
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0–11.
Published online in International Academic Press (www.IAPress.org)

Testing exponentiality based on Progressively Type-I interval censored data

Huda H. Qubbaj∗

Department of Mathematics, The University of Jordan, Jordan

Abstract In this paper we propose non-parametric estimates for the information measure entropy when a
progressively Type-I interval censored data is available. Different non-parametric approaches are used for deriving
the estimates. Entropy-based tests of exponentiality are proposed. The critical values and the power values of the
proposed tests are simulated and studied under various alternatives. Real life data sets are presented and analysed.

Keywords Entropy; Non-parametric statistics; Type-I Interval Censoring; Testing exponentiality; Monte Carlo
simulation.

DOI: 10.19139/soic-2310-5070-2394

1. Introduction

Shannon entropy [1] of a random variable (r.v.) X whose probability density function (pdf) f(x) and
cumulative distribution function (cdf) F (x), is defined as:

H(X) = −
∫
RX

f(x)log (f(x)) dx, (1)

where RX denotes the support of the r.v. X.
For more details on entropy the reader can see [4,13,20,21,25]. Also [11,12] introduced nonparametric

estimates for entropy based on progressively Type-II censored data. Furthermore, the estimation problem of
certain entropy measures for particular distributions under a specific type of censoring have been discussed
in literature. For example, [2] studied Entropy Estimation of Inverse Weibull Distribution under Improved
Adaptive Progressively Type-II Censoring. In literature there are different approaches and versions of entropy
estimations that provide a diverse toolkit for researchers to choose from depending on the specific application
and the data characteristics.
However, estimation of the entropy measure under progressively Type-I interval censored data have not

been considered so far in the Literature. Accordingly, our main objective in this paper is to use the developed
different methods for estimating the entropy measures under the progressive Type-I censoring set-up in
testing exponentiality.
[5] introduced progressive Type-I censoring as an extension of Type-I censoring, where in a progressively

Type-I censored life test on n items, progressive censoring is carried out at the prefixed censoring times
t1 < t2 < ... < tk. That is, at the i

th censoring time ti, Ri items are randomly removed from the experiment,
1 ≤ i ≤ k − 1, with the restriction R1 + ...+Rk−1 ≤ n− l, l ∈ {0, ..., n}. Then at the kth censoring time tk,
all remaining items are removed from the life test if there are any left. In many practical situations lifetimes of

∗Correspondence to: Huda H. Qubbaj (Email: hudaqubbaj.ctc@gmail.com). Department of Mathematics, University of Jordan.
Queen Rania street, Amman, Jordan.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



HUDA H. QUBBAJ 1

units placed on a test are observed within Intervals, where this censoring scheme is called Interval censoring.
[1] initially discussed progressive type-I interval censoring in literature and studied an exponential distribution
using this censoring.
Since then this censoring scheme has attracted attention among researchers. Progressive type-I interval

censoring can be briefly described as follows: Suppose n identical items are placed simultaneously on life
testing at time t0 = 0, where inspection is at m pre-fixed censoring times t1 < t2 <.....< tm, and where tm
is the scheduled time to terminate the experiment and m is pre-fixed number of stops. For i = 1, 2, ...,m, let
ki be the number of failures in the interval (ti−1,ti]. Let Si be the number of the surviving items at ti and
Ri be the number of removed items at ti. In this censoring scheme, ki and Si are random numbers while Ri

is the number of remaining items, which is also a random number. At the 1st inspection time t1, we observe
k1 failures, then R1 surviving items are randomly withdrawn from the remaining items n− k1. One can
see that after this step, the number of remaining items is (n− k1 −R1). Now, after time t1 and at the 2nd

inspection time t2, we observe k2 failures where R2 items are randomly removed from (n− k1 − k2 −R1)
items. Lastly, at the mth inspection time (the last inspection time), we observe km failures and all remaining

(n−
∑m

i=1 ki −
∑m−1

i=1 Ri) items are immediately removed from the experiment.
The observed progressive Type-I interval censored data can be represented as:
{(ki, Ri, ti) , i = 1, 2, â,m}.
The associated likelihood function under the progressive type-I interval censoring is given by:

L(θ) ∝
m∏
i=1

[F (ti; θ)− F (ti−1; θ)]
ki [1− F (ti; θ)]

