
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 14, July 2025, pp 144–161.
Published online in International Academic Press (www.IAPress.org)

Ensemble Method for Intervention Analysis to Predict the Water Resources
of the Tigris River

Muzahem Al-Hashimi*, Heyam Hayawi, Mohammed Alawjar

Department of Statistics and Informatics, University of Mosul, Iraq

Abstract Iraq faces real challenges and great concerns regarding water resources, including the noticeable decrease in the
flow of the Tigris River into Iraqi territory due to various irrigation projects being implemented on the Turkish side, the
latest of which was the construction of the Ilisu Dam, which exacerbated the water crisis and placed Iraq before a serious
challenge. The flow river data utilized in this paper was the annual revenue of the Tigris River, representing the amount of
water entering Iraq at the Turkish border data for the period (Oct-2014–Sep-2021), which equals 84 months. To enhance the
accuracy of Tigris River flow forecasting with the ARIMA models as a classical statistical approach and the nonlinear model
of eXtreme Gradient Boosting (XGBoost), a Random Tree ensemble model was proposed in this study. Two distinct ARIMA
models are employed to capture the linear characteristics of the Tigris River flow: SARIMA and ARIMAX. XGBoost model
was utilized to capture the nonlinear characteristics of the Tigris River flow. The results reveal that the Tigris River flow
prediction using the Random Tree ensemble model achieves better than the other models introduced in this paper regarding
the evaluation measurements. The forecast suggests stabilizing the river flow aligning with the low average river flow level,
with variations observed. These seasonal changes reflect the impact of increased river flow during the rainy season in Iraq
and Turkey during peak times and reduced river flow in the summer months.
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1. Introduction

1.1. The Ilisu Dam: Challenges for the Tigris River Flow

It is an objective fact that Iraq is facing real challenges. These include climate change, rising temperatures, the
accompanying drought and lack of rain, and a noticeable decrease in the discharge of the Tigris River into Iraqi
territory due to reservoir and dam projects built in Turkey. The situation has worsened significantly with Turkey’s
construction of the Ilisu Dam on the Tigris River, which has led to a clear shortage in Iraq’s share of water.

The Tigris River originates from Lake Van in the southeastern highlands of Turkey. It enters the Iraqi border in
the northern part of the Fishkhabur area, heads southeast, and continues until it intersects with the Euphrates at
al Qurna in Iraq’s southern region, ultimately emptying into the Arabian Gulf. It has a length of 1,400 km within
the Iraqi border out of 1900km [1]. Among its tributaries are the Khabur and the Upper Zab, which originate in
Turkey and Iraq; the Lower Zab and Diyala, which originate in Iran and Iraq; and the Azim, which originates
in Iraq [1]. The Tigris River and its tributaries from Turkiye feed eight of the 18 governorates: Dohuk, Nineveh,
Salah al-Din, Baghdad, Wasit, Maysan, and Basra. The population benefiting from the main Tigris River and its
tributaries coming from Turkey is about 25 million people, which is approximately 58% of the population of Iraq
for the year 2023.
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Figure 1. Ilisu Dam (Source: Google Earth, accessed on Jun 15, 2025)

Figure 2. Tigris River basin

The Tigris River is vital in Iraq, providing most of the nation’s water resources. The annual revenues of the
Tigris River were estimated at (30.87, 21.13, 32.3, and 9.05) billion/m3, representing (71.34%, 68.58%, 62.00%,
and 56.50%) of the total annual revenues of the Tigris and Euphrates Rivers, which were estimated at (43.27,
30.69, 52.1, and 16.02) billion/m3 for the years 1990-1991, 2000-2001, 2010-2011, and 2022-2023 respectively
[1, 2].

The Tigris River Basin is a trans boundary communal area in four countries (Turkey, Syria, Iraq, and Iran). Since
1941, the Tigris River and its tributaries have had fourteen barrages and dams due to the competition over shared
water resources [3, 4, 5, 6].

