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An efficient technique for solving the two-dimensional heat equation
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Abstract In this paper, we apply the semi analytic iterative method to the solution of the two-dimensional heat equation.
By means of some numerical examples we show that this method is efficient and accurate in producing exact to near-exact
solutions. Even where the exact solution is unknown, we were able to obtain it through the fast convergence of the method.

Keywords Two-Dimensional Heat Equation, Semi-Analytic Iterative Method, Convergence, Iterative Laplace Transform
Method

AMS 2010 subject classifications 35A20, 35K05, 35K10, 35K15

DOI: 10.19139/soic-2310-5070-2396

1. Introduction

Differential equations of real or complex order are highly valued by researchers due to their significant applications
in science and technology. The applicability of these equations to real-world problems is evident in diverse fields
like fluid dynamics, chemical physics, and control systems. The heat equation is one of the fundamental partial
differential equations (PDEs) in mathematical physics and engineering that describes the variation in temperature in
a specified area over a period of time [6]. It describes how heat propagates through a defined area over time. Ullah et
al. [24] have pointed out the numerous applications of the heat equation and underscored the fact that this equation
has been studied in various dimensions using techniques such as the Laplace and Fourier transforms. With wide
use in thermodynamics, fluid dynamics, materials science, and engineering simulations, the two-dimensional (2D)
heat equation is vital for modelling surface heat conduction. Many practical scenarios highlight its indispensable
and significant relevance.

In cases of complex domains or boundary conditions, numerical methods are essential for solving the two-
dimensional heat equation because analytical solutions are often impossible. Traditional numerical techniques such
as finite difference methods (FDM), finite element methods (FEM), and finite volume methods (FVM) have been
widely used to solve this equation [18]. However, the computational cost and time associated with these techniques,
especially for large-scale problems, have led to the search for more efficient algorithms.

Recent developments focus on combining traditional methods with advanced computational strategies such as
adaptive grids, spectral techniques, and machine learning-based approaches to improve computational efficiency
while maintaining accuracy [20]. In particular, large-scale simulations have seen a significant increase in
computational speed, thanks to the integration of multigrid methods and parallel computing. Furthermore, radial
basis function (RBF) approximations, a type of meshless method, have proven effective for efficient solutions to
multidimensional heat equations.
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Moreover, modern techniques like physics-informed neural networks (PINNs) are gaining traction for solving
PDEs, including the heat equation, as they leverage deep learning to approximate solutions without relying
on traditional discretization methods [17]. These methods are particularly advantageous for high-dimensional
problems or when experimental data is integrated into the model. In this work, we present an efficient numerical
technique to solve the two-dimensional heat equation that balances computational efficiency and accuracy.
The proposed method builds upon recent advancements in numerical and computational techniques to reduce
computational time and address limitations associated with conventional methods.

A simple 2D heat conduction model is shown in Figure 1 [12]. The left and right bars behave as heat sources and
sinks, respectively. Heat flows by the process of convection from a region of higher temperature (heat source) to
a region of lower temperature (heat sink). Encouraged by the excellent performance of the semi-analytic iterative
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Figure 1. Engineering model of heat conduction (adapted from Mastoi et al. [12])

method, in this paper we apply this method to the solution of the two-dimensional heat equation which in {x, y}
space is given by

ρcpTt =
∂

∂x
(kxTx) +

∂

∂x
(kyTy) +Q, (1)

where ρ is the density, cp is the specific heat or heat capacity, kx,y the thermal conductivities in the x and y
directions, respectively, and Q the heat source term which describes the heat release process if Q > 0 and the heat
absorption process if Q < 0. In particular, a positive Q represents the radiogenic heat production (RHP).

If the thermal conductivity is isotropic (i.e., kx = ky = k) and constant, then equation (1) can be rewritten as

Tt = κ (Txx + Tyy) +
Q

ρcp
, (2)

where κ = k
ρcp

> 0, called the thermal diffusivity, is a material-specific quantity depending on the thermal
conductivity, the density and the specific heat. Equation (2) is the two-dimensional heat equation being considered
in this paper, subject to the initial condition T (x, y, 0) = g(x, y). If there is no RHP (i.e., when Q = 0), then we
have the homogeneous 2D heat equation

Tt = κ (Txx + Tyy) . (3)