Ri . (2)

Note that Ri should not be greater than Si, where the values of Ri for i = 1, 2, ...,m are determined based
on pre-specified removal proportions q1, q2, ....., qk−1 and qm = 1, such that Ri = [Siqi], for i = 1, 2, ..., k − 1,
where symbol [b] is the greatest integer less than or equal to b. Progressive type-I interval censoring approach
has been considered by different authors in the literature including [18], Lio et. al.[16], [24], Du et. al.[8], Al
otaibi et. al.[3] and Qubbaj et. al.[14,15].
The rest of the paper is organized as follows: Non-parametric estimation for entropy measure based on

progressive Type-I interval censoring are developed in Section 2. In section 3, we presented critical values
of the proposed tests and then powers of the tests against different alternatives are computed by Monte
Carlo simulation. In section 4, we illustrated the proposed tests by real-life data example. Conclusions were
presented in section 5. Finally we ended section 6 with limitations and future directions.
The next theorem considers Type-I interval censoring using an underlying lifetime distribution, namely

the uniform.

Theorem 1.1
Let Ui:m:n = F (ti), i = 1, 2, ...,m denote a progressively Type-I interval censoring sample obtained from the
uniform (0, 1) distribution, assuming the sample size is n with progressive Type-I interval censored data
{(ki, Ri, ti) , i = 1, 2, . . . ,m}. Let

Ui:m:n = 1−
m∏

j=m−i+1

Vj ,

where,

V1 =
1− Um:m:n

1− Um−1:m:n
, V2 =

1− Um−1:m:n

1− Um−2:m:n
, ..., Vm = 1− U1:m:n, (3)

are all independent identically distributed (iid) r.v.’s. Then

Vi
d
= Beta

(
i+

m∑
j=m−i+2

kj +

m∑
j=m−i+1

Rj , km−i+1 + 1

)
, i = 1, 2, ...,m. (4)

The proof was detailed in [14] so it is omitted.
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Corollary 1.2
As a result of Theorem 1.1, we find

E(Ui:m:n) = 1−
m∏

j=m−i+1

γj , (5)

where,

γi =
i+
∑m

j=m−i+2 kj +
∑m

j=m−i+1 Rj

1 + i+
∑m

j=m−i+1 kj +Rj
,

such that γj = γ1 if j ≤ 1 and γj = γm if j ≥ m provided that

m∑
j=m+1

kj = 0.

2. Non-parametric Entropy Estimates

This section develops non-parametric estimates for the entropy measures based on progressively Type-I
interval censored samples. It is of importance here to mention that for a random variable (r.v.) T , entropy
measure H(T ) is expressed as:

H(T ) =

∫ 1

0

log

(
d

dp
F−1(p)

)
dp (6)

2.1. Moments Approximation Method

The first entropy estimate will be obtained by using the difference operator that was proposed by [26] for
estimating the entropy. This method is based on the following fact:

d

dp
F−1(p) ≈ Ti+w:m:n − Ti−w:m:n

F (Ti+w:m:n)− F (Ti−w:m:n)
, (7)

where the window size w ≤ m/2, also Ti:m:n = T0 = 0 if i < 1, while Ti:m:n = Tm:m:n if i > m. Then
T0 = 0 ≤ T1:m:n ≤ T2:m:n ≤ ... ≤ Tm:m:n are progressively Type-I interval censoring times of size m, which
are pre-fixed. In the interval [Ti−1, Ti), we observe a random number of failures, say ki, then Ri surviving

units are immediately removed from the remaining (n−
∑i

j=1 ki −
∑i−1

j=1 Ri) items.
Following the lines of [26] and by using (2.11), entropy H(T ) can be approximated as:

H(T ) =
1

m

m∑
i=1

log

(
Ti+w:m:n − Ti−w:m:n

E(Ui+w:m:n)− E(Ui−w:m:n)

)
. (8)

First estimate of the entropy is

Ĥ1 =
1

m

m∑
i=1

log

(
Ti+w:m:n − Ti−w:m:n∏m

j=m−(i−w)+1 γj −
∏m

j=m−(i+w)+1 γj

)
. (9)

Proposition 2.1

Let Y = aT + b, a > 0. Then Ĥ1
Y
= log(a) + Ĥ1

T
.

