)

|Sϑ|
|S|

Entropy(Sϑ) (11)

Here, A is an attribute, Sϑ is the subset of S where attribute A has value ϑ, and |S| denotes the size of the
dataset. The attribute with the highest gain is selected for splitting. The attribute with the highest gain is selected
for splitting. This process begins by identifying the best attribute to place at the root of the tree, followed by
recursively splitting nodes based on the highest information gain until all attributes are assigned as leaf nodes
across the tree’s branches. The decision tree’s hierarchical structure makes it an interpretable and efficient model,
capable of handling both categorical and numerical data while providing clear insights into the decision-making
process (Seliem, 2022).
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2.5. K-Nearest Neighbor

The KNN algorithm is a simple yet effective ML method widely used for both classification and regression tasks.
As a nonparametric algorithm, KNN does not make assumptions about the underlying data distribution, making
it highly flexible for various applications (El-sayed et al., 2019; Prasannavenkatesan et al., 2021). Given an input
x, KNN identifies the k closest data points (neighbors) in the training set based on a distance metric. The most
commonly used metric is the Euclidean distance, which measures the straight-line distance between two points in
a multi-dimensional space:

d(x,xi) =

√√√√ p∑
j=1

(xj − xij)2, (12)

where xi represents a training point and p is the number of features. For classification, KNN predicts the class
of x by taking a majority vote among the k neighbors:

ŷ = mode{yi | i ∈ Nk(x)}, (13)

where Nk(x) is the set of indices of the k nearest neighbors. For regression, it predicts the output as the average
of the target values of the k neighbors:

ŷ =
1

k

∑
i∈Nk(x)

yi. (14)

The choice of k is a critical hyperparameter that controls the model’s flexibility. A small k leads to a more
complex fit that may capture noise in the data, while a large k results in a smoother model that may oversimplify
the decision boundary. In practice, k is typically chosen through cross-validation. Despite its simplicity, KNN has
some limitations. It can be computationally expensive for large datasets, as it requires calculating the distance
between the test point and every training point. Additionally, KNN is sensitive to the scale of features, so it is often
recommended to normalize or standardize the data before applying the algorithm. Other distance metrics, such as
Manhattan or Minkowski distance, can also be used depending on the specific application.

2.6. Artificial Neural Network

The ANNs are computational models inspired by the human brain’s structure and function. Their research and
application have grown significantly in recent decades. ANNs consist of interconnected layers: an input layer, one
or more hidden layers, and an output layer. Data enters the network at the input layer, is processed through the
hidden layers, and generates the output at the output layer (Eltalhi and Kutrani, 2019). ANNs are computational
models inspired by the structure and function of the human brain. Their research and application have grown
significantly in recent decades, driven by advancements in computational power and the availability of large
datasets. ANNs consist of interconnected layers: an input layer, one or more hidden layers, and an output layer.
Data enters the network at the input layer, is processed through the hidden layers via weighted connections and
activation functions, and generates the final output at the output layer. This layered architecture allows ANNs
to learn complex patterns and relationships in data, making them highly effective in performing tasks such as
classification, regression, and pattern recognition.

2.7. Random Forest

The RF is a widely used supervised ML algorithm, applicable to both regression and classification tasks, though it
typically excels in classification. It is particularly effective for large datasets with high dimensionality, making it a
versatile tool in various domains. The core principle of RF is to combine multiple weak learners (decision trees)
to create a strong learner, leveraging the power of ensemble learning. The RF algorithm can be summarized as
follows(Darst et al., 2018):
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1. Randomly select K data points from the training set.
2. Construct a decision tree using the selected K data points.
3. Repeat steps 1 and 2 to generate N decision trees.
4. For a new data point, predict its category by aggregating the predictions of all N trees and assigning the

category with the highest probability.

This ensemble approach ensures high accuracy and generalization, making RF a powerful and reliable algorithm
for predictive modeling.

3. Performance evaluation criteria

The performance of machine learning (ML) prediction algorithms, especially for classification tasks, is typically
assessed using specific metrics. In this research, we employed a comprehensive set of metrics to evaluate our
models’ performance (Afzal et al., 2021; Seliem, 2022):

• Confusion Matrix: Table 2 summarizes the model’s predictions and actual classifications, providing insights
into the types of errors made.