The 2D heat equation represents changes in the temperature T (x, y, t) with respect to time t in a region of space
having coordinates (x, y). Thus, in this equation Txx and Tyy are the thermal conductions in the x and y directions,
respectively. In more compact form, equation (2) can be expressed as

Tt = κ∆T +
Q

ρcp
, (4)

where ∆ is the Laplacian operator defined as

∆T = Txx + Tyy.
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1.1. Brief Review of Existing Methods

Equation (2), with initial condition T (x, y, 0) = g(x, y), has been solved using a variety of methods and schemes
in the literature. These include the method of fundamental solutions (MFS) [8], the three-level explicit time-
split MacCormack method [13], the tri-diagonal matrix algorithm (TDMA) [9], finite difference methods [16],
the iterative Laplace transform (ILT) method [24] and the shifting function method [7], to mention but a few.

1.2. Contributions

The main contribution of this paper is a very simple, straightforward and accurate algorithm that requires less
computational work and rapidly converges to the exact solution of the 2D heat equation.

1.3. Organization

The rest of the paper is organized as follows: Section 2 describes the semi analytic iterative method. In Section 4
the results of numerical experiments based on a selection of test problems are presented and compared with the
exact solution and solutions from previous methods used in the literature and in Section 5 some conclusions are
drawn.

2. Description of the Proposed Method of Solution

The SAIM was used by Al-Jawary and Al-Razaq [2] to solve Duffing equations, by Yassein [25] to solve higher
order integro-differential equations and by Yassein and Aswhad [26] to solve KdV equations. This method uses an
iterative approach together with analytical computations to provide a solution of a modified reformulated linear
problem. The SAIM was inspired by the homotopy analysis method (HAM) which is a general approximate
analytical approach for obtaining convergent series solutions of strongly nonlinear problems without the need
for linearization [23]. The SAIM offers several advantages over existing methods such as Picard’s successive
approximations method (SAM) and the Adomian decomposition method (ADM) in that it is very easy to
implement since it avoids the calculation of Adomian polynomials for the nonlinear term in the ADM or Lagrange
multipliers in He’s variational iteration method (VIM), thus demanding less computational work [10, 14]. In this
paper we propose to use the SAIM to solve the linear 2D heat equation of the form (2), with initial condition
T (x, y, 0) = g(x, y), which can be expressed as

LT +NT = Q̃ (5)

with the condition C
(
T, ∂T

∂t

)
= 0, where LT = Tt, NT = −κ(Txx + Tyy) and Q̃ = Q

ρcp
is the heat source term.

The algorithm of the SAIM is represented by the flowchart in Figure 2 below. The first step in the implementation
of the SAIM is to find the initial approximation by solving

L[T0(x, y, t)]− Q̃ = 0 with C

(
T0,

∂T0

∂t

)
= 0 (6)

It should be noted that
T0(x, y, t) = T (x, y, 0) + tTt(x, y, 0) = g(x, y).

The next iteration to the solution can be obtained by solving

L[T1(x, y, t)] +N [T0(x, y, t)]− Q̃ = 0 with C

(
T1,

∂T1

∂t

)
= 0 (7)

After several iterations we obtain the general form of the SAIM solution which is

L[Tn+1(x, y, t)] +N [Tn(x, y, t)]− Q̃ = 0 with C

(
Tn+1,

∂Tn+1

∂t

)
= 0, (8)
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Figure 2. Flowchart of the SAIM algorithm

from which the general iterative formula for solving the 2D heat equation (2) is

Tn+1(x, y, t) = Tn+1(x, y, 0) + L−1
[
−N [Tn(x, y, t)] + Q̃

]
, (9)

where L−1 =
∫ t

0
(·)ds. Each iteration of the function Tn(x, y, t) effectively represents a complete solution for

equation (5). This iterative procedure is very easy and has the advantage that any iterative solution is an
improvement of the previous iterate, and as more and more iterations are obtained, the iterative solution converges
to the exact solution of equation (2).
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3. Convergence Analysis for the Proposed Method

To give the convergence analysis for the semi analytic iterative method, we begin with the following:

ς0 = T0(x, y, t),
ς1 = Θ[ς0],
ς2 = Θ[ς0 + ς1],
...
ςn+1 = Θ[ς0 + ς1 + · · ·+ ςn].

