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Abstract This study develops a fractional epidemiological model to investigate the dynamics of dengue transmission,
incorporating biological and behavioral differences between male and female human populations. The model utilizes
fractional calculus to capture memory effects, which are essential for understanding the long-term behavior of infectious
diseases. Control variables representing fumigation and preventive measures are introduced to evaluate intervention
strategies, formulating a fractional optimal control problem. To solve the model, Euler’s method is employed for numerical
approximation of the fractional differential equations, while Pontryagin’s Minimum Principle and a forward-backward
numerical approach are applied to determine optimal strategies. Parameter estimation is conducted using the least-squares
fitting method based on cumulative dengue hemorrhagic fever (DHF) case data from West Java Province, Indonesia from
2014 to 2023. The estimation yields a Mean Absolute Percentage Error (MAPE) of 4.32% for males and 4.50% for
females, with an overall fit of 4.41%. As one of the key parameters affecting basic reproduction number, proportion of
additional immunity levels among females is simulated to examine its influence on infection outcomes. The results show that
increasing this parameter reduces female infections, which subsequently lowers vector transmission and indirectly decreases
male infections. In the control simulation, lower fractional orders enhance the efficiency of system dynamics, leading to
faster convergence towards the desired infection reduction. Additionally, the cost-effectiveness analysis indicates that the
implementation of a combined strategy, incorporating both fumigation and preventive measures, provides the most efficient
intervention.
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1. Introduction

Dengue is a mosquito-borne viral infection primarily transmitted to humans through the bite of infected Aedes
aegypti mosquitoes, posing a significant threat to nearly half of the world’s population. It is estimated that 100–400
million infections occur annually, predominantly in tropical and subtropical regions, particularly in densely
populated urban and semi-urban areas. While many infections are asymptomatic or result in mild symptoms, severe
cases such as dengue hemorrhagic fever and dengue shock syndrome can lead to life-threatening complications
and significant mortality. Effective prevention and control efforts rely heavily on vector control strategies, as
there is currently no specific antiviral treatment available for dengue or its severe forms. Early diagnosis, coupled
with timely access to adequate medical care, has proven essential in reducing the fatality rates of severe cases,
emphasizing the importance of strengthening public health systems and community awareness in endemic regions
[1].
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In this study, we focus on developing a mathematical model for the transmission of dengue fever that incorporates
a classification by sex. This differentiation is motivated by observed biological and behavioral variations between
males and females in terms of susceptibility to infection, immune response, and exposure to Aedes aegypti
mosquitoes. Males of many species, including humans, have been found to be more susceptible than females
to infections caused by parasites, fungi, bacteria, and viruses. One proximate cause of these sex differences
in infection is the variation in endocrine-immune interactions. Specifically, sex steroids such as androgens in
males and estrogens in females modulate several aspects of host immunity, potentially making males more
vulnerable to infections [2]. Incorporating these sex-specific variations into a mathematical model allows for a
more detailed understanding of dengue transmission dynamics and facilitates the design of more effective and
targeted interventions, considering these physiological and behavioral differences.

Moreover, the model is formulated within the framework of fractional calculus, which accounts for the memory
effects inherent in infectious diseases, such as dengue. Unlike traditional integer-order models, which only consider
the present state of a system, fractional-order models incorporate the influence of past states, making them
particularly well-suited for diseases where historical dynamics significantly impact current transmission processes.
This is especially relevant in the case of dengue, where factors such as previous exposure to the virus, environmental
conditions, and immune system responses can influence the progression and spread of the disease. Fractional
derivatives capture these memory effects, offering a more accurate and realistic representation of disease dynamics
compared to classical models [3].

To enhance the model’s practical relevance, we also incorporate an optimal control problem focusing on
two intervention strategies: fumigation to reduce vector populations and preventive measures to limit human
exposure. These control measures are incorporated as time-dependent variables, and their optimal implementation
is determined by minimizing a cost functional that balances the effectiveness of interventions with their associated
costs. By framing the problem in this way, we seek to identify strategies that provide the greatest reduction in
dengue transmission at the lowest cost, ensuring both efficiency and sustainability in real-world applications.