The Ilısu Dam is a component of the Southeastern Anatolian Project initiated in 1977. It is the longest concrete-
face rock-fill dam in the world, situated in Siirt, Batman, and Diyarbakır provinces. It was constructed within the
boundaries of Ilısu village, Dargeçit County, between Mardin and Şırnak on the Tigris River, 65 km upstream
from the Syrian-Iraqi border, perched at a height from the valley 135 m, a length of 1,820 m with the volume of
43,800,000 m3. It was completed in 2017 [7, 8, 9]. The Dam is designed to accommodate 10.41 Billion cubic
meters in its reservoir and is aimed at power generation and irrigation [Rahi, K.A. and Halihan, T., 2018]. Ilisu
Dam will operate alongside Cizre Dam, which is currently in the planning phase and will be positioned 45 km
downstream from Ilisu Dam, around 20 km upstream near the Iraq-Syria border [9]. They aim to generate power
and irrigation by channeling water east of the main river course [10].
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1.2. An Overview of Related Methods

Forecasting river flow plays a key role in developing water resource projects, enhanced utilization of water
resources, crop irrigation infrastructure, and water-powered energy systems. With ongoing population growth,
uses in industry, and watering requirements, it has become a major focus for researchers working on effective river
management [11, 12, 13, 14].
Many variables influence the unpredictable direction of water flows. Therefore, effective forecasting of water
flows is very difficult due to highly variable climate change and unpredictable policies of riparian countries.
The family ARIMA techniques have been the most widely used in the field of Hydrology for more than three
decades, encompassing river flow prediction [11, 15, 16, 17]. This property is due to its ease of implementation
and interpretation, where the estimation of the system is linearly and has a lower number of parameters [18, 19].
Papamichail and Georgiou [20] utilized the SARIMA models to forecast inflows for the planned Almopeos
Reservoir in Greece. Ghanbarpour et al. [21] used the ARIMA model to forecast karstic flow in the Karkheh
subbasin of southwest Iran. Valipour, M. et al., [22] employed ARMA and ARIMA models to forecast the inflow
of the Dez dam reservoir. Bazrafshan O. et al., [23] applied the ARIMA and SARIMA models to forecast the
Karkheh Basin standard runoff Index in the Karkheh Basin. Valipour [24] used SARIMA and ARIMA models
to assess long-term runoff forecasting in the United States. Ullah and Hussain [25] used the SARIMA model to
forecast water outflow at the Indus River at Terbela. De Sousa et al. [26] used the ARIMA statistical model to
forecast water flow and sediment flux. Musarat et al. [27] adopted the ARIMA model to forecast the Kabul River
water level. Pires and Martins [28] utilized the ARIMA model to forecast water flow in public supply systems in
the medium term.
ARIMA models face several major constraints. For instance, it is complicated to represent nonlinear relationships
accurately, stationary requiring time series [11], and accurate results require a large amount of historical data [29].
ARIMA assumptions often conflict with the complex nonlinear patterns found in the dominant pattern of time
series data [30, 31]. Therefore, several machine-learning and hybrid techniques have recently been devised to meet
the challenges associated with forecasting models.
El-Shafie et al. [32] used the ANFIS model to forecast the monthly inflow of the Nile River at the Aswan High
Dam. Huang [33] Forecasting flows in Apalachicola River using artificial neural networks (ANN). Altunkaynak
[34] used ANN to model and predict the temporal fluctuations of Lake Van water levels in Turkey. Wu and Chau
[35] predict monthly streamflow time series across diverse areas in China by using K-Nearest-Neighbors, and
ANN, Phase Space Reconstruction (ANN-PSR), and Moving Average Artificial Neural Networks (MA-ANN).
Shabri and Suhartono [36] applied the Least-Squares Support Vector Machine Model, ANN, SVM, and ARIMA
for forecasting streamflow forecasting Kinta River in Perak, Peninsular Malaysia. Kalteh [37] forecasts monthly
river flow for Kharjegil and Ponel in Northern Iran using (ANN) and support vector regression models coupled
with wavelet transform. Bhagwat and Maity [38] hydroclimatic streamflow prediction using least square-support
vector regression. He et al. [39] forecast river flow in small river basins within semiarid mountain regions using
ANN, adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM). Kisi et al. [40] used
three machine learning models, Multivariate Adaptive Regression Splines, M5 Model Tree, and Least Squares
Support Vector Machine to predict streamflow in the Mediterranean region of Turkey. Tosunoğlu et al. [41]
used Support Vector Machines, Adaptive Boosting, K-nearest neighbors, and Random Forests to model monthly
streamflow in the Coruh River basin in Turkey. Sharma et al. [42] utilized Data-Driven Models and Model Tree
for streamflow forecasting in the Purna River in the Tapi Basin, India. Chebii et al. [43] utilized Artificial Neural
Network to predict floods in River Perkerra in Kenya’s Rift Valley region. Reed [44] applied Convolutional
Long Short-Term Memory (ConvLSTM) Networks, Convolutional Neural Networks (CNNs) for Active Learning,
Transfer Learning, and Persistence Model for flow prediction in the South Platte River, Colorado, in the United
States. Maiti et al. [45] used deep learning models along with SARIMA for river flow forecasting Periyar River in
South India. Wang et al. [46] used Support Vector Machine with Radial Basis Function, Support Vector Machine
with Polynomial Kernel, Decision Tree, Gradient Boosting, Random Forest, Long Short-Term Memory, and
Multiple Linear Regression. Furthermore, hybrid models combine machine-learning techniques with wavelet
theory to compute monthly streamflow estimates for the Snake River in Idaho, USA
Water is a necessity that makes up the world and the nation’s environmental well-being, where the demand for
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the spread of irrigated agriculture increases, the economy grows, and the population expands. This is offset by a
reduction in water availability, which increases pressure on water flow. The water flow fluctuations are generally
affected by climate fluctuations and varying seasonal conditions, and unpredictable rainfall patterns lead to floods
or exacerbate water scarcity. To predict water flow changes, researchers differ in achieving the best forecasts
with the least possible error. Decision-makers and farmers look at managing water resources in light of accurate
forecasts, especially regarding the uncertainty of climate and water flows from neighboring countries. Predicting
future water flows is very important to decision-makers and agricultural producers alike. Accurate forecasts of the
future help develop effective policies to support stability and development in countries, make wise decisions, and
negotiate everything that supports water flow stability in riparian countries.
Water flow is intricate and involves a variety of unpredictable elements. Accurately defining it as either linear or
nonlinear is challenging. Therefore, models for Tigris River flow forecasting must account for linear and nonlinear
features. This study proposes a predictive model that effectively captures the Tigris River flow behavior, identifies
the significant patterns using an ensemble method, and forecasts up to October 2026. The study’s knowledge can
help decision-makers review and provide insights for water policy formulation.

