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Abstract In this paper we propose non-parametric estimates for the information measure entropy when a
progressively Type-I interval censored data is available. Different non-parametric approaches are used for deriving
the estimates. Entropy-based tests of exponentiality are proposed. The critical values and the power values of the
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1. Introduction

Shannon entropy [1] of a random variable (r.v.) X whose probability density function (pdf) f(z) and
cumulative distribution function (cdf) F(z), is defined as:

H(X) = - : (z)log (f(x)) dz, (1)

where Rx denotes the support of the r.v. X.

For more details on entropy the reader can see [4,13,20,21,25]. Also [11,12] introduced nonparametric
estimates for entropy based on progressively Type-II censored data. Furthermore, the estimation problem of
certain entropy measures for particular distributions under a specific type of censoring have been discussed
in literature. For example, [2] studied Entropy Estimation of Inverse Weibull Distribution under Improved
Adaptive Progressively Type-II Censoring. In literature there are different approaches and versions of entropy
estimations that provide a diverse toolkit for researchers to choose from depending on the specific application
and the data characteristics.

However, estimation of the entropy measure under progressively Type-I interval censored data have not
been considered so far in the Literature. Accordingly, our main objective in this paper is to use the developed
different methods for estimating the entropy measures under the progressive Type-I censoring set-up in
testing exponentiality.

[5] introduced progressive Type-I censoring as an extension of Type-I censoring, where in a progressively
Type-I censored life test on n items, progressive censoring is carried out at the prefixed censoring times
t1 <ty <...<tr. That is, at the ith censoring time ¢;, R; items are randomly removed from the experiment,
1 <i <k — 1, with the restriction Ry + ... + Rj_1 <n —1, 1 € {0,...,n}. Then at the k** censoring time ty,
all remaining items are removed from the life test if there are any left. In many practical situations lifetimes of
units placed on a test are observed within Intervals, where this censoring scheme is called Interval censoring.
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[1] initially discussed progressive type-I interval censoring in literature and studied an exponential distribution
using this censoring.

Since then this censoring scheme has attracted attention among researchers. Progressive type-I interval
censoring can be briefly described as follows: Suppose n identical items are placed simultaneously on life
testing at time ¢y = 0, where inspection is at m pre-fixed censoring times t; < ts <.....< t,,, and where t,,
is the scheduled time to terminate the experiment and m is pre-fixed number of stops. For i = 1,2, ..., m, let
k; be the number of failures in the interval (¢;_1,t;]. Let S; be the number of the surviving items at ¢; and
R; be the number of removed items at ;. In this censoring scheme, k; and S; are random numbers while R;
is the number of remaining items, which is also a random number. At the 1°¢ inspection time t;, we observe
ki failures, then R; surviving items are randomly withdrawn from the remaining items n — k;. One can
see that after this step, the number of remaining items is (n — k; — Ry). Now, after time ; and at the 274
inspection time to, we observe ko failures where Ry items are randomly removed from (n — ky — ko — Rq)
items. Lastly, at the m!” inspection time (the last inspection time), we observe k,, failures and all remaining
(n—>0 ki — Z:’;_ll R;) items are immediately removed from the experiment.

The observed progressive Type-I interval censored data can be represented as:
{(kz, Ri, ti) ,i = 1, 2, &, m}
The associated likelihood function under the progressive type-I interval censoring is given by:

m

L(9) o [ [F(t:6) — F(t,150))" [1 = F(t::0)) " (2)

=1

Note that R; should not be greater than S;, where the values of R; for i = 1,2, ..., m are determined based
on pre-specified removal proportions q1, g2, ...., gk—1 and ¢,, = 1, such that R; = [S;¢;], fori =1,2,....k — 1,
where symbol [b] is the greatest integer less than or equal to b. Progressive type-I interval censoring approach
has been considered by different authors in the literature including [18], Lio et. al.[16], [24], Du et. al.[§], Al
otaibi et. al.[3] and Qubbaj et. al.[14,15].

The rest of the paper is organized as follows: Non-parametric estimation for entropy measure based on
progressive Type-I interval censoring are developed in Section 2. In section 3, we presented critical values
of the proposed tests and then powers of the tests against different alternatives are computed by Monte
Carlo simulation. In section 4, we illustrated the proposed tests by real-life data example. Conclusions were
presented in section 5. Finally we ended section 6 with limitations and future directions.

The next theorem considers Type-I interval censoring using an underlying lifetime distribution, namely
the uniform.