The numerical simulation of this model is a challenging task due to the complexities introduced by fractional-
order dynamics and the optimization process. Researchers such as [4, 5, 6, 7] have explored fractional-order models
in their studies, while [8, 9, 10, 11] have investigated optimal control frameworks. Additionally, [12, 13, 14, 15, 16]
have focused on integrating optimal control with fractional-order models. To address these challenges, we adopt
a hybrid numerical scheme that combines the forward-backward iterative method with Euler’s algorithm. This
method ensures accurate solutions to the fractional differential equations governing the system while efficiently
solving the optimal control problem. By combining sex-classified fractional modeling with optimal control and
advanced numerical techniques, this study provides a novel framework for analyzing dengue transmission dynamics
and guiding effective intervention strategies.

2. Fractional Model Formulation

In this section, we present a model of dengue infection with sex-based classification in the human population.
This classification is emphasized to highlight the increased susceptibility of males to the virus. In this study, we
restrict the model to a basic SIR− SI framework and only considering a single virus serotype, which excludes the
possibility of reinfection. The notation and description of each populations and parameters are provided in Table 1
and Table 2.

Therefore, we present the transmission dynamics of the dengue transmission model is illustrated in the diagram
presented in Figure 1. This diagram serves as a conceptual representation of the interactions and transitions among
the various compartments in the system.
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Table 1. Compartments description.

Compartments Description
Sv Number of susceptible mosquito population
Iv Number of infected mosquito population
Sm Number of susceptible male human population
Sf Number of susceptible female human population
Im Number of infected male human population
If Number of infected female human population
Rm Number of recovery male human population
Rf Number of recovery female human population

Table 2. Parameters description.

Parameters Description
Λv Growth rate of mosquito population
Λm,f Growth rate of (m = male, f = female) human population
βv Transmission rate from human to mosquito
βh Transmission rate from mosquito to human

(1− γ) Proportion of additional immunity level for female human population
µv Natural death rate of mosquito population
µm,f Natural death rate of (m = male, f = female) human population
τm,f Dengue mortality rate of (m = male, f = female) human population
θm,f Recovery rate of (m = male, f = female) human population

Figure 1. Dengue transmission diagram.
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Based on the transmission diagram in Figure 1, the system of fractional differential equations for the
mathematical model of dengue spread is formulated as follows:

CDα
t Sv = Λα

v − βα
v (Im + If )Sv

Nh
− µα

vSv,

CDα
t Iv =

βα
v (Im + If )Sv

Nh
− µα

v Iv,

CDα
t Sm = Λα

m − βα
h IvSm

Nh
− µα

mSm,

CDα
t Sf = Λα

f − γ
βα
h IvSf

Nh
− µα

fSf , (1)

CDα
t Im =

βα
h IvSm

Nh
− (µα

m + ταm + θαm)Im,

CDα
t If = γ

βα
h IvSf

Nh
− (µα

f + ταf + θαf )If ,

CDα
t Rm = θαmIm − µα

mRm,
CDα

t Rf = θαf If − µα
fRf ,

with CDα
t represents the Caputo fractional derivative with α ∈ (0, 1], which accounts for memory effects in disease

dynamics.
The variables Sv, Iv, Sm, Sf , Im, and If are all non-negative, ensuring biological feasibility. The total

human population is given by Nh = Sm + Sf + Im + If +Rm +Rf ≥ 0 and the total mosquito population is
Nv = Sv + Iv ≥ 0. Additionally, all parameters defined in the model are positive, with 0 ≤ γ ≤ 1 as proportion and
Λα
v , Λα

m, Λα
f , βα

v , βα
h , µα

v , µα
m, µα

f , θαm, θαf , ταm, and ταf > 0. The fractional order α ensures dimensional consistency,
with the growth rates Λα

v ,Λ
α
m,Λα

f having dimensions of population
timeα , and other rate parameters measured in 1

timeα .

3. Euler’s Method

Euler’s method is a fundamental numerical algorithm used to solve fractional differential equations. Based on
explanations from [13], the steps for implementing Euler’s method in this context are outlined below.

Consider the initial value problem (IVP):
CDα

t y(t) = f (t, y (t)) , 0 < α ≤ 1, (2)

with the initial condition:
y(0) = y0, 0 < t ≤ tf ,

where f (t, y (t)) is a given function that satisfies certain smoothness conditions [17].
The function y(t), known as the exact solution, that satisfies the IVP in Equation (2). However, the numerical

procedure aims to approximate y(t) at discrete points within the interval of interest. The interval [0, tf ] is divided
into n equal intervals [tj , t(j + 1)], each of size h =

tf
n , with nodes tj = jh, for j = 0, 1, . . . , n.