2. Modeling Techniques for Time Series Analysis

2.1. Time Series

A time series is a set of observations about a phenomenon taken in a certain chronological order, usually with equal
time intervals [47]. What distinguishes it is the correlation between its observations, mathematically defined as a
sequence of random variables defined within the multivariate probability space and indicated by the evidence t,
which belongs to the evidence group T and symbolizes the time series usually {Y (t), t ∈ T}. There are two types
of time series: Discrete and continuous [48].

Time series are used to analyze patterns and predict future trends. For example, time series can be used to
track stock prices, temperatures, or product sales. A time series is said to be stationary if it satisfies the following
properties [49]:

• The mean E(Yt) is the same for all t.
• The variance of Yt is the same for all t.
• The covariance between Yt and Yt−h is the same for all t at each lag h = 1, 2, 3, . . ..

The Autocorrelation Function (ACF) is equal:

ρYt,Yt−h
=

Covariance(Yt, Yt−h)

Std.Dev.(Yt) · Std.Dev.(Yt−h)
=

Covariance(Yt, Yt−h)

Variance(Yt)

Many techniques can applied to analyze time series, such as moving averages to analyze trends or statistical
models such as ARIMA to predict future values.

2.2. Intervention Analysis

Intervention time series analysis developed by [50]. It is widely used to address the impact of interventions on the
time series regression framework. Intervention is an external event that affects the time series, as it changes the
average of the time series and leads to its sudden deviation, so it is a special model of time series models [50].
Examples of Intervention are natural disasters such as earthquakes, storms, floods, or drought, epidemics such
as the beginning of a pandemic (such as COVID-19) or the outbreak of war, or it may be economic recovery or
economic boom. There are two intervention variables: a step variable, which takes the value 1 when the event
occurs and continues, and zero for other times. The pulse variable, also called a point variable, is a binary variable
represented only once, taking the value 1 for a single point in time and zero for absence [50].
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2.3. Extreme gradient boosting (XGBoost)

Chen and Guestrin (2016) [51] proposed XGBoost as a more sophisticated gradient-boosting algorithm
encompassing system improvement and methodology enhancement. XGBoost is an ensemble decision-tree-based
machine-learning algorithm that provides flexibility and efficiency and is used for regression and classification [52].
It is an ensemble of weak learners to create a powerful classifier in a linear way, which is handled by each successive
decision-tree learning based on the errors of the preceding decision-tree in sequence [51]. For a dataset of size n
samples, there are response variables yi, and explanatory variables xi have k features. The tree ensemble model
implemented in the XGBoost is trained iteratively in an additive-step process to estimate the response variable,
based on the explanatory variables and the number of regression functions (m):