Theorem 1.1

Let U = F(t:), 7 = 1,2, ...,m denote a progressively Type-I interval censoring sample obtained from the
uniform (0, 1) distribution, assuming the sample size is n with progressive Type-I interval censored data
{(kz, Rl,tz) ,i = 1, 2, [P ,m}. Let

m
Uimm =1 — H ‘/j7
j=m—i+1
where,
1- Ummn 1- Um—l:m:n
v, = : Vo = Vi =1 = Utoroms 3
! 1- Umfl:m:n’ ? 1- Um72:m:n, ’ i ( )

are all independent identically distributed (iid) r.v.’s. Then
‘/i gBetGJ <Z+ Z k?]—|— Z Rjakm—i+1+1> y 7,: 1,2,...,m. (4)
j=m—it2 j=m—it+1
The proof was detailed in [14] so it is omitted.
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Corollary 1.2
As a result of Theorem 1.1, we find

E(Ui:m:n) =1- H Vi (5)

j=m—i+1

where,
i+ E.;n:mfi+2 kj + E;‘n:mfm R;
L+i+ >0 ki + Ry

Yi =

m
such that v; = v if j <1 and v; = v, if j > m provided that Z k;j =0.
j=m+1

2. Non-parametric Entropy Estimates

This section develops non-parametric estimates for the entropy measures based on progressively Type-I
interval censored samples. It is of importance here to mention that for a random variable (r.v.) T', entropy
measure H(T) is expressed as:

e - [ log (j;F*(p)) dp (©)

2.1. Moments Approximation Method

The first entropy estimate will be obtained by using the difference operator that was proposed by [26] for
estimating the entropy. This method is based on the following fact:

d Tivwmen — Tiewim:

7F_1 p ~ 1+w4rn.n 3 wim:mn , 7

dp ( ) F(Ti+w:m:n) - F(:rifw:m:n) ( )
where the window size w < m/2, also Tinm =To =0 if ¢ <1, while Tjpmn = Tonimen if @ > m. Then

To=0<Timn <Tounmn < ... <Thm:n are progressively Type-I interval censoring times of size m, which
are pre-fixed. In the interval [T;_1,T;), we observe a random number of failures, say k;, then R; surviving
units are immediately removed from the remaining (n — Z;Zl k; — Z;;ll R;) items.

Following the lines of [26] and by using (2.11), entropy H(T') can be approximated as:

m

1 Ti+w:m:n - Ti—w:m:n
H(T)=— l . 8
( ) m Zl o9 (E(Ui+w:m:n) - E(Ui—w:m:n)) ( )

7

First estimate of the entropy is

T 1 “ T%—&-w'm'n - T’i—w'm'n
H = — log | —m i i . (9)

j=m—(i—w)+1 Vi ~ H;‘n:m—(i+w)+l i

Proposition 2.1
LY A T
Let Y =aT +b,a>0. Then H; = log(a) + Hy

Proof
The result follows since for all i, v) = ~T. O
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Proposition 2.2
Estimate H; is consistent estimats for H i.e.

H 25 H.
as n — 00, m — oo, and m/n — 0.
Proof
Since when m — n, the progressively Type-I interval censored sample becomes the complete sample. Then
the estimate, H; converge to the estimates proposed by [26], which is a consistent estimate of H. O

2.2. Linear Approximation Method
The second estimate for entropy H(T') is proposed following the steps of [6] by noticing that the quantity:
F(Tier:m:n) - F(T‘ifwzmzn)

Ti-i—w:m:n - Ti—w:m:n

; (10)

represents the slope of a straight line joining the following two points
(n—w:m:qu(rfi—w:m:n)) and (E—&-w:m:naF(Ti—&-w:m:n))-

This estimation approach is based on estimating the function F(T;) by a local linear model on
(Ti—wmn, Litw:m:m) by using 2w + 1 ordered pairs:

FT)=Uj=a+bT;+¢€,j=i—w,..,i +w. (11)

On the other hand, slope in (11) can be approximated by b in (12), which can be estimated by the least
squares method using (2w + 1) ordered pairs as follows:

Sro S T~ T) Uy — U)

TS T S G ToP "
where, . 4
B 1 itw B 1 itw
Ty = 3571 Z Tjimen, and Ugi) = 5= Z Usnen-
j=i—w j=i—w
Now, by replacing Uj.,,m.n, by its expected value, we get
) 1 itw m
U"'):mwrl_Z - H Tk
Jj=i—w k=m—j+1
Similarly, we consider the slope of the linear regression of T' on F' as follows:
by = Sty Z;:?—w(n:m:n - T(i))(Uj:m:n - U(i)> (13)