Proof
The result follows since for all i, γY

i = γT
i .

Stat., Optim. Inf. Comput. Vol. x, Month 202x



HUDA H. QUBBAJ 3

Proposition 2.2
Estimate Ĥ1 is consistent estimats for H i.e.

Ĥ1
p−→ H.

as n → ∞, m → ∞, and m/n → 0.

Proof
Since when m → n, the progressively Type-I interval censored sample becomes the complete sample. Then
the estimate, Ĥ1 converge to the estimates proposed by [26], which is a consistent estimate of H.

2.2. Linear Approximation Method

The second estimate for entropy H(T ) is proposed following the steps of [6] by noticing that the quantity:

F (Ti+w:m:n)− F (Ti−w:m:n)

Ti+w:m:n − Ti−w:m:n
, (10)

represents the slope of a straight line joining the following two points

(Ti−w:m:n, F (Ti−w:m:n)) and (Ti+w:m:n, F (Ti+w:m:n)) .

This estimation approach is based on estimating the function F (Tj) by a local linear model on
(Ti−w:m:n, Ti+w:m:n) by using 2w + 1 ordered pairs:

F (Tj) = Uj = a+ bTj + ϵ, j = i− w, ..., i+ w. (11)

On the other hand, slope in (11) can be approximated by b in (12), which can be estimated by the least
squares method using (2w + 1) ordered pairs as follows:

b =
STU

S2
T

=

∑i+w
j=i−w(Tj:m:n − T̄(i))(Uj:m:n − Ū(i))∑i+w

j=i−w(Tj:m:n − T̄(i))2
, (12)

where,

T̄(i) =
1

2w + 1

i+w∑
j=i−w

Tj:m:n, and Ū(i) =
1

2w + 1

i+w∑
j=i−w

Uj:m:n.

Now, by replacing Uj:m:n by its expected value, we get

ˆ̄U(i) =
1

2w + 1

i+w∑
j=i−w

1−
m∏

k=m−j+1

γk

 .

Similarly, we consider the slope of the linear regression of T on F as follows:

bh =
STU

S2
U

=

∑i+w
j=i−w(Tj:m:n − T̄(i))(Uj:m:n − Ū(i))∑i+w

j=i−w(Uj:m:n − Ū(i))2
, (13)

Using Eq.(13), and replacing (Uj:m:n − Ū(i)) by (Ûj:m:n − ̂̄U (i)) in it, a second estimate forH(T ) is introduced
as follows:

Ĥ2 =
1

m

m∑
i=1

log

∑i+w
j=i−w(Tj:m:n − T̄(i))(

∑i+w
j=i−w

∏m
k=m−j+1 γk

2w+1 −
∏m

k=m−j+1 γk)∑i+w
j=i−w(

∑i+w
j=i−w

∏m
k=m−j+1 γk

2w+1 −
∏m

k=m−j+1 γk)
2

 . (14)
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Proposition 2.3

Let Y = aT + b, a > 0. Then Ĥ2
Y
= log(a) + Ĥ2

T
.

Proof
The result follows since for all i, γY

i = γT
i .

Proposition 2.4
Estimate Ĥ2 is consistent estimates for H, i.e.

Ĥ2
p−→ H.

as n → ∞, m → ∞ and m/n → 0.

Proof
Proof is obvious by [6] and so it is omitted.

2.3. Kernel-Based Method

Here, the entropy H(T ) can also be represented by the form −Ef (logf(t)). Accordingly an estimate of H is

Ĥ3 = − 1

m

m∑
i=1

log
(
f̂(ti:m:n)

)
. (15)

where f̂(ti:m:n) is estimated by the kernel function K as

f̂(ti:m:n) =
1

mh

m∑
j=1

K

(
ti:m:n − tj:m:n

h

)
, (16)

and d is the bandwidth such that d > 0, also d is called the smoothing parameter or window width by some
authors, K is the kernel function that is non-negative, smooth and symmetric function which satisfies the
conditions [7]: ∫

K(x)dx = 1, and

∫
xK(x)dx = 0.

This estimate is proposed assuming the Kernel function is the standard normal density function; due its
convenient mathematical properties the normal Kernel is frequently used

K(t) =
1√
2π

e−
t2

2

There are several choices for the bandwidth d. The bandwidth d is chosen here to equal 1.06Sm− 1
5 which is

the optimal choice for d i.e. the bandwidth that minimizes the mean integrated square error [23], where S is
the sample standard deviation and m is the number of points.