Now we can define the operator Θ[T (x, y, t)] as

Θ[ςn] = Tn(x, y, t)−
n−1∑
i=0

Ti(x, y, t), n = 1, 2, 3, . . . , (10)

where T (x, y, t) represents the analytical solution of the 2D heat equation from the SAIM. The following theorems,
all of whose proofs are presented in Odibat and Momani [15], provide sufficient conditions for the convergence of
the SAIM.

Theorem 3.1

The series solution T (x, y, t) =

∞∑
n=0

Tn(x, y, t) will represent the exact solution to the nonlinear problem being

solved if the series solution is convergent.

Theorem 3.2
Suppose that Θ, defined in equation (10), is an operator from H to H, where H is a Hilbert space. Then

the series solution T (x, y, t) =

n∑
i=0

Ti(x, y, t) converges if ∃ 0 < δ < 1 such that ∥Θ[ς0 + ς1 + · · ·+ ςn+1]∥ ≤

δΘ[ς0 + ς1 + · · ·+ ςn] ∀ δ ∈ N ∪ {0}.

This idea is a special case of the fixed point concept and is considered a sufficient condition for establishing the
convergence of the SAIM.

Theorem 3.3

If the series solution
∞∑

n=0

Tn(x, y, t) converges to T (x, y, t), then the maximum error En(x, y, t) is given by

En(x, y, t) ≤
1

1− r
rn+1 ∥T0∥ ,

where the truncated series
n∑

i=0

Ti(x, y, t) is used for tackling a broad range of nonlinear problems and r ensures

contraction.

In summary, it can be stated that the solution obtained by the SAIM converges to the exact solution provided
that ∃ 0 < δ < 1 such that

Cn =

{
∥ςn+1∥
∥ςn∥ if ∥ςn∥ ≠ 0

0 if ∥ςn∥ = 0

When 0 ≤ Cn < 1 ∀ n = 0, 1, 2, . . ., the power series solution
∞∑

n=0

Tn(x, y, t) converges to the exact solution

T (x, y, t) [3, 5].
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4. Numerical Experiments

In this section we present some numerical examples illustrating the applicability of the SAIM for solving the 2D
heat equation. All the computations associated with these examples were performed using a Samsung Series 3 PC
with an Intel Celeron CPU 847 at 1.10GHz with 6.0GB and 64-bit operating system (Windows 8). Unless otherwise
stated, a fixed t = 0.5 was used throughout and the figures were constructed using MATLAB R2016a. The results
are presented in tables and figures accompanying the discussion.

Example 4.1
Consider the homogeneous 2D heat equation [8]:

Tt = ∆T, T (x, y, 0) = x2 + y2, (11)

with exact solution T (x, y, t) = 4t+ x2 + y2. We solve (11) using the SAIM by first rewriting it as

LT +NT = 0

where LT = Tt and NT = −∆T . Here, the source term is zero. The primary problem is to find the initial
approximation by solving the equation

L[T0(x, y, t)] = 0, with T (x, y, 0) = x2 + y2 (12)

Using the initial condition, the solution of the primary problem is

T0(x, y, t) = T (x, y, 0) = x2 + y2.

The general recursive relation for solving (11) is

L[Tn+1(x, y, t)] = −N [Tn(x, y, t)], with Tn+1(x, y, 0) = x2 + y2, (13)

i.e.,

Tn+1(x, y, t) = Tn+1(x, y, 0) +

∫ t

0

[
Tnxx

+ Tnyy

]
ds. (14)

From this recursive relation, we obtain the approximations

T0(x, y, t) = x2 + y2

T1(x, y, t) = x2 + y2 +

∫ t

0

[
T0xx

+ T0yy

]
ds = x2 + y2 + 4t

T2(x, y, t) = x2 + y2 +

∫ t

0

[
T1xx + T1yy

]
ds = x2 + y2 + 4t

...
Tn+1(x, y, t) = x2 + y2 + 4t, n ≥ 1.

This is the exact solution of the given 2D heat equation. It can be seen here that the SAIM converged very fast to
the exact solution. The results are shown in Table 1. Figure 3 compares the exact and SAIM solutions T (x, 0, 0.2),
T (x, 0, 0.5) and T (x, 0, 0.8) while Figure 4 shows the surface plot of the SAIM solution for a fixed t = 0.2 and
−1 ≤ x, y ≤ 1. The results for t = 0.2 and t = 0.8 were also obtained using the method of fundamental solutions
(MFS) [8].