Table 2. Confusion Matrix.

Actual Predicted
Positive Negative

Positive TP FN
Negative FP TN

where:

– True Positive (TP): The number of positive samples correctly predicted as positive.
– False Negative (FN): The number of positive samples incorrectly predicted as negative.
– False Positive (FP): The number of negative samples incorrectly predicted as positive.
– True Negative (TN): The number of negative samples correctly predicted as negative.

• Kappa statistic
[TP+TN

N ]− [ (TP+FN)(TP+FP )(TN+FN)
N2 ]

1− [ (TP+FN)(TP+FP )(TN+FN)
N2 ]

(15)

• Accuracy
(TP + TN)

TP + FP + TN + FN
(16)

• Precision
TP

TP + FP
(17)

• Recall
TP

TP + FN
(18)

• F1 Score
2× Precision × Recall

Precision + Recall
(19)
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4. The German Credit Dataset

We consider the widely used German credit dataset from the UCI Machine Learning Repository, given by German
professor Hans Hofmann via the European Statlog project. The dataset has been widely used in machine learning
research. Several R packages include this data i.e., evtree, CollapseLevels, caret, gamclass, klaR, and rchallenge.
The data consists of 1000 credits and a stratified sample of 1000 credits to 300 bad ones and 700 good ones. This
data was collected from 500 branches of a large regional bank in southern Germany’s urban and rural areas from
1973 to 1975. The data consists of 1000 observations with one response variable

(Y )

: [ 0 for good risks and 1 for bad risks] and 20 explanatory variables (from X1 to X20). The 20 explanatory variables
in the data set originally contained categorical and numerical variables; for example, the numerical variables are
Credit amount and Age. The complete information of variables is presented in Table (3).

Table 3. The Description of Variables of the German Credit Dataset

No Variable name Attribute Description
X1 Status The account status of the debtor with a bank categorical
X2 Duration The duration of credit in months Quantitative
X3 Credit History The contract’s history of previous or current credit categorical
X4 Purpose The reason behind credit categorical
X5 Amount The total amount of credit Quantitative
X6 Savings Total savings of debtor categorical
X7 Employment Debtor’s tenure with current organization Ordinal
X8 Installment Rate The credit installments of debtor’s throwaway income Ordinal
X9 Personal Status Sex The information about both sex and marital status categorical
X10 Other Debtors Another debtor for the credit categorical
X11 Present Residence The duration of living in the present residence Ordinal
X12 Property The ranking of debtor’s property in ascending order Ordinal
X13 Age The age of the debtor Quantitative
X14 Other Installment Plans Installment loans from other sources categorical
X15 Housing Status of current residence categorical
X16 Number Credits The complete history of the credits taken Ordinal
X17 Job The level of the debtor’s job Ordinal
X18 People Liable The total number of peers depends on the debtor financially Quantitative
X19 Telephone The status of a registered landline on the debtor’s name Binary
X20 Foreign Worker Is the debtor a foreign worker Binary
Y Credit Risk Good or Bad Binary

Table 4. Summary statistics of the variables.

Sympol Attribute& Description Coding Level Freq. Percentage

Y Dependent 0 Good Risks 700 70%
1 Bad Risks 300 30%

Numerical Independent Min Max Mean SD VIF
X2 Duration 4 72 20.9 12.05 1.64
X5 Amount 250 18424 3271 282.73 1.65
X13 Age 19 75 35.55 11.37 1.01
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In Table (4), our analysis is based on the complete data and some descriptive statistics for all quantitative
independent and dependent variables. For summary statistics about the categorical variables, see Groemping
(2019). Before doing the ML algorithms, the multicollinearity between the independent variables should be
checked. We consider the correlation matrix and variance inflation factor (VIF) to diagnose this problem. Table
(4) displays the VIF between the independent variables.

Figure 2. Correlation Matrix.

Figure 3. (a): Boxplots. (b):Violin Plots.