ŷi =

M∑
m=1

fm(xi), fm ∈ F

Where F represents the space of all potential trees. The aim is to minimize the regularized objective as follows,

L(Φ) =

n∑
i=1

l(ŷi, yi) +

m∑
m=1

Ω(fm)

Where l is the loss function for base learners to define and optimize the objective function, and Ω is the
regularization term that constrains the model’s complexity to mitigate overfitting [53]. XGBoost utilizes parameters
to determine an optimal tree structure by applying the greedy search algorithm [54].

2.4. Ensemble model

Ensemble forecasting is a technique that involves integrating multiple data sources and model types, leveraging
varying assumptions and methodologies to identify patterns. The aim is to maximize the use of all relevant data for
predictions, avoiding the constraints and arbitrary decisions tied to adopting only one method or machine learning
technique, a specific functional form, or a restricted dataset [55]. Rather than delivering a single outcome, ensemble
model outputs present a spectrum of possible outcomes from various base models. This method typically improves
both accuracy and robustness in forecasting. Three main reasons can explain the strengths of combining models for
time series forecasting. Using appropriate aggregation methods markedly improves overall forecasting accuracy.
Combination strategies are the best choice when there is considerable uncertainty regarding the optimal forecast
model. The integration of various forecasts is an efficient way to reduce errors [49, 55, 56, 57].

2.5. Random Tree

Random Tree is a supervised machine-learning technique popular in data mining that Leo Breiman and Adele
Cutler introduced. This algorithm is designed to be applied to both classification and regression problems. It’s an
ensemble learning technique that generates a variety of individual models. These are composed of a collection of
single decision trees and random forests as part of the machine learning methodology. Two ways of randomization
generate tree diversity. It utilizes the bagging concept to create a random subset of data for decision tree generation.
In a conventional decision tree, nodes are split by choosing the best division from all available variables [58, 59].

2.6. Hyperparameters in Machine Learning

Hyperparameters are vital to the performance of the Machine learning algorithms. Given their direct role in
affecting the model, they enhance computational performance, manage overfitting, and address class imbalance.
A commonly implemented tuning technique is Grid search, which builds upon each model’s hyperparameters and
iteratively adjusts each hyperparameter of the specified model to pinpoint the optimal parameters [56, 60, 61].

2.6.1. Hyperparameters in XGBoost There are seven fundamental hyperparameters in XGBoost, including
“max-depth” that controls the depth limit for each decision tree. “Minimum child weight” that it specifies the
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minimum weight sum necessary in a leaf (child), which assists in reducing overfitting. “gamma” it lowers the
threshold for loss reduction needed to create a split; increasing gamma leading to less overfitting and a more
conservative model. “subsample” it regulates the fraction of training data used per boosting iteration. “colsample
by tree” it defines the proportion of columns sampled when constructing a tree. “alpha for L1 regularization”
contributes to simplifying the model and improving its efficiency which can reduce overfitting, and “learning rate”
that regulates the step size and shrinkage as boosting progresses [62, 63].

2.6.2. Hyperparameters in Random Tree There are four fundamental hyperparameters in Random Tree, including
“max-depth”, which defines the depth limit for the trees. “Maximum Features” it’s the selected features for each
node split as the tree is being constructed. ‘Minimum samples per split” refers to the minimum samples needed to
split a node as the tree is being constructed. ‘Minimum samples per leaf” refers to the minimum samples needed
in a leaf as the tree is being constructed [64].

3. Data Sources and Preparation

The flow river data utilized in this paper was the annual revenue of the Tigris River, representing the amount of
water entering Iraq at the Turkish border data for the period (Oct-2014–Sep-2021), which equals 84 months. The
data was downloaded from the Environmental Statistics of Iraq- Water Quantity and Quality from the Central
Statistical Organization. Tigris river flow data is defined as the water inflow of the amount of surface water of the
Tigris River passing through the Tigris River at an Iraq station of Fishkhabour at the Iraq-Turkish border during
the water year, in units of measurement (billion m3/year). The water year in Iraq starts from October 1 of each
year until September 30 of the following year. The data was prepared before it was used to ensure the accuracy
of future predictions of Tigris River flow in Iraq, including handling missing values using Mean Imputation. For
model development and evaluation, the data was split into a training set for the data before Jan 2020 to develop
the model and a testing set for data from Jan 2020 to May 2021 to test its effectiveness. Scaling was applied to
improve model convergence for both training and testing data. The ARIMA models were implemented using SAS
9.4 and MINITAB 22.1, XGBoost implemented using Python (Jupyter Notebook), and Random tree ensemble
model implemented using Weka 3.8.2.