2 = ; B
SU Z;i?,w(Uj:m:n - (](1,))2
Using Eq.(13), and replacing (Uj.m:n — Uiy) by (ﬁj;m:n - 5(1‘)) in it, a second estimate for H(T) is introduced
as follows:

i+ = DI IR
1 i og Z;:?Lw(ijn*T(l))( . ka_t,_l e 7H;n:m,j+17k)

; it m
— ZZ-‘HU (E}:lﬂw Hk=m7j+1 L Hm )2
i= j=i—w 2wl k=m—j+1 Tk

(14)
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Proposition 2.3
Y AT
Let Y =aT +b,a>0. Then Hy =log(a)+ Hy .

Proof

The result follows since for all i, 77 = ~T. O

Proposition 2.4
Estimate Hs is consistent estimates for H, i.e.

Hy 2 H.
as n — 0o, m — oo and m/n — 0.

Proof
Proof is obvious by [6] and so it is omitted. O

2.3. Kernel-Based Method
Here, the entropy H(T) can also be represented by the form —E[ (logf(t)). Accordingly an estimate of H is

m

. 1 & .
=1
where f (tim:m) is estimated by the kernel function K as

r 1 = ti:m:n - tj:m:n
f(ti:m:n) = % ZlK (h) 5 (16)
J:

and d is the bandwidth such that d > 0, also d is called the smoothing parameter or window width by some
authors, K is the kernel function that is non-negative, smooth and symmetric function which satisfies the
conditions [7]:

/K(z)d:r =1, and /xK(:c)dz =0.

This estimate is proposed assuming the Kernel function is the standard normal density function; due its
convenient mathematical properties the normal Kernel is frequently used
1 2
K(t) = ez
()=~
There are several choices for the bandwidth d. The bandwidth d is chosen here to equal 1.06Sm ™5 which is
the optimal choice for d i.e. the bandwidth that minimizes the mean integrated square error [23], where S is
the sample standard deviation and m is the number of points.

Proposition 2.1
LY AT
Let Y =aT +b,a> 0. Then Hy =log(a)+ Hs .

Proof

The results can be obtained upon using the transformation of the r.v ¢; let ¢t = nyb, hence |j—;| = ﬁ7 thus,
—b

fy(y) = ‘a%ft(yT) = ﬁft(t)- O

Proposition 2.2
Hj is a consistent estimate for H, i.e.
Hy 25 H.

asm — n, n — 00, w — oo and w/m — 0.
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Proof
We have,

Hy = —E(log(f(z))) = —E(log(f(x))) = Hs.
Hence, the result. O

Several properties of the suggested estimates were introduced in [14,15].

3. Simulation Study

3.1. Introduction to the tests

In this section, we investigate entropy-based tests of exponentiality of a progressively Type-I interval censored

sample, based on the proposed estimates of entropy given in section 2. Suppose X1, , ..., X,, is a random sample
from a continuous probability distribution function F' with density f over a non-negative support with mean
< oQ.

We are interested in testing the null hypothesis
Hy: f(z) = fo(z) = Xexp(—Ax), for all z € (0, 00)
against the alternative hypothesis
Hi : f(z) # fo(z), for some x € (0,00). Where A = i is unspecified.

Following [6,9,10,19], we propose entropy-based test statistics based on complete samples as:
TH, = —H;, i=123. (17)
Also, the exponentiality is rejected for large values of the test statistic TH:f]

Table 1. Progressive interval censoring schemes used in Monte Carlo simulation study

Scheme No. (t1,..,t4) (q15--,G4)

1 0.1,0.5,0.7,0.9 0,0,0.25,1

2 0.1,0.5,0.7,0.9 0,0.25,0.25,1
3 0.1,0.5,0.7,0.9 0.25,0,0,1

4 0.1,0.5,0.7,0.9 0.2,0.2,0.2,1
5 0.1,0.5,0.7,0.9 0,0,0,1

3.2. Critical Values

The proposed GOF tests were studied via Monte Carlo simulation based on censoring schemes given in
Table (1). Simulated critical values are obtained under several progressive Type-I interval censoring schemes
assuming different sample sizes n = 20,50 and 100 for m =4 at (0.05) level of significance with (10000)
replications, these critical values are presented in Table (2). The computations were made using Mathematica
packages.