From Figure(2), we observed that some independent variables are weakly correlated since all correlation
coefficients are less than 0.8. Moreover, the VIF for all independent variables is less than 5. This means that
we have no multicollinearity problem (Hair Jr et al., 2021). Furthermore, we also check the outliers in the German
credit dataset. For this purpose, we consider the boxplot as Figure 3 and Rosner’s test as Tabel 5. Figure 3 presents
a comparative visualization of the distributions for three variables, X2, X5, and X13, using both boxplots (a)
and violin plots (b). The boxplots in (a) offer a concise summary of the data’s central tendency, spread, and
potential outliers through the median, quartiles, and whiskers. Notably, X5 exhibits a substantially higher median
value compared to X2 and X13, suggesting a rightward shift in its distribution. The violin plots in (b) provide
a more nuanced depiction of the data’s density and shape, revealing the underlying distribution’s multimodality
and skewness. For instance, X2 shows a distinct multi-peaked structure, indicating potential clustering within the
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data. The violin plots also highlight the presence of outliers, consistent with the boxplots, further enriching the
understanding of each variable’s distributional characteristics. This dual representation allows for a comprehensive
assessment of the data, leveraging the strengths of both boxplots and violin plots to reveal both summary statistics
and detailed distributional information.

Table 5. Results of Rosner’s Test for Outliers.

Var i Mean.i SD.i Value Obs.Num R.i.1 lambda.i.1 Outlier

X2
0 20.90 12.06 72. 678. 4.24 4.04 TRUE(bad)
1 20.85 11.96 60. 30.00 3.27 4.04 FALSE

X5

0 3271.26 2822.74 18424. 916. 5.37 4.04 TRUE (bad)
1 3256.09 2783.08 15945 96. 4.56 4.04 TRUE (bad)
2 3243.38 2755.29 15857 819 4.58 4.04 TRUE (bad)
3 3230.72 2727.52 15672 888 4.56 4.04 TRUE (bad)
4 3218.23 2700.21 15653 638 4.61 4.04 TRUE (bad)
5 3205.74 2672.59 14896 918 4.37 4.04 TRUE (bad)
6 3193.97 2648.05 14782 375 4.38 4.04 TRUE (bad)
7 3182.31 2623.69 14555 237 4.33 4.04 TRUE (bad)
8 3170.84 2600.01 14421 64 4.33 4.04 TRUE (bad)
9 3159.49 2576.61 14318 379 4.33 4.04 TRUE (bad)

10 3148.22 2553.35 14179 745 4.32 4.04 TRUE (bad)
11 3137.06 2530.40 14027 715 4.30 4.04 TRUE (bad)
12 3126.04 2507.81 13756 374 4.24 4.04 TRUE (bad)
13 3115.27 2486.12 12976 382 3.97 4.04 FALSE
14 3105.27 2467.44 12749 922 3.91 4.04 FALSE

X13
0 35.55 11.38 75 331.00 3.47 4.04 FALSE
1 35.51 11.31 75 537.00 3.49 4.04 FALSE

Handling Outliers by TOMI Technique

X2
0 20.85 11.96 60 30 3.27 4.04 FALSE
1 20.81 11.90 60 135 3.29 4.04 FALSE

X5
0 3115.27 2486.12 12976 382 3.97 4.04 FALSE
1 3105.27 2467.44 12749 922 3.91 4.04 FALSE

Table 5 delineates the outcomes of Rosner’s test for outlier detection applied to variables X2, X5, and X13

within the dataset. Rosner’s test, an iterative statistical procedure, evaluates the presence of outliers by computing
the mean (Mean.i), standard deviation (SD.i), and test statistic (R.i.1) for each observation. Observations
exceeding the critical value (lambda.i.1) are classified as outliers (TRUE), as highlighted in red. Notably, X5
demonstrates a pronounced prevalence of outliers across multiple iterations, indicative of substantial variability or
extreme values within this variable. In contrast, X13 exhibits no outliers, suggesting its relative stability. Following
the application of the TOMI methodology, the outlier status for X2 and X5 transitions to FALSE, signifying the
successful mitigation of anomalous data points. This underscores the efficacy of the TOMI technique in addressing
outlier-induced distortions, thereby enhancing the dataset’s robustness for subsequent analytical procedures. The
iterative resolution of outliers in X5 further highlights the technique’s capability to iteratively refine data quality,
ensuring the integrity of statistical inferences.