4. Results and Discussion

4.1. Data Description and Exploratory Analysis

The Tigris River Basin is one of the large basins shared between four riparian countries: Iran, Iraq, Syria, and
Turkey. The basin area encompasses 221,000 km², with Iraq contributing 56.1%, Turkey 24.5%, Iran 19%, and
Syria 0.4% [Haghighi et al., 2023]. There are 14 main dams within the basin, with a combined maximum storage
capacity of 116.5 BCM. The projected irrigated area in the basin is 4.6 million hectares, while the projected
irrigated area outside the basin is 150,000 hectares [Haghighi et al., 2023].

Descriptive statistics provide a comprehensive overview of the monthly water flow of the Tigris River in Iraq.
There were 84 observations representing the flow of the Tigris River, which was recorded as it entered the border
between Turkey and Iraq. The observations encompass water flow data across various ranges. The maximum
recorded value was 2837 m³/second in April 2019, while the lowest was 79 m³/second in October 2017. The mean
water flow was 480.70 m³/second, suggesting a central tendency measure reflecting the average tendency of a
dataset. The median was 380 m³/second, offering additional insights into the water flow and highlighting potential
outliers. The mode of water flow was 206 m³/second (October 2014 and July 2015), 261 m³/second (January
2017 and August 2019), 278 m³/second (November 2014 and February 2020), and 321 m³/second (July 2019 and
Jun 2020). Representing the most common occurrence, illuminating a specific water flow point that frequently
occurred, helping to identify key trends or patterns in the data, or indicating impactful factors in particular periods.
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The standard deviation was 455.1 m³/second of the points, representing the variation of individual data points from
the mean.

Fig. 3 demonstrates the Tigris River’s behavior regarding the water flow in Iraq from Oct. 2014 to Sep. 2021.
The Tigris water flow series before the Ilisu Dam intervention ranged from Oct. 2014 to Apr. 2019, while after the
Ilisu Dam intervention ranged from May 2019 to Sep. 2021. Tigris water flow demonstrated a notable downward
trajectory with the dam running in 2019.

Figure 3. Time Series Behavior of Tigris Water Flow in Iraq from Oct. 2014 to Sep. 2021

Fig. 4 presents the data’s distribution, which exhibits a positively skewed distribution. The tail extends to the
right, with the majority of values concentrated at the lower values. The data follows a Log Pearson Type III
distribution that can handle skewed data, which is widely used in hydrology and environmental statistics to model
natural phenomena, such as river flows, flood frequency, rainfall, and extreme events.

Figure 4. The distribution of the monthly time series of Tigris River flow in Iraq from Oct. 2014 to Sep. 2021

Fig. 5 illustrates the average monthly Tigris river flow for each month of the year. It reveals that March, April,
and May experience the highest water flow, primarily due to precipitation seasonal conditions. In comparison,
December, January, and February show lower water flow than March, April, and May, though they still exhibit
higher flow than other months. The remaining months of the year demonstrate a consistent pattern with minimal
variations, indicating that Tigris river flow does not significantly increase during these periods. This is due to the
scarcity of rain during this period and the need for extensive water use.

Fig. 6 depicts the box plot of the data, which is a visualization of the data distribution based on five summary
statistics: minimum, first quartile, median, third quartile, and maximum. It further detects outliers displayed as
individual points outside the whiskers. The months from December to May show extreme values due to the yearly
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Figure 5. The average Tigris River flow for each month of the year in Iraq from Oct. 2014 to Sep. 2021.

precipitation season, which identifies the Tigris River in flow across different months and spots outliers in river
flow. It can observe peak months, consistent river flow, and low-river flow periods.