Example 4.2
Consider the following nonhomogeneous 2D heat equation with the given initial condition adapted from Ullah et

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6 AN EFFICIENT TECHNIQUE FOR SOLVING THE TWO-DIMENSIONAL HEAT EQUATION

Table 1. Comparison of exact and approximate solutions from SAIM for Example 4.1
(y = 0, t = 0.2)

x T (x, y, t) TSAIM(x, y, t)

0 0.8 0.8
0.2 0.84 0.84
0.4 0.96 0.96
0.6 1.16 1.16
0.8 1.44 1.44
1.0 1.8 1.8

 

T(
x,

0,
0.

2)

T(
x,

0,
t)

,ݔ)ܶ 0,0.8) 

,ݔ)ܶ 0,0.5) 

,ݔ)ܶ 0,0.2) 

(a) (b) 

Figure 3. Comparison of approximate and exact solutions for the 2D heat equation in Example 4.1 for −1 ≤ x ≤ 1, y = 0
with (a) t = 0.2, (b) t = 0.2, 0.5, 0.8

al. [24] with fractional order θ = 1:

Tt = ∆T + x+ y + 1, T (x, y, 0) = e−(x+y). (15)

The exact solution of (15) is not known. Rewriting (15) as

LT +NT = Q̃,

where LT = ut, NT = −∆T and Q̃ = x+ y + 1, the general recursive relation is given by

L[Tn+1(x, y, t)] = −N [Tn(x, y, t)] + Q̃, with Tn+1(x, y, 0) = e−(x+y). (16)

We then use the iteration

Tn+1(x, y, t) = Tn+1(x, y, 0) +

∫ t

0

[
Tnxx + Tnyy + x+ y + 1

]
ds (17)
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Figure 4. Surface plot for SAIM solution for −1 ≤ x, y ≤ 1 and t = 0.2

to obtain the following successive approximations:

T0(x, y, t) = T (x, y, 0) = e−(x+y)

T1(x, y, t) = e−(x+y) +

∫ t

0

[
T0xx + T0yy + x+ y + 1

]
ds = (1 + 2t)e−(x+y) + (x+ y + 1)t

T2(x, y, t) = e−(x+y) +

∫ t

0

[
T1xx + T1yy + x+ y + 1

]
ds = (1 + 2t+ 2t2)e−(x+y) + (x+ y + 1)t

T3(x, y, t) = e−(x+y) +

∫ t

0

[
T2xx + T2yy + x+ y + 1

]
ds =

(
1 + 2t+ 2t2 +

4

3
t3
)
e−(x+y) + (x+ y + 1)t

and so on. The rest of the approximations may be computed in the same manner. As n → ∞ this will tend to the
exact solution

T (x, y, t) = e2t−x−y + (x+ y + 1)t

These results compare favourably with those obtained by Ullah et al. [24] using the iterative Laplace transform
(ILT) method. Table 2 shows the results for fixed t = 0.5 and 0 ≤ x, y ≤ 10 and Figure 5 shows the results for
0 ≤ x, y ≤ 10. Absolute errors are also shown in Figure 8(a) and show the relative superiority of the ILT over the
SAIM for small values of x.

Example 4.3
Consider the nonhomogeneous 2D heat equation adapted from Ullah et al. [24] with fractional order θ = 1:

Tt = ∆T + x+ y + t2, T (x, y, 0) = sin(x+ y). (18)

with unknown exact solution. Here, LT = Tt, NT = −∆T and Q̃ = x+ y + t2. Since the primary problem
LT0 = 0, with T0(x, y, 0) = sin(x+ y), has a solution T0(x, y, t) = sin(x+ y), equation (18) can be solved using
the general iterative scheme

Tn+1(x, y, t) = Tn+1(x, y, 0) +

∫ t

0

[
Tnxx + Tnyy + x+ y + s2

]
ds. (19)
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Table 2. Comparison of approximate solutions from SAIM and ILT for Example 4.2 (t = 0.5)