Table 6. Performance Evaluation of Imputation Methods.

Algorithm
Metric Cart PMM RF Mean Median
MAE 55 59 60 78 83

RMSE 736 763 772 972 1038
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Table 6 presents a comparative evaluation of five imputation methods: CART, PMM, RF, mean Imputation, and
median Imputation, based on two performance metrics: Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). Lower values for both metrics indicate superior imputation accuracy. The results demonstrate that
the CART method outperforms the others, achieving the lowest MAE (55) and RMSE (736). This suggests that
CART is the most effective technique for minimizing imputation errors in the dataset.

Figure 4. The MAE and RMSE of imputation Methods.

The PMM and RF methods exhibit comparable performance, with slightly higher MAE and RMSE values,
indicating moderate effectiveness. In contrast, Mean and Median Imputation yield significantly higher errors
(MAE: 78 and 83; RMSE: 972 and 1038, respectively), highlighting their limitations in preserving data accuracy.
These findings underscore the importance of selecting advanced imputation methods, such as CART, PMM, or
RF, over simpler techniques like Mean or Median Imputation, particularly in datasets where precision is critical.
The superior performance of CART can be attributed to its ability to model complex relationships within the data,
thereby reducing imputation bias and error. Additionally, Figure 4 corroborates these conclusions, further validating
the effectiveness of the CART method.

5. Results and Discussion

Feature selection is a critical step in ML algorithms, as selecting optimal features significantly enhances the
accuracy of predictive models. To identify the most significant variables, we employed the Boruta algorithm
(Mousa et al., 2022; Alam et al., 2020). Table 7 presents the results of this feature selection process, which
evaluates the importance of independent variables for predictive modeling. The Boruta algorithm assesses each
variable using importance scores, including mean importance (meanImp), median importance (medianImp),
minimum importance (minImp), maximum importance (maxImp), and normalized hits (normHits). Based on
these scores, variables are classified as either Confirmed (important) or Rejected (unimportant), with rejected
variables highlighted in red.

The results indicate that 14 out of 20 variables (e.g., X1, X2, X3, X4, X5, X6, X7, X8, X10, X12, X13, X14,
X15, and X17) are confirmed as significant, with high importance scores and normalized hits close to 1. These
variables are likely to contribute meaningfully to the predictive model. In contrast, variables such as X9, X11, X16,
X18, X19, and X20 are rejected due to low importance scores and normalized hits, suggesting they have limited
predictive power.
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Table 7. The selection of independent variables using Boruta algorithm

Variables meanImp medianImp minImp maxImp normHits decision
X1 30.58 30.47 27.37 34.70 1.00 Confirmed
X2 15.83 15.65 12.45 18.65 1.00 Confirmed
X3 14.16 14.05 11.96 17.25 1.00 Confirmed
X4 4.38 4.30 1.39 7.97 0.88 Confirmed
X5 9.19 9.23 6.63 11.64 1.00 Confirmed
X6 8.83 8.83 6.16 12.98 1.00 Confirmed
X7 5.04 5.12 1.78 7.93 0.90 Confirmed
X8 2.67 2.59 0.76 6.19 0.55 Confirmed
X9 1.08 1.05 -0.58 3.03 0.03 Rejected
X10 7.41 7.60 4.49 10.43 1.00 Confirmed
X11 1.24 1.21 0.12 2.14 0.00 Rejected
X12 6.74 6.65 4.45 10.14 1.00 Confirmed
X13 4.99 4.93 2.33 7.96 0.98 Confirmed
X14 5.94 5.78 3.45 8.31 1.00 Confirmed
X15 3.25 3.39 0.74 6.26 0.67 Confirmed
X16 1.99 1.81 0.48 4.18 0.16 Rejected
X17 2.49 2.43 -0.44 6.03 0.52 Confirmed
X18 1.39 1.68 -0.70 3.14 0.00 Rejected
X19 0.87 0.89 -0.27 2.30 0.00 Rejected
X20 1.86 1.83 -1.18 4.39 0.18 Rejected

By distinguishing relevant from irrelevant features, the Boruta algorithm ensures a robust and interpretable
feature set, improving model performance and generalizability. This feature selection process is critical for reducing
dimensionality, mitigating overfitting, and improving computational efficiency in subsequent modeling steps. As
shown in Table 7, the 14 confirmed variables were determined to be statistically significant at the 0.01 level in
predicting the dependent variable. These findings align with the visual representation in Figure 5, further validating
the results.