Fig 7. demonstrates the four seasonal quarters (Q1, Q2, Q3, Q4), which display the monthly average of Tigris
river flow over seasonal quarters and the confidence interval of 95% around the line to show the variability of the
data. The data indicates that Tigris river flows are notably higher during the first and second quarters (Q1 and Q2).
This trend is influenced by seasonal factors such as weather conditions and low water use during these periods. In
contrast, Tigris River flow is significantly lower in the third and fourth quarters (Q3 and Q4), suggesting a decrease
in Tigris River flow during these times. These observations highlight the need for water storage measures during
the high river flow quarters (Q1 and Q2) to mitigate water seasonal quarters in the (Q3 and Q4) seasons.

Fig. 8 reveals the four stacked subplots (one for each component). Original time series data combines the effect
of all components: trend, seasonality, and remainder (residuals). The trend represents long-term movements. The
time series rose sharply in 2019, and then there was a significant and rapid decrease in the time series values around
2020. Then, the series shows a slight upward trend until med of 2020 and a more steady decline. A Seasonal plot
depicts highlights repeating patterns over a year. The remainder captures fluctuations that are not explained by the
trend and seasonality.

5. Models Used for Optimization and Forecasting

5.1. SARIMA Model

A forecast with the best ARIMA model was performed using the time series module in Minitab Statistical Software
Version 22.1.0 to find the optimal model that minimizes the criteria (LogLikelihood, AIC, AICc, and BIC). The
“Forecast with Best ARIMA Model” modeled the Tigris River flow data from Oct. 2014 to Dec. 2020. The
SARIMA (2, 1, 0)× (5, 0, 1)8 (LogLikelihood = 9037.45, AIC = -18054.9, AICc = -18051.8, and BIC = -18030.7)
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Figure 6. Box Plot of Tigris River flow in Iraq from Oct. 2014 to Sep. 2021

Figure 7. Quarterly Time Series of Tigris River flow in Iraq from Oct. 2014 to Sep. 2021

was the optimal model. Fig. 7 shows the Normal probability plot and the histogram for the prediction errors,
normally distributed with a mean near zero. No significant autocorrelation or obvious pattern was identified in the
residuals, which confirmed the normal distribution as shown in Fig. 9. The bars rising above or dropping below the
dotted line revealed insignificant autocorrelation (P >0.05). Fig. 11 presents a comparison of actual and forecasted
values. The forecasted values align with the actual data values.
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Figure 8. Decomposition of Monthly time series of Tigris River flow in Iraq from Oct. 2014 to Sep. 2021: Trend, Seasonal,
and Remainder Components.

Figure 9. Histogram and Normal probability plot for the SARIMA (2, 1, 0)× (5, 0, 1)8 model prediction errors.

5.2. ARIMAX Model

Various traditional methods were evaluated to integrate external variables influencing the dependent series. We
found that the most effective model was ARIMAX with the variables,the lagged value of the Tigris River flow
at t− 1, the lagged value of the Tigris River flow at t− 2, the moving average of 2, MA(2), and the moving
standard deviation of 2, MSD(2). The lagged variables were utilized to capture temporal dependencies, while
the moving average was used to smooth short-term fluctuations and highlight trends. The model ARIMAX(p =
2, d = 1, q = 2,x = (lag1, lag2,MA(2),MSD(2))) effectively modeled the trends and fluctuations in the data. The
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Figure 10. Autocorrelation (ACF) and Partial Autocorrelation (PACF) Plots for the Prediction Model SARIMA (2, 1, 0)×
(5, 0, 1)8 of Tigris River Flow from Oct. 2014 to Dec. 2020.

model effectively captured underlying patterns and variations in the data, allowing for accurate forecasts. Fig (11)
shows that the residuals are normally distributed. This indicates that the model’s assumptions are met. Fig (12)
shows the correlation diagnostics. No significant autocorrelation suggests that the model leaves no further patterns
unexplained. Fig. 13 compares the actual and forecast values, where the model performance is clearly illustrated,
as the forecasted values show a strong alignment with the actual data points, demonstrating a high degree of
correctness and consistency in the predicted values.

Figure 11. Residual Normality Diagnostics for the Prediction Model (ARIMAX(2,1,2)) of Tigris River Flow from Oct. 2014
to Dec. 2020.
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Figure 12. Residual Correlation Diagnostics for the Prediction Model (ARIMAX(2,1,2)) of Tigris River Flow from Oct.
2014 to Dec. 2020.

5.3. XGBoost regression model

Various machine-learning methods were explored. Each method was utilized and validated to identify the most
effective technique for identifying and capturing the patterns in the data. After analysis and testing, the highest-
performing model was found to be the XGBoost regression model with the four explanatory variables (Lag1, Lag2,