Proposition 2.1

Let Y = aT + b, a > 0. Then Ĥ3
Y
= log(a) + Ĥ3

T
.

Proof
The results can be obtained upon using the transformation of the r.v t; let t = y−b

a , hence | dtdy | =
1
|a| , thus,

fy(y) =
1
|a|ft(

y−b
a ) = 1

|a|ft(t).

Proposition 2.2
Ĥ3 is a consistent estimate for H, i.e.

Ĥ3
p−→ H.

as m → n, n → ∞, w → ∞ and w/m → 0.
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Proof
We have,

Ĥ3 = −E(log(f̂(x)))
p−→ −E(log(f(x))) = H3.

Hence, the result.

Several properties of the suggested estimates were introduced in [14,15].

3. Simulation Study

3.1. Introduction to the tests

In this section, we investigate entropy-based tests of exponentiality of a progressively Type-I interval censored
sample, based on the proposed estimates of entropy given in section 2. SupposeX1, , ..., Xn is a random sample
from a continuous probability distribution function F with density f over a non-negative support with mean
µ < ∞.
We are interested in testing the null hypothesis
H0 : f(x) = f0(x) = λexp(−λx), for all x ∈ (0,∞)

against the alternative hypothesis
H1 : f(x) ̸= f0(x), for some x ∈ (0,∞). Where λ = 1

µ is unspecified.

Following [6,9,10,19], we propose entropy-based test statistics based on complete samples as:

THi = −Ĥi, i = 1, 2, 3. (17)

Also, the exponentiality is rejected for large values of the test statistic TĤi
U .

Table 1. Progressive interval censoring schemes used in Monte Carlo simulation study

Scheme No. (t1, .., t4) (q1, .., q4)

1 0.1, 0.5, 0.7, 0.9 0, 0, 0.25, 1

2 0.1, 0.5, 0.7, 0.9 0, 0.25, 0.25, 1

3 0.1, 0.5, 0.7, 0.9 0.25, 0, 0, 1

4 0.1, 0.5, 0.7, 0.9 0.2, 0.2, 0.2, 1

5 0.1, 0.5, 0.7, 0.9 0, 0, 0, 1

3.2. Critical Values

The proposed GOF tests were studied via Monte Carlo simulation based on censoring schemes given in
Table (1). Simulated critical values are obtained under several progressive Type-I interval censoring schemes
assuming different sample sizes n = 20, 50 and 100 for m = 4 at (0.05) level of significance with (10000)
replications, these critical values are presented in Table (2). The computations were made using Mathematica
packages.
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Table 2. Critical values of the GOF statistics TĤi (i = 1, 2, 3) at significance level α = 0.05 for m = 4

n Scheme TĤ1 TĤ2 TĤ3

20 1 0.1097 0.1416 0.897
2 0.121 0.143 0.930
3 0.076 0.105 0.797
4 0.039 0.078 0.994
5 0.109 0.136 0.750

50 1 0.229 0.261 0.562
2 0.229 0.259 0.570
3 0.171 0.212 0.474
4 0.173 0.213 0.622
5 0.184 0.221 0.493

100 1 0.298 0.332 0.522
2 0.357 0.391 0.597
3 0.237 0.278 0.457
4 0.276 0.311 0.579
5 0.289 0.325 0.413

3.3. Power Comparisons

The statistical powers of the proposed tests are studied via simulation using Monte Carlo method under
various censoring schemes (shown in Table 1), assuming a set of alternative probability distributions at 0.05
level of significance. Under each alternative, we have generated 10000 samples of moderate and large sizes
n = 20, 50 and 100 for m = 4 i.e four stopping times. In this study we considered the following alternatives
according to the type of the hazard function:

• Group I alternative (Monotonic decreasing hazard functions): Gamma (shape parameter: 0.5) and
Chi-square (degree of freedom,1).

• Group II alternative (Monotonic increasing hazard functions):Beta (shape parameter:1) and Uniform.
• Group III alternative (Non-monotonic hazard functions): Log normal (shape parameters 0.5) and Beta
(shape parameter:0.5).