Figure 5. The important Variables based on Boruta algorithm.

By focusing on the identified key predictors, we have established a strong foundation for constructing a precise
and dependable predictive model. The decision is based on a comparison between each variable’s importance score
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and the importance scores of randomly permuted shadow features. These results provide valuable guidance for
model building by identifying the most informative variables. The generic form of the predictive model is:

Ŷ = f(X1, X2, X3, X4, X5, X6, X7, X8, X10, X12, X13, X14, X15, X17) (20)

where Ŷ : Predicted output (dependent variable), f(·): The function representing the model, which varies
depending on the algorithm and X1, X2, . . . , X17: Confirmed independent variables (features). Imbalanced datasets
are a common problem in ML, often causing poor performance in classification tasks. To address this, resampling
techniques are used to balance the classes. This can be done by either oversampling the minority class or
undersampling the majority class. Oversampling is usually preferred because undersampling can lose important
data. Random oversampling duplicates minority class examples, but this can lead to overfitting. A better method is
SMOTE, which creates new synthetic examples for the minority class by combining nearby instances. This helps
improve performance without overfitting. However, since the imbalance was not strong, we also performed the
analysis with the original imbalanced data. After feature selection to build a classification model, the combined
dataset with 14 attributes is divided into training and testing data with a percentage split of 70%-30% and 80%-
20%. In case 1, data is split below into two subsets: training (70%) and testing (30%) while in case 2, data is
split below into two subsets: training (80%) and testing (20%). The confusion matrix obtained by seven different
supervised ML algorithms is given below. The performance measures follow the accuracy of each classification
algorithm. Ten-fold cross-validation was utilized to evaluate the performance of the classification models. In this
approach, the entire dataset is divided into ten subsets and processed ten times where nine subsets are used as
testing sets and the remaining subset is used as training. Finally, the results are obtained by averaging every ten
iterations.

Table 8. Case 1 splitting data to70%-30%.

Phase Testing

Algorithms
Performances

Confusion matrix Metric
TYPE No Pre. Pre. ACC Kapp F1.Score

NB No Pre. 189 52 0.756 0.357 0.838
Pre. 21 38

SVM No Pre. 198 67 0.736 0.24 0.833
Pre. 12 23

DT No Pre. 192 59 0.743 0.297 0.833
Pre. 18 31

KNN No Pre. 195 62 0.743 0.281 0.835
Pre. 15 28

ANN No Pre. 187 52 0.75 0.344 0.833
Pre. 23 33

LR No Pre. 200 69 0.736 0.228 0.835
Pre. 10 21

RF No Pre. 199 57 0.7733 0.368 0.854
Pre. 11 33

Table 8 presents the performance evaluation of seven ML algorithms: NB, SVM, DT, KNN, ANN, LR, and RF;
on a dataset split into 70% training and 30% testing (Case 1). The evaluation is based on confusion matrix metrics
and performance metrics, including Accuracy, Kappa statistics, and F1 Score. The results demonstrate that the
Random Forest (RF) algorithm outperforms the others, achieving the highest accuracy (77.3%), kappa statistic
(36.8%), and F1 score (85.4%). This indicates that RF is the most effective model for this dataset, balancing
precision and recall effectively. In contrast, SVM and LR exhibit relatively lower performance, with accuracy
values of 0.736 and 0.736, respectively, and lower Kappa statistics, suggesting weaker predictive capabilities.
The confusion matrix values further reveal the algorithms’ ability to correctly classify instances. For example,
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RF correctly predicts 199 instances as ”No Pre.” and 33 as ”Pre.,” demonstrating its robustness in handling both
classes. These findings highlight the importance of selecting an appropriate algorithm for predictive modeling, as
performance can vary significantly across methods. The superior performance of RF underscores its suitability
for this dataset, particularly in scenarios requiring high accuracy and balanced class predictions. Additionally,
Figure 6 corroborates these conclusions, further validating the effectiveness of the RF algorithm.