(x, y) T (x, y, t) TSAIM(x, y, t) TILT(x, y, t) eSAIM eILT
(0,0) 3.218281828 3.166666667 3.208333333 5.16152E − 02 9.94850E − 03
(1,1) 1.867879441 1.860894089 1.866533059 6.98535E − 03 1.34638E − 03
(2,2) 2.549787068 2.548841704 2.549604855 9.45365E − 04 1.82213E − 04
(3,3) 3.506737947 3.506610006 3.506713287 1.27941E − 04 2.46599E − 05
(4,4) 4.500911882 4.500894567 4.500908545 1.73150E − 05 3.33735E − 06
(5,5) 5.500123410 5.500121066 5.500122958 2.34332E − 06 4.51661E − 07
(6,6) 6.500016702 6.500016385 6.500016641 3.17135E − 07 6.11257E − 08
(7,7) 7.500002260 7.500002217 7.500002252 4.29195E − 08 8.27246E − 09
(8,8) 8.500000306 8.500000300 8.500000305 5.80852E − 09 1.11956E − 09
(9,9) 9.500000041 9.500000041 9.500000041 7.86097E − 10 1.51516E − 10

(10,10) 10.50000001 10.50000001 10.50000001 1.06386E − 10 2.05063E − 11

 

(a) (b) 

Figure 5. (a) Comparison of approximate solutions from SAIM and ILT for the 2D heat equation in Example 4.2 for
0 ≤ x, y ≤ 10 for fixed t = 0.5; (b) Surface plot for SAIM solution for 0 ≤ x, y ≤ 10

Thus, the first four approximations are

T0(x, y, t) = sin(x+ y)

T1(x, y, t) = sin(x+ y) +

∫ t

0

[
T0xx

+ T0yy
+ x+ y + s2

]
ds

= (1− 2t) sin(x+ y) + (x+ y)t+
1

3
t3

T2(x, y, t) = sin(x+ y) +

∫ t

0

[
T1xx + T1yy + x+ y + s2

]
ds

= (1− 2t+ 2t2) sin(x+ y) + (x+ y)t+
1

3
t3

T3(x, y, t) = sin(x+ y) +

∫ t

0

[
T2xx

+ T2yy
+ x+ y + s2

]
ds

=

(
1− 2t+ 2t2 − 4

3
t3
)
sin(x+ y) + (x+ y)t+

1

3
t3Stat., Optim. Inf. Comput. Vol. x, Month 202x
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and so on. As n → ∞, this converges to the exact solution

T (x, y, t) = e−2t sin(x+ y) + (x+ y)t+
1

3
t3.

Table 3 and Figures 6 and 7 compare the results from the SAIM with the solution obtained using the iterative
Laplace transform method [24]. Absolute errors are also shown in Figure 8(b) and indicate that the SAIM is far
more accurate than the ILT.

Table 3. Comparison of approximate solutions from SAIM and ILT for Example 4.3 (t = 0.5)

(x, y) T (x, y, t) TSAIM(x, y, t) TILT(x, y, t) eSAIM eILT
(0,0) 0.041666667 0.041666667 0.750000000 0 0.708333333
(1,1) 1.376178496 1.344765809 2.053099142 0.031412687 0.676920646
(2,2) 1.763254588 1.789399168 2.497732502 0.026144581 0.734477914
(3,3) 2.938875449 2.948528167 3.656861501 0.009652718 0.717986051
(4,4) 4.405631226 4.371452749 5.079786082 0.034178477 0.674154857
(5,5) 4.841532484 4.860326296 5.568659630 0.018793812 0.727127145
(6,6) 5.844272521 5.862809027 6.571142361 0.018536506 0.726869839
(7,7) 7.406090747 7.371869119 8.080202452 0.034221629 0.674111705
(8,8) 7.935752955 7.945698894 8.654032228 0.009945939 0.718279272
(9,9) 8.765393898 8.791337584 9.499670918 0.025943686 0.73427702

(10,10) 10.37752046 10.34598175 11.05431508 0.031538705 0.676794628

 

T(
x,

y,
0.

5)

Figure 6. Comparison of approximate solutions from SAIM and ILT for the 2D heat equation in Example 4.3 for 0 ≤ x, y ≤
10 and t = 0.5

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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(a) (b) 

Figure 7. Surface plots for 0 ≤ x, y ≤ 10 and t = 0.5 for (a) SAIM and (b) ILT
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Figure 8. Comparison of absolute errors for SAIM and ILT for (a) Example 4.2 and (b) Example 4.3

Example 4.4
Consider the following homogeneous 2D heat equation [6]:

Tt = ∆T, T (x, y, 0) = x(π − x)y(π − y) (20)

The exact solution for this equation is unknown. However, a near-exact solution can be obtained using the SAIM.
Equation (20) can be rewritten as:

LT +NT = 0

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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with LT = Tt and NT = −∆T . The initial problem yields the solution T0(x, y, t) = x(π − x)y(π − y), so that the
first few iterations give the approximations

T0(x, y, t) = x(π − x)y(π − y)

T1(x, y, t) = x(π − x)y(π − y) +

∫ t

0

[
T0xx

+ T0yy

]
ds

= x(π − x)y(π − y)− 2t [y(π − y) + x(π − x)]

T2(x, y, t) = x(π − x)y(π − y) +

∫ t

0

[
T1xx

+ T1yy

]
ds

= x(π − x)y(π − y)− 2t [y(π − y) + x(π − x)]− 4t2

T3(x, y, t) = x(π − x)y(π − y) +

∫ t

0

[
T2xx + T2yy

]
ds

= x(π − x)y(π − y)− 2t [y(π − y) + x(π − x)]− 4t2

...

Tn+1(x, y, t) = x(π − x)y(π − y) +

∫ t

0

[
Tnxx + Tnyy

]
ds

= x(π − x)y(π − y)− 2t [y(π − y) + x(π − x)]− 4t2, n ≥ 2

Since the SAIM has converged fast to this solution, it must be the exact solution. The results are shown in Table 4
and Figure 9.

Table 4. Comparison of exact and approximate solutions from SAIM for Example 4.4 (t = 0.5)

(x, y) T (x, y, t) TSAIM(x, y, t)

(0,0) −1.000000000 −1.000000000
(1,1) −0.696766213 −0.696766213
(2,2) −0.353435467 −0.353435467
(3,3) −1.669119606 −1.669119606
(4,4) 17.65706953 17.65706953
(5,5) 103.9260201 103.9260201
(6,6) 327.4386202 327.4386202
(7,7) 782.4957581 782.4957581
(8,8) 1587.398322 1587.398322
(9,9) 2884.447200 2884.447200

(10,10) 4839.943280 4839.943280

Example 4.5
Consider the following homogeneous 2D heat equation [8]:

Tt = ∆T, T (x, y, 0) =
√
2
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
(21)

with exact solution T (x, y, t) =
√
2e−

π2

4 t
[
cos

(
πx
2 − π

4

)
+ cos

(
πy
2 − π

4

)]
. Equation (21) can be rewritten as:

LT +NT = 0

with LT = Tt and NT = −∆T . The initial problem yields the solution

T0(x, y, t) =
√
2
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
.
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T(
x,

y,0
.5

)

(a) (b) 

Figure 9. (a) Comparison of approximate and exact solutions for the 2D heat equation in Example 4.4 for t = 0.5; (b) Space-
time surface plot for 0 ≤ x, y ≤ 10 and t = 0.5 for approximate solution from SAIM

Thus, from the first few iterations we have the approximations

T0(x, y, t) = T (x, y, 0) =
√
2
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
T1(x, y, t) =

√
2
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
+

∫ t

0

[
T0xx

+ T0yy

]
ds

=
√
2

(
1− π2

4
t

)[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
T2(x, y, t) =

√
2
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
+

∫ t

0

[
T1xx

+ T1yy

]
ds

=
√
2

(
1− π2

4
t+

π4

32
t2
)[

cos
(πx

2
− π

4

)
+ cos

(πy
2

− π

4

)]
T3(x, y, t) =

√
2
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
+

∫ t

0

[
T2xx

+ T2yy

]
ds

=
√
2

(
1− π2

4
t+

π4

32
t2 − π6

384
t3
)[

cos
(πx

2
− π

4

)
+ cos

(πy
2

− π

4

)]
and so on. As n → ∞, this converges to the exact solution

T (x, y, t) =
√
2e−

π2

4 t
[
cos

(πx
2

− π

4

)
+ cos

(πy
2

− π

4

)]
This same solution was also obtained by Johansson et al. [8] using the method of fundamental solutions (MFS).