To derive a numerical approximation, we first rewrite the fractional differential equation as an equivalent Volterra
integral equation [18] by applying the fractional integral operator CD−α

t to both sides of Equation (2):

y(t) = y0 +
CD−α

t f (t, y (t)) .

According to [17], CD−α
t f (t, y (t)) is then approximated by a left fractional rectangular formula in such a way:

y (tn+1) = y0 +
hα

Γ(α+ 1)

n∑
j=0

bj,n+1f (tj , y (j)) ,

where the coefficients bj,n+1 are defined as bj,n+1 = (n+ 1− j)α − (n− j)α.
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4. Fractional Parameter Estimation

In this section, we estimate the parameters of the fractional-order model (1). First, we collect data from
[19, 20, 21, 22], which includes DHF cases in humans, DHF mortality in humans, total human populations, and
life expectancy in West Java Province, Indonesia, categorized by sex from 2014 to 2023. To estimate parameters,
we use cumulative DHF case data for each year from 2014 to 2023. The parameter estimation follows the least-
squares fitting method [23], applied to the fractional-order model. Some parameters will be estimated based on
geographical data, namely µv, µm, µf ,Λm,Λf , τm, and τf . The natural death rate is derived from the inverse of
life expectancy. According to [24], the average life expectancy of Aedes mosquitoes is 25 days. The average life
expectancy for male and female human populations is 71.048 years and 74.864 years, respectively [22]. Thus, we
obtain µv = 14.6, µm = 0.0141, and µf = 0.0134 per year. The human growth rate is calculated as the product
of the total population and the natural death rate. Using the data from [21, 22], we estimate Λm = 328, 323 and
Λf = 301, 673 individuals per year. The DHF mortality rate is approximated using the Case Fatality Rate (CFR),
which represents the proportion of infected individuals who die from DHF. Based on data from [20], we estimate
τm = 0.0068 and τf = 0.0087 per year.

The remaining parameters, including the fractional-order, are estimated by minimizing the following objective
function:

min
Λv,βv,βh,γ,θm,θf ,α

tf∑
i=0

((
Imi − Idatami

)2
+
(
Ifi − Idatafi

)2)
,

where tf is the final time, Idatami
and Idatafi

are the cumulative DHF cases for male and female populations,
respectively, while Imi

and Ifi are the corresponding numerical solutions of the fractional-order model for
i = 0, 1, 2, . . . , tf .

For the estimation process, the initial value, lower bound, upper bound, and estimated parameters value are
presented in Table 3, while the comparison between the reported data and the model solution is shown in Figure 2.
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Figure 2. Comparison between data and model solution.

Based on the estimation results, the Mean Absolute Percentage Error (MAPE) between the data and the model
solution is 4.32% for the male population and 4.50% for the female population. The overall average MAPE is
4.41%, indicating a good fit of the fractional-order model to the data.
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Table 3. Estimated values of model parameters.

Parameters Lower Bound Upper Bound Initial Value Value (Year) Source
α 10−3 1 0.9 0.9718 Fitted
Λα
m - - - 328, 323α Estimated

Λα
f - - - 301, 673α Estimated

µα
m - - - 0.0141α Estimated

µα
f - - - 0.0134α Estimated

µα
v - - - 14.6α Estimated

ταm - - - 0.0068α Estimated
ταf - - - 0.0087α Estimated
βα
h 10−3 1 0.5 1α Fitted

βα
v 10−3 1 0.5 0.9997α Fitted
γ 10−3 1 0.5 0.9826 Fitted
θαm 10−3 1 0.5 0.0165α Fitted
θαf 10−3 1 0.5 0.0010α Fitted
Λα
v 108 1010 109 (109)α Fitted

5. Sensitivity Analysis

In this section, we conduct a sensitivity analysis to determine which parameters have a significant influence on the
basic reproduction number (R0). Following the methodology outlined in [25], we employ the sensitivity index to
quantify the impact of each parameter.

The basic reproduction number is derived using the Next-Generation Matrix method [26], which involves
computing the spectral radius of the Jacobian matrix evaluated at the disease-free equilibrium. This method ensures
an accurate representation of the transmission potential of the infection within the population. The expression for
R0 is given by:

R0 =

√
βhβvΛvµmµf (Λmm2µf + γΛfm1µm)

m1m2µ2
v(Λmµf + Λfµm)

2 ,

where m1 = (θm + τm + µm) and m2 = (θf + τf + µf ).
The sensitivity index of R0 with respect to a parameter p is defined as:

ΥR0
p =

∂R0

∂p
× p

R0
.