Figure 6. : Performance Evaluation for Case 1.

Figure 7. : Performance Evaluation for Case 2.
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Building on the results from Table 8 (70%-30% split), Table 9 evaluates the performance of the same seven
machine learning algorithms on a dataset split into 80% training and 20% testing (Case 2). This comparison allows
for an assessment of how the training-testing ratio impacts model performance.

Table 9. Case 2 splitting data to 80%-20%.

Phase Testing

Algorithms
Performances

Confusion matrix Metric
TYPE No Pre. Pre. ACC Kapp F1.Score

NB No Pre. 109 21 0.74 0.409 0.807
Pre. 31 39

SVM No Pre. 128 35 0.765 0.372 0.845
Pre. 12 25

DT No Pre. 130 40 0.75 0.305 0.839
Pre. 10 20

KNN No Pre. 125 36 0.745 0.325 0.831
Pre. 15 24

ANN No Pre. 127 30 0.785 0.443 0.855
Pre. 13 30

LR No Pre. 132 44 0.74 0.252 0.835
Pre. 8 16

RF No Pre. 126 26 0.80 0.494 0.863
Pre. 14 34

The results in Table 9 show that the RF algorithm continues to outperform the others, achieving the highest
accuracy (0.80), Kappa coefficient (0.494), and F1 Score (0.863). This is consistent with its superior performance
in Case 1 (Table 8), further validating RF’s robustness and effectiveness across different data splits. Similarly,
the (ANN) maintains strong performance, with an accuracy of 0.785 and an F1 Score of 0.855, reinforcing its
suitability for complex datasets. Notably, the performance gap between RF and other algorithms, such as (LR)
and (DT), remains pronounced in Case 2, with LR and DT achieving lower accuracy (0.74 and 0.75, respectively)
and Kappa coefficients. This aligns with the findings in Table 8, where RF consistently demonstrated superior
predictive capabilities. These findings align with the visual representation in Figure (7).
A key observation is the consistent improvement in overall performance metrics across most algorithms in Case 2
compared to Case 1. For instance, the accuracy of the Random Forest (RF) model increased from 0.7733 in Case 1
to 0.80 in Case 2, while the Artificial Neural Network (ANN) model showed an improvement from 0.75 to 0.785.
This trend suggests that a larger training set (80% compared to 70%) enhances model performance, likely due to
the increased availability of data for learning underlying patterns. These findings highlight the critical role of both
algorithm selection and training-testing ratios in predictive modeling.

The consistent superiority of RF across both cases underscores its robustness and reliability as a modeling
approach. Furthermore, the improved performance in Case 2 emphasizes the value of larger training datasets in
achieving higher accuracy and model generalizability. The Random Forest model, which aggregates predictions
from multiple decision trees, can be expressed as:

Ŷ =
1

N

N∑
i=1

Treei(X1, X2, . . . , X17), (21)

where N is the number of trees in the ensemble, and Treei(·) represents the i-th decision tree. This ensemble
approach contributes to the model’s robustness and superior performance across both cases.
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6. Conclusion

This paper emphasizes the significance of data preprocessing in optimizing ML models for credit risk prediction.
By employing the TOMI technique for outlier removal and the Boruta algorithm for feature selection, five non-
contributing features were identified and eliminated, enhancing prediction accuracy. Seven ML algorithms (NB,
SVM, DT, KNN, LR, and RF) were evaluated using metrics such as accuracy, kappa statistics, and F1-score. The
RF algorithm emerged as the most effective model, achieving accuracy rates of 77.3% and 80% for the 70%− 30%
and 80%− 20% splits, respectively, along with kappa statistics of 36.8% and 49.4% and F1-scores of 85.4% and
86.3%. These findings showcase how effective preprocessing techniques can substantially enhance the performance
of ML models in predicting loan defaults, with RF outperforming other algorithms.
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