The statistical powers are displayed in Tables (3-5). The test statistic TĤ3 outperformed the other test
statistics for the monotonic decreasing hazard function alternatives. However, the test statistic TĤ2 had
the best power than other test statistics for the monotonic increasing and non-monotonic hazard function
alternatives.

4. Real Data Examples

Example 1: The following data represents failure times (in minutes) for an insulating fluid between two
electrodes subjected to a voltage of 34 kV. [17]:

0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,

7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89.
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Let us consider this progressively Type-I interval censored sample of size n = 19, for the suggested
censoring scheme we have m = 4 and w = 2, the stopping times are chosen to be (0, 1, 5, 15, 25) and the
applied proportions are (0.25, 0, 0.25, 1), it is worth mentioning that this scheme was chosen according to
the domain-specific reasoning. The values of the entropy test statistics and the corresponding critical values
of the tests are computed and presented in Table (7), which proves that the observed progressively Type-I
interval censored sample is from an exponential distribution.
Example 2:
The following data are obtained based on inter-occurrence times in days for fatal accidents suffered by

scheduled large planes in the USA for years from 1983 to 1998. (data from NTSB):

2 ,5, 7, 10, 11, 13, 14, 16, 17, 22, 22, 22, 22, 35, 36, 41, 50, 53,

53,56,60, 61, 63, 63, 65, 68, 70, 91, 98, 112, 116,117, 125, 125,127

128, 143, 143, 148, 150, 151, 158, 162, 194, 216, 223, 236, 244, 253

310, 426, 454.

Here,we will consider a progressively Type-I interval censored sample of size n = 52, for the suggested
censoring scheme we have m = 4 and w = 2, the stopping times are chosen to be (0, 20, 60, 150, 500) and
the applied proportions are (0, 0, 0.25, 1), moreover this scheme was chosen according to the domain-specific
reasoning. The values of the entropy test statistics and the corresponding critical values of the tests are
computed and presented in Table (7), and we conclude that the inter-occurrence times of fatal accidents
suffered by scheduled large planes in the USA in period (1983 - 1998) are exponentially distributed.

5. Conclusions

In this paper, Non-parametric based methods involving moments, linear and Kernel-based have been
discussed. Entropy-based tests of exponentiality under progressively Type-I interval censored data were
proposed using these estimates. Monte Carlo simulation showed that the proposed entropy-based tests under
progressively type-I interval censoring perform well and provide satisfactory powers for testing exponentiality
with different alternative hazard functions. By real data examples, we have shown that the proposed tests
are applicable.

Limitations and Future Directions

The findings of this study have to be seen in light of some limitations such as: issues with the selection of the
schemes, effect of sample size, Lack of previous research studies on GOF based on type-I interval censored
data, the exclusive and only choice of the window size w and Kernel Bandwidth Sensitivity.
Although we have obtained results of testing exponentiality for progressively Type-I interval censored data,

this research can be applied for other censoring techniques as: hybrid or generalized progressive censoring.
Another research line to be considered is the entropy based GOF testing other distributions. Therefore,
additional work on entropy estimation as well as entropy- based GOF tests are needed along this path.
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Table 3. Monte Carlo power estimates at significance level α = 0.05 for m = 4: Monotonic decreasing hazard
alternatives

Alternative Scheme n TĤ1 TĤ2 TĤ3

Gamma(0.5,1) 1 20 0.257 0.237 0.050
2 0.277 0.257 0.089
3 0.168 0.158 0.109
4 0.228 0.228 0.099
5 0.267 0.257 0.079

χ2(1) 1 20 0.079 0.069 0.059
2 0.069 0.050 0.089
3 0.050 0.040 0.109
4 0.050 0.050 0.089
5 0.069 0.050 0.119

Gamma(0.5,1) 1 50 0.297 0.307 0.287
2 0.208 0.208 0.564
3 0.168 0.178 0.614
4 0.178 0.208 0.287
5 0.208 0.208 0.584

χ2(1) 1 50 0.069 0.069 0.158
2 0.089 0.089 0.188
3 0.020 0.020 0.356
4 0.020 0.020 0.208
5 0.000 0.000 0.238

Gamma(0.5,1) 1 100 0.248 0.248 0.970
2 0.396 0.406 0.901
3 0.178 0.178 0.990
4 0.248 0.267 0.901
5 0.337 0.317 0.980