This index measures the relative change in R0 resulting from a small relative change in the parameter p. A positive
sensitivity index indicates that an increase in p leads to an increase in R0, whereas a negative value suggests an
inverse relationship. Using the parameter values listed in Table 3, we compute the sensitivity indices and present
the results in Table 4.

Table 4. Parameter sensitivity index.

Parameters Sensitivity Index Parameters Sensitivity Index Parameters Sensitivity Index
Λv 0.50 µv −1.00 θm −0.09
Λm −0.31 µm 0.24 θf −0.01
Λf −0.19 µf 0.02 γ 0.30
βv 0.50 τm −0.04
βh 0.50 τf −0.11
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The largest and smallest values of the sensitivity index indicate the most influential parameters affecting changes
in R0, namely µv, Λv, βv, βh, Λm, and γ. Furthermore, to analyze the impact of parameter variations, we
conduct simulations by selecting some values of γ to observe its effect on infection outcomes. The parameter
(1− γ) represents the proportion of additional immunity level for the female human population. By varying γ, we
can assess how changes in immunity levels among females influence the overall disease spread, peak infection
levels, and total number of infected individuals over time. These insights are essential for designing gender-
targeted policies, considering that biological and behavioral differences may affect immune responses and disease
progression.
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Figure 3. Impact of γ on the Infected Population.

Based on the Figure 3, it can be concluded that although γ directly influences the infected female population,
its variation also indirectly affects the infected male population. As the value of γ increases, the proportion of
females receiving additional immunity (1− γ) decreases, leading to a rise in the number of infected females. This,
in turn, increases the number of infected vectors (mosquitoes), ultimately resulting in a higher number of infected
males. Conversely, when the proportion of immune females increases, the number of infected mosquitoes declines,
leading to a reduction in male infections. Thus, controlling γ is not only crucial for reducing infections among
females but also has a cascading effect on male infections through vector-mediated transmission dynamics.

6. Fractional Optimal Control Problem

In this section, we extend the model in Equation (1) by introducing control variables. Specifically, the controls u1

and u2 represent fumigation efforts and preventive measures, respectively. The primary objective of fumigation
efforts is to reduce the population of vectors, such as mosquitoes, that act as carriers for the disease. Preventive
measures can include public awareness campaigns, personal protection, or environmental management to reduce
human exposure to vectors. The modified fractional differential system in Equation (1) with these control variables
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is formulated as follows:

CDα
t Sv = Λα

v − βα
v (Im + If )Sv

Nh
− µα

vSv − θαu1Sv,

CDα
t Iv =

βα
v (Im + If )Sv

Nh
− µα

v Iv − θαu1Iv,

CDα
t Sm = Λα

m − (1− u2)
βα
h IvSm

Nh
− µα

mSm,

CDα
t Sf = Λα

f − (1− u2)γ
βα
h IvSf

Nh
− µα

fSf , (3)

CDα
t Im = (1− u2)

βα
h IvSm

Nh
− (µα

m + ταm + θαm)Im,

CDα
t If = (1− u2)γ

βα
h IvSf

Nh
− (µα

f + ταf + θαf )If ,

CDα
t Rm = θαmIm − µα

mRm,
CDα

t Rf = θαf If − µα
fRf ,

where θα represents the effectiveness rate of fumigation, with a dimension of 1
timeα . Both control variables are

constrained within u1, u2 ∈ [0, 1]. It is important to note that the system in Equation (3) reverts to the model
without control in Equation (1) when u1 = u2 = 0.

The goal of this fractional optimal control problem is to minimize the number of infected male and female
humans, as well as infected mosquitoes, while simultaneously considering the costs associated with implementing
control strategies. The objective functional is defined as:

minJ (Iv, Im, If , u1, u2) =

∫ tf

0

A1Iv +A2Im +A3If +
1

2
A4u

2
1 +

1

2
A5u

2
2 dt,

where A1, A2, A3 are weighting constants for the infected populations Iv, Im, and If , and A4, A5 are cost
coefficients for the controls u1 dan u2 respectively, These constants satisfy 0 < A1, A2, A3, A4, A5 < ∞.