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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Table 2. Critical values of the GOF statistics Tﬁi (i =1,2,3) at significance level a = 0.05 for m = 4

n Scheme THq THo THs
20 1 0.109 0.141 0.897
2 0.121 0.143 0.930
3 0.076 0.105 0.797
4 0.039 0.078 0.994
5 0.109 0.136 0.750
50 1 0.229 0.261 0.562
2 0.229 0.259 0.570
3 0.171 0.212 0.474
4 0.173 0.213 0.622
5 0.184 0.221 0.493
100 1 0.298 0.332 0.522
2 0.357 0.391 0.597
3 0.237 0.278 0.457
4 0.276 0.311 0.579
5 0.289 0.325 0.413

Table 3. Monte Carlo power estimates at significance level o = 0.05 for m = 4: Monotonic decreasing hazard

alternatives
Alternative Scheme n TH; TH»> THs
Gamma(0.5,1) 1 20 0.257 0.237 0.050
2 0.277 0.257 0.089
3 0.168 0.158 0.109
4 0.228 0.228 0.099
5 0.267 0.257 0.079
X2(1) 1 20 0.079 0.069 0.059
2 0.069 0.050 0.089
3 0.050 0.040 0.109
4 0.050 0.050 0.089
5 0.069 0.050 0.119
Gamma(0.5,1) 1 50 0.297 0.307 0.287
2 0.208 0.208 0.564
3 0.168 0.178 0.614
4 0.178 0.208 0.287
5 0.208 0.208 0.584
XQ(l) 1 50 0.069 0.069 0.158
2 0.089 0.089 0.188
3 0.020 0.020 0.356
4 0.020 0.020 0.208
5 0.000 0.000 0.238
Gamma(0.5,1) 1 100 0.248 0.248 0.970
2 0.396 0.406 0.901
3 0.178 0.178 0.990
4 0.248 0.267 0.901
5 0.337 0.317 0.980
X2(1) 1 100 0.039 0.040 0.673
2 0.049 0.045 0.584
3 0.039 0.040 0.812
4 0.049 0.045 0.455
5 0.039 0.030 0.792

3.3. Power Comparisons

The statistical powers of the proposed tests are studied via simulation using Monte Carlo method under
various censoring schemes (shown in Table 1), assuming a set of alternative probability distributions at 0.05
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level of significance. Under each alternative, we have generated 10000 samples of moderate and large sizes
n = 20,50 and 100 for m = 4 i.e four stopping times. In this study we considered the following alternatives
according to the type of the hazard function:

e Group I alternative (Monotonic decreasing hazard functions): Gamma (shape parameter: 0.5) and
Chi-square (degree of freedom,1).

e Group II alternative (Monotonic increasing hazard functions):Beta (shape parameter:1) and Uniform.

e Group IIT alternative (Non-monotonic hazard functions): Log normal (shape parameters 0.5) and Beta
(shape parameter:0.5).

The statistical powers are displayed in Tables (3-5). The test statistic THs outperformed the other test
statistics for the monotonic decreasing hazard function alternatives. However, the test statistic TH, had
the best power than other test statistics for the monotonic increasing and non-monotonic hazard function
alternatives.

Table 4. Monte Carlo power estimates at significance level o = 0.05 for m = 4: Monotonic increasing hazard
alternatives

Alternative Scheme n TH, THo> THs
Beta(1,2) 1 20 0.743 0.792 0.069
2 0.703 0.723 0.089
3 0.634 0.633 0.089
4 0.713 0.723 0.040
5 0.753 0.752 0.119
Uniform(0,1) 1 20 0.743 0.762 0.000
2 0.792 0.792 0.019
3 0.832 0.822 0.000
4 0.643 0.644 0.000
5 0.881 0.881 0.020
Beta(1,2) 1 50 0.970 0.970 0.218
2 0.921 0.941 0.455
3 0.931 0.960 0.307
4 0.940 0.941 0.178
5 0.931 0.960 0.248
Uniform(0,1) 1 50 0.980 0.990 0.000
2 0.960 0.990 0.000
3 0.951 0.960 0.000
4 0.960 0.970 0.000
5 1.000 1.000 0.010
Beta(1,2) 1 100 1.000 1.000 0.396
2 1.000 1.000 0.554
3 0.960 0.980 0.554
4 0.990 1.000 0.584
5 0.970 0.980 0.861
Uniform(0,1) 1 100 1.000 1.000 0.010
2 1.000 1.000 0.010
3 1.000 1.000 0.000
4 0.990 1.000 0.000
5 1.000 1.000 0.050

4. Real Data Examples
Example 1: The following data represents failure times (in minutes) for an insulating fluid between two
electrodes subjected to a voltage of 34 kV. [17]:

0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,
7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89.