χ2(1) 1 100 0.039 0.040 0.673
2 0.049 0.045 0.584
3 0.039 0.040 0.812
4 0.049 0.045 0.455
5 0.039 0.030 0.792
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Table 4. Monte Carlo power estimates at significance level α = 0.05 for m = 4: Monotonic increasing hazard
alternatives

Alternative Scheme n TĤ1 TĤ2 TĤ3

Beta(1,2) 1 20 0.743 0.792 0.069
2 0.703 0.723 0.089
3 0.634 0.633 0.089
4 0.713 0.723 0.040
5 0.753 0.752 0.119

Uniform(0,1) 1 20 0.743 0.762 0.000
2 0.792 0.792 0.019
3 0.832 0.822 0.000
4 0.643 0.644 0.000
5 0.881 0.881 0.020

Beta(1,2) 1 50 0.970 0.970 0.218
2 0.921 0.941 0.455
3 0.931 0.960 0.307
4 0.940 0.941 0.178
5 0.931 0.960 0.248

Uniform(0,1) 1 50 0.980 0.990 0.000
2 0.960 0.990 0.000
3 0.951 0.960 0.000
4 0.960 0.970 0.000
5 1.000 1.000 0.010

Beta(1,2) 1 100 1.000 1.000 0.396
2 1.000 1.000 0.554
3 0.960 0.980 0.554
4 0.990 1.000 0.584
5 0.970 0.980 0.861

Uniform(0,1) 1 100 1.000 1.000 0.010
2 1.000 1.000 0.010
3 1.000 1.000 0.000
4 0.990 1.000 0.000
5 1.000 1.000 0.050
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Table 5. Monte Carlo power estimates at significance level α = 0.05 for m = 4: Non-monotonic hazard alternatives

Alternative Scheme n TĤ1 TĤ2 TĤ3

Log Normal(0,0.5) 1 20 0.060 0.120 0.059
2 0.139 0.139 0.049
3 0.020 0.020 0.089
4 0.010 0.020 0.030
5 0.030 0.059 0.139

Beta(0.5,1) 1 20 0.772 0.782 0.010
2 0.772 0.772 0.000
3 0.644 0.624 0.020
4 0.654 0.673 0.030
5 0.772 0.762 0.029

Log Normal(0,0.5) 1 50 0.079 0.119 0.059
2 0.119 0.118 0.069
3 0.118 0.149 0.208
4 0.079 0.079 0.059
5 0.059 0.138 0.128

Beta(0.5,1) 1 50 0.920 0.931 0.039
2 0.891 0.901 0.149
3 0.881 0.901 0.257
4 0.851 0.861 0.059
5 0.921 0.931 0.158

Log Normal(0,0.5) 1 100 0.168 0.188 0.099
2 0.218 0.228 0.010
3 0.208 0.238 0.228
4 0.198 0.208 0.040
5 0.198 0.277 0.426

Beta(0.5,1) 1 100 0.980 0.990 0.594
2 0.960 0.990 0.505
3 0.980 0.980 0.683
4 0.980 0.980 0.485
5 0.990 0.990 0.455

Table 6. Values of the test statistics and the critical values in Example 1

TĤi Value of TĤi Critical value

TĤ1 3.509 0.1811

TĤ2 3.507 0.1788

TĤ3 2.973 0.1673

Table 7. Values of the test statistics and the critical values in Example 2

TĤi Value of TĤi Critical value

TĤ1 -6.277 0.925

TĤ2 -6.327 0.933

TĤ3 5.487 0.874

Stat., Optim. Inf. Comput. Vol. x, Month 202x



HUDA H. QUBBAJ 11

REFERENCES

1. R. Aggarwala, Progressive interval censoring: some mathematical results with applications to inference, Commun Stat:
Theory Methods, 30 (8–9):1921–1935, 2001.

2. F. Alam, and M. Nasser, On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively
Type-II Censoring with Applications, Axioms, 12(8), 751, 2023.

3. R. Alotaibi, H. Rezk, S. Dey, and H. Okasha, Bayesian estimation for Dagum distribution based on progressive type I
interval censoring, PLOS ONE, 16(6), 2021.