To solve this fractional optimal control problem, we use Pontryagin’s Minimum Principle (PMP) for fractional
optimal control method [13, 27]. The Hamiltonian of the system is given by:

H = A1Iv +A2Im +A3If +
1

2
A4u

2
1 +

1

2
A5u

2
2 +

λ1

(
Λα
v − βα

v (Im + If )Sv

Nh
− µα

vSv − θαu1Sv

)
+ λ2

(
βα
v (Im + If )Sv

Nh
− µα

v Iv − θαu1Iv

)
+

λ3

(
Λα
m − (1− u2)

βα
h IvSm

Nh
− µα

mSm

)
+ λ4

(
Λα
f − (1− u2)γ

βα
h IvSf

Nh
− µα

fSf

)
+

λ5

(
(1− u2)

βα
h IvSm

Nh
− (µα

m + ταm + θαm)Im

)
+ λ6

(
(1− u2)γ

βα
h IvSf

Nh
− (µα

f + ταf + θαf )Sf

)
+

λ7 (θ
α
mIm − µα

mRm) + λ8

(
θαf If − µα

fRf

)
.

The optimality conditions from PMP ensure that the controls are given by:

u∗
1 = min

(
max

(
0,

θα(λ1Sv + λ2Iv)

A4

)
, 1

)
u∗
2 = min

(
max

(
0,

(λ5 − λ3)β
α
h IvSm + (λ6 − λ4)γβ

α
h IvSf

A5Nh

)
, 1

)
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while the adjoint system asserts that the co-state variables λi(t), i = 1, 2, . . . , 8 satisfy

tD
α
tf
λ1 = (λ1 − λ2)

βα
v (Im + If )

Nh
+ λ1(µ

α
v + θαu1),

tD
α
tf
λ2 = −A1 + (λ3 − λ5)(1− u2)

βα
hSm

Nh
+ (λ4 − λ6)(1− u2)γ

βα
hSf

Nh
+ λ2(µ

α
v + θαu1),

tD
α
tf
λ3 = (λ2 − λ1)

βα
v (Im + If )Sv

N2
h

+ (λ3 − λ5)(1− u2)
βα
h Iv(Nh − Sm)

N2
h

+

(λ6 − λ4)(1− u2)γ
βα
h IvSf

N2
h

+ λ3µ
α
m,

tD
α
tf
λ4 = (λ2 − λ1)

βα
v (Im + If )Sv

N2
h

+ (λ5 − λ3)(1− u2)
βα
h IvSm

N2
h

+

(λ4 − λ6)(1− u2)γ
βα
h Iv(Nh − Sf )

N2
h

+ λ4µ
α
f ,

tD
α
tf
λ5 = −A2 + (λ1 − λ2)

βα
v Sv(Nh − (Im + If ))

N2
h

+ (λ5 − λ3)(1− u2)
βα
h IvSm

N2
h

+

(λ6 − λ4)(1− u2)γ
βα
h IvSf

N2
h

+ (λ5 − λ7)θ
α
m + λ5(µ

α
m + ταm),

tD
α
tf
λ6 = −A3 + (λ1 − λ2)

βα
v Sv(Nh − (Im + If ))

N2
h

+ (λ5 − λ3)(1− u2)
βα
h IvSm

N2
h

+

(λ6 − λ4)(1− u2)γ
βα
h IvSf

N2
h

+ (λ6 − λ8)θ
α
f + λ6(µ

α
f + ταf ),

tD
α
tf
λ7 = (λ2 − λ1)

βα
v (Im + If )Sv

N2
h

+ (λ5 − λ3)(1− u2)
βα
h IvSm

N2
h

+ (λ6 − λ4)(1− u2)γ
βα
h IvSf

N2
h

+ λ7µ
α
m,

tD
α
tf
λ8 = (λ2 − λ1)

βα
v (Im + If )Sv

N2
h

+ (λ5 − λ3)(1− u2)
βα
h IvSm

N2
h

+ (λ6 − λ4)(1− u2)γ
βα
h IvSf

N2
h

+ λ8µ
α
f ,

which is a fractional system of right Riemann-Liouville derivatives, whose operator is represented by tD
α
tf

. In
addition, the following transversality conditions hold:

tD
α−1
tf

λi

∣∣∣∣
tf

= 0 ⇐⇒ tI
1−α
tf

λi

∣∣∣∣
tf

= λi(tf ) = 0 i = 1, 2, ..., 8,

where tI
1−α
tf

is the right Riemann-Liouville fractional integer of order (1− α).

7. Forward-Backward Method

The forward-backward method is a widely used iterative numerical technique for solving optimal control problems.
It consists of two primary phases: forward integration of the state equations and backward integration of the adjoint
(co-state) equations. Through successive iterations, this method refines the control trajectory to minimize the
given objective functional effectively. Summarizing the explanations from [28], the procedure can be described
as follows:

1. Initialization
Define the initial conditions for the state variables and the final conditions for the adjoint variables. An initial
guess for the control variable u(t) is also specified, which serves as the starting point for the iterative process.

2. Forward Integration
Solve the state equations from the initial time t0 to the final time tf , using the current control variable. This
step updates the state variables x(t) over the entire time interval.
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3. Backward Integration
Solve the adjoint equations from tf back to t0, using the state variables and control variable obtained from
steps 1 and 2. This step updates the adjoint variables λ(t) over the time interval.

4. Control Update
Update the control variable u(t) using state variables x(t) and adjoint variables λ(t) obtained from steps 2
and 3.

5. Convergence Check
Evaluating the difference between the current and previous solutions for the control, state, and adjoint
variables. If these differences fall within a predefined tolerance, the iterative process is terminated. Otherwise,
the algorithm returns to the forward integration phase, and the process is repeated until convergence is
achieved.

8. Numerical Simulation

In this section, we present the numerical simulation to solve the fractional optimal control problem formulated
in Section 6. The solution is implemented using a hybrid approach that combines the forward-backward method
for optimal control with the Euler’s method for solving the fractional differential equations. This hybrid approach
provides a robust and efficient framework for addressing complex fractional optimal control problems.

In our numerical simulations, we consider parameter values based on the estimation results, as outlined in
Table 3. The initial conditions are specified as follows: Sv(0) = 50, 000, 000, Iv(0) = 1, 000, Sm(0) = 21, 788, 900,
Sf (0) = 20, 641, 524, Im(0) = 10, 320, If (0) = 8, 819, Rm(0) = 0, and Rf (0) = 0, with a convergence check
tolerance of 10−3. Furthermore, this study examines three control strategies:

1. Strategy 1: Single control using u1, representing fumigation measures only.
2. Strategy 2: Single control using u2, representing preventive measures only.
3. Strategy 3: Combined control using both u1 and u2, representing simultaneous application of fumigation

and preventive measures.

The simulations are conducted for tf = 50 year, with three different fractional order values: α = 0.95, 0.9718,
and 1. This allows for an analysis of the impact of fractional order dynamics on the model’s behavior under various
control scenarios. Figures 4, 5, and 6 display the simulation results for the population of infected mosquito, infected
male human and infected female human with and without control for α = 0.95, 0.9718, and 1, respectively. By
implementing optimal control strategies, there are significant reductions in the numbers of infected mosquitoes,
infected male and female individuals compared to without controls. The profile of the optimal control using
Strategy 1, Strategy 2, and Strategy 3 for α = 0.95, α = 0.9718, and α = 1 are provided in Figures 7, 8, and 9,
respectively.

Table 5. Comparison of the cumulative objective functional for each strategy.

Strategy J of α = 0.95 J of α = 0.9718 J of α = 1

Single u1 1.33× 106 2.20× 106 4.80× 106

Single u2 5.10× 105 5.26× 105 5.51× 105

Combination u1 and u2 5.09× 105 5.24× 105 5.48× 105

Table 5 summarizes the values of the cumulative objective functional (J ) for three control strategies under
different fractional orders. The combined strategy u1 and u2 consistently achieves the lowest J across all fractional
orders, indicating that simultaneous implementation of fumigation and prevention is the most effective in reducing
the overall system cost. For all strategies, the value of J increases as the fractional order α increases. This suggests
that lower fractional orders result in more efficient system dynamics or reduced system cost.
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Figure 4. Simulation of fractional optimal control with α = 0.95.
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Figure 5. Simulation of fractional optimal control with α = 0.9718.
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Figure 6. Simulation of fractional optimal control with α = 1.
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Figure 7. Control profiles of fractional optimal control with α = 0.95.
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Figure 8. Control profiles of fractional optimal control with α = 0.9718.
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Figure 9. Control profiles of fractional optimal control with α = 1.

9. Cost Effectiveness Analysis.

In this section, we assess and compare the advantages and disadvantages of control measures for each method
implemented in the previous section. The evaluation is conducted using the Incremental Cost-Effectiveness Ratio
(ICER) as a metric. The mathematical definition of ICER, as given in [29], is as follows:

ICER =
Difference in cost produced by strategies i and j

Difference in the total number of infections averted in strategies i and j
.

ICER is used to compare two distinct strategies, denoted as i and j. The numerator represents the difference in
intervention costs, which corresponds to the value of the objective function for each strategy, as defined in Table
5. The denominator represents the difference in health outcomes with and without control measures. First, we rank
the strategies from the lowest to the highest total number of infections averted. Then, when comparing multiple
intervention options, each strategy is evaluated incrementally by comparing it to the next less effective alternative
in terms of the overall number of infections prevented. In this study, we only perform cost-effectiveness analysis
for α = 0.9718, as it represents the best parameter estimation result.

Table 6. Comparison of ICER for each intervention strategies.

Strategies Optimal Controls Total Infection Averted Total Cost ICER ICER Recalculated
1 u∗

1 3.429684× 105 2.20× 106 6.41 −
2 u∗

2 1.916542× 106 5.26× 105 −1.06 0.27

3 u∗
1 and u∗

2 1.916544× 106 5.24× 105 −1.00 −1.00
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The ICER indexes, as reported in Table 6, are obtained as follows.

ICER (1) =
2.20× 106 − 0

3.429684× 105 − 0
= 6.41,

ICER (2) =
5.26× 105 − 2.20× 106

1.916542× 106 − 3.429684× 105
= −1.06,

ICER (3) =
5.24× 105 − 5.26× 105

1.916544× 106 − 1.916542× 106
= −1.00.

Comparing Strategy 1 and Strategy 2, the use of Strategy 2 is cost saving over Strategy 1. This indicate the
Strategy 1 is less effective and more costly than the other strategy. Hence, Strategy 1 is removed. Furthermore we
recalculation the index of ICER as follows.

ICER (2) =
5.26× 105 − 0

1.916542× 106 − 0
= 0.27,

ICER (3) =
5.24× 105 − 5.26× 105

1.916544× 106 − 1.916542× 106
= −1.00.

Comparing Strategy 2 and Strategy 3, the use of Strategy 3 is cost saving over Strategy 2. This indicate the
Strategy 2 is less effective and more costly than the other strategy. Hence, Strategy 2 is removed. Our result
suggest that Strategy 3 is the most cost-effective intervention associated with the incremental cost-effectiveness
ratio (ICER).

10. Conclusion

The study presented a mathematical model to analyze the dynamics of dengue transmission while incorporating
biological and behavioral differences between male and female humans. By employing fractional calculus, the
model accounts for memory effects, which are essential in capturing the long-term dynamics of diseases. The
inclusion of control variables, representing fumigation and preventive measures, allows for the evaluation of
effective intervention strategies. The fractional-order approach enhances the realism of the model, offering better
predictions compared to classical integer-order models. Furthermore, the differentiation between male and female
populations highlights critical biological and immunological differences, enabling the design of more targeted
interventions.

This study successfully formulated a fractional optimal control problem, applying Pontryagin’s Minimum
Principle and the forward-backward numerical method to determine optimal control strategies, while Euler’s
method was utilized for solving the fractional differential equations. Numerical simulations demonstrated that
lower fractional orders enhance the efficiency of system dynamics, leading to faster infection reduction. Sensitivity
analysis revealed that key parameters, particularly the proportion of additional immunity levels among females,
significantly influence disease spread. Simulation results showed that increasing this parameter reduces female
infections, subsequently lowering vector transmission and indirectly decreasing male infections.

Among the evaluated intervention strategies, the combined approach simultaneous implementation of fumigation
and preventive measures proved to be the most effective, achieving the lowest infection levels and cost strategies.
The cost-effectiveness analysis further confirmed this strategy as the most efficient in balancing disease control and
intervention costs.

This research provides valuable insights for understanding and mitigating dengue transmission through a
fractional epidemiological model that incorporates sex specific dynamics. The fractional optimal control framework
offers a practical tool for public health policymakers to design cost effective interventions. Future studies could
expand on this work by considering additional real world factors, such as seasonal variations, vector resistance to
fumigation, and socioeconomic impacts, to enhance the model’s relevance and applicability.
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