Let us consider this progressively Type-I interval censored sample of size n =19, for the suggested
censoring scheme we have m =4 and w = 2, the stopping times are chosen to be (0,1,5,15,25) and the
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Table 5. Monte Carlo power estimates at significance level a = 0.05 for m = 4: Non-monotonic hazard alternatives

Alternative Scheme n Tﬁl TI'jQ Tﬁg
Log Normal(0,0.5) 1 20 0.060 0.120 0.059
2 0.139 0.139 0.049
3 0.020 0.020 0.089
4 0.010 0.020 0.030
5 0.030 0.059 0.139
Beta(0.5,1) 1 20 0.772 0.782 0.010
2 0.772 0.772 0.000
3 0.644 0.624 0.020
4 0.654 0.673 0.030
5 0.772 0.762 0.029
Log Normal(0,0.5) 1 50 0.079 0.119 0.059
2 0.119 0.118 0.069
3 0.118 0.149 0.208
4 0.079 0.079 0.059
5 0.059 0.138 0.128
Beta(0.5,1) 1 50 0.920 0.931 0.039
2 0.891 0.901 0.149
3 0.881 0.901 0.257
4 0.851 0.861 0.059
5 0.921 0.931 0.158
Log Normal(0,0.5) 1 100 0.168 0.188 0.099
2 0.218 0.228 0.010
3 0.208 0.238 0.228
4 0.198 0.208 0.040
5 0.198 0.277 0.426
Beta(0.5,1) 1 100 0.980 0.990 0.594
2 0.960 0.990 0.505
3 0.980 0.980 0.683
4 0.980 0.980 0.485
5 0.990 0.990 0.455

applied proportions are (0.25,0,0.25,1), it is worth mentioning that this scheme was chosen according to
the domain-specific reasoning. The values of the entropy test statistics and the corresponding critical values
of the tests are computed and presented in Table (6), which proves that the observed progressively Type-I
interval censored sample is from an exponential distribution.

Table 6. Values of the test statistics and the critical values in Example 1

TH,; Value of TH; Critical value
TH, 3.509 0.1811
TH, 3.507 0.1788
TH; 2.973 0.1673

Example 2:
The following data are obtained based on inter-occurrence times in days for fatal accidents suffered by
scheduled large planes in the USA for years from 1983 to 1998. (data from NTSB):

2,5, 7, 10, 11, 13, 14, 16, 17, 22, 22, 22, 22, 35, 36, 41, 50, 53,
53,56,60, 61, 63, 63, 65, 68, 70, 91, 98, 112, 116,117, 125, 125,127
128, 143, 143, 148, 150, 151, 158, 162, 194, 216, 223, 236, 244, 253
310, 426, 454.

Here,we will consider a progressively Type-I interval censored sample of size n = 52, for the suggested
censoring scheme we have m =4 and w = 2, the stopping times are chosen to be (0,20, 60, 150,500) and
the applied proportions are (0,0, 0.25, 1), moreover this scheme was chosen according to the domain-specific
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reasoning. The values of the entropy test statistics and the corresponding critical values of the tests are
computed and presented in Table (7), and we conclude that the inter-occurrence times of fatal accidents
suffered by scheduled large planes in the USA in period (1983 - 1998) are exponentially distributed.

Table 7. Values of the test statistics and the critical values in Example 2

TH, Value of TH; Critical value
TH, -6.277 0.925
TH, -6.327 0.933
THs, 5.487 0.874

5. Conclusions

In this paper, Non-parametric based methods involving moments, linear and Kernel-based have been
discussed. Entropy-based tests of exponentiality under progressively Type-I interval censored data were
proposed using these estimates. Monte Carlo simulation showed that the proposed entropy-based tests under
progressively type-I interval censoring perform well and provide satisfactory powers for testing exponentiality
with different alternative hazard functions. By real data examples, we have shown that the proposed tests
are applicable.

Limitations and Future Directions

The findings of this study have to be seen in light of some limitations such as: issues with the selection of the
schemes, effect of sample size, Lack of previous research studies on GOF based on type-I interval censored
data, the exclusive and only choice of the window size w and Kernel Bandwidth Sensitivity.

Although we have obtained results of testing exponentiality for progressively Type-I interval censored data,
this research can be applied for other censoring techniques as: hybrid or generalized progressive censoring.
Another research line to be considered is the entropy based GOF testing other distributions. Therefore,
additional work on entropy estimation as well as entropy- based GOF tests are needed along this path.
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