4. A. M. Awad, and A. Alawneh, Application of entropy of a life time model, IMA J. Math. Control Inf., 4,143–147, 1987.
5. AC. Cohen, Progressively censored sample in life testing. Technometrics, 5, 327-339, 1963.
6. J.C. Correa, A new estimator of entropy, Communications in Statistics–Theory and Methods, 24, 2439–2449, 1995.
7. Yu.G. Dmitriev, F.P. Tarasenko, On estimation of functionals of the probability density function and its derivatives.

Teor. Veroyatnost. i Primenen., 18(3), 662–668, 1973.
8. Y. Du, Y. Guo and W. Gui, Statistical Inference for the Information Entropy of the Log-Logistic Distribution under

Progressive Type-I Interval Censoring Schemes, Symmetry, 10, 445, 2018.
9. N. Ebrahimi, K. Pflughoeft, and E. S. Soofi, Two measures of sample entropy. Statistics and Probability Letters, 20(3),

225-234, 1994.
10. J. Jarrah, HA. Noyghabi, Testing exponentiality using different entropy estimates based on type II censored data: a

monte carlo power comparison. International Journal of Industrial Engineering,24(5), 556-571, 2017.
11. R. Hazeb, M. Raqab, and H. Bayoud, Non-parametric estimation of the extropy and the entropy measures based on

progressive type-II censored data with testing uniformity. Journal of Statistical Computation and Simulation, 91 (11),
2178-2210, 2021a.

12. R. Hazeb, H. Bayoud, and M. Raqab, K ernel and CDF-Based Estimation of Extropy and Entropy from Progressively
Type-II Censoring with Application for Goodness of Fit Problems. Stochastic and Quality Control, 36 (1), 73-83, 2021b.

13. O. A. Kittaneh, M. A. Khan, M. Akbar, and H. Bayoud, Average entropy: a new uncertainty measure with application
to image segmentation. The American Statistician, 70 (1), 18–24, 2016.

14. H. Qubbaj, H. Bayoud, and H. Hilow, Extropy and entropy estimation based on progressive Type-I interval censoring,
Statistics in transition new series, Vol. 25, No. 3, pp. 83–102, 2024.

15. H. Qubbaj, H. Bayoud, and H. Hilow, Entropy and Entropy Estimation Based on Uniformly and Log-Normal Distributed
Data, JJMS 18, No. 1, 115-125, 2025.

16. YL. Lio, DG. Chen, and TR. Tasi, Parameter estimations for generalized exponential distribution under progressive
type-I interval censoring. Comput. Stat. Data Anal., 54, 1581–1591, 2011.

17. W. B. Nelson, Life Data Analysis, Wiley, 1982.
18. H. K. T. Ng, and Z. Wang, Statistical estimation for the parameters of Weibulldistribution based on progressively Type-I

interval censored sample. J. Stat. Comput.Simulat., 79(2):145–159, 2009.
19. HA. Noughabi, A new estimator of entropy and its application in testing normality. Journal of Statistical Computation

and Simulation, 80 (10), 1151-1162, 2010.
20. M. Rao, Y. Chen, B. C. Vemuri, and F. Wang, Cumulative residual entropy: a new measure of information. IEEE

transactions on Information Theory, 50 (6), 1220–1228, 2004.
21. A. Renyi, On measures of entropy and information, proc. 4th Berkeley symp. Math. Stat. and Prob., 1, 547-561, 1961.
22. C. E. Shannon, A mathematical theory of communications, Bell System Tech. J., 27(3): 379-423, 1948.
23. B.W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman Hall, London, 1986.
24. S. Singh S, and YM. Tripathi, Estimating the parameters of an inverse Weibull distribution under progressive type-I

interval censoring. Stat. Pap., 59, 21–56, 2016.
25. C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys., 52, 470–487, 1988.
26. O. Vasicek, A test for normality based on sample entropy, Journal of the Royal Statistical Society B, 38, 54-59, 1976.

Stat., Optim. Inf. Comput. Vol. x, Month 202x


	1 Introduction
	2 Non-parametric Entropy Estimates
	2.1 Moments Approximation Method
	2.2 Linear Approximation Method
	2.3 Kernel-Based Method

	3 Simulation Study
	3.1 Introduction to the tests
	3.2 Critical Values
	3.3 Power Comparisons

	4 Real Data Examples
	5 Conclusions