The results are obtained in Table 5 and Figure 10

Example 4.6
Consider the following homogeneous 2D heat equation [8]:

Tt = ∆T, T (x, y, 0) = sin(πx) sin(πy) (22)
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Table 5. Comparison of exact and approximate solutions from SAIM for Example 4.5 (x = 1, t = 1.5)

y T (x, y, t) TSAIM(x, y, t)

0 0.049392610 0.049392610
0.2 0.062238319 0.062238319
0.4 0.068991708 0.068991708
0.6 0.068991708 0.068991708
0.8 0.062238319 0.062238319
1.0 0.049392610 0.049392610

 

T(
1,

y,1
.5

)

(a) (b) 

Figure 10. (a) Comparison of approximate and exact solutions for the 2D heat equation in Example 4.5 for x = 1 and t = 1.5;
(b) Space-time surface plots for 0 ≤ x, y ≤ 1 and t = 0.5 for SAIM solution

with exact solution T (x, y, t) = sin(πx) sin(πy)e−2π2t. This problem is solved in the domain [0, 1]× [0, 1] for
t = 0.2. Equation (22) can be rewritten in operator-theoretic form as:

LT +NT = 0

with LT = Tt and NT = −∆T . The solution to the initial problem is

T0(x, y, t) = sin(πx) sin(πy)
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Thus, from the first few iterations we have the approximations

T0(x, y, t) = T (x, y, 0) = sin(πx) sin(πy)

T1(x, y, t) = sin(πx) sin(πy) +

∫ t

0

[
T0xx

+ T0yy

]
ds

= (1− 2π2t) sin(πx) sin(πy)

T2(x, y, t) = sin(πx) sin(πy) +

∫ t

0

[
T1xx + T1yy

]
ds

= (1− 2π2t+ 2π4t2) sin(πx) sin(πy)

T3(x, y, t) = sin(πx) sin(πy) +

∫ t

0

[
T2xx + T2yy

]
ds

= (1− 2π2t+ 2π4t2 − 4

3
π6t3) sin(πx) sin(πy)

T4(x, y, t) = sin(πx) sin(πy) +

∫ t

0

[
T3xx

+ T3yy

]
ds

= (1− 2π2t+ 2π4t2 − 4

3
π6t3 +

2

3
π8t4) sin(πx) sin(πy)

and so on. As n → ∞, this converges to the exact solution

T (x, y, t) = sin(πx) sin(πy)e−2π2t

The results are shown in Figure 11. The approximate solution using radial basis functions (RBFs) is compared
with the SAIM. Because the SAIM approximates to the exact solution even in this example, it is more accurate and
efficient.

5. Conclusion

In this work we have used the semi analytic iterative method to solve the 2D heat equation and found that it
produces exact to near-exact solutions to these kinds of PDEs. Interestingly, even where the exact solution was
unknown, we were able to obtain the exact solution through the quick convergence of the SAIM. The paper has
therefore confirmed the accuracy and efficiency of this method and its suitability for solving such linear PDEs.
However, when it comes to solving differential equations with random function excitation, only few iterations of
the SAIM can be calculated due to the difficulty of integrating random functions. In addition, the SAIM faces
challenges when dealing with higher-order integro-differential equations involving complex nonlinearities as it
often leads to nested integrals that are difficult to evaluate analytically [14]. Future work could therefore focus
on the application of some modifications of the SAIM to address these limitations, such as the Discrete Temimi-
Ansari Method (DTAM) which combines the classical SAIM with the finite difference numerical scheme [19]. The
SAIM can also be modified to provide an alternative approach for handling nonlinearity. One such modification
replaces the nonlinear portion of a differential equation with equivalent Taylor’s series or Chebyshev polynomial
approximations [1] which is advantageous in that it eliminates the need for restrictive assumptions when dealing
with the nonlinear portion of a differential equation. Another modification of the SAIM in the literature involves the
use of Boole’s Rule to improve the performance of the proposed method [11]. The SAIM has also been enhanced by
blending the classical SAIM with the Aboodh Transform (AT) method, resulting in the so-called Aboodh Temimi
Ansari Transform Method, which effectively decreases the computing workload when implementing numerical
solutions of systems of fractional PDEs [21]. Overall, for linear equations like the 2D heat equation, and even
for some nonlinear PDEs, the SAIM is easy to implement, straightforward, direct and gives a better approximate
solution which converges to the exact solution with only few iterations [4].
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T(
x,

y,0
.2

)

(a) (b) 

(c) (d) 

Figure 11. For the 2D heat equation in Example 4.6, (a) Surface plot for RBF approximate solution ((x, y) ∈ [0, 1]×
[0, 1], t = 0.2); (b) Space-time surface plot for exact solution; (c) Contour diagram for exact solution (d) Comparison of
exact and SAIM solutions ((x, y) ∈ [0, 1]× [0, 1], t = 0.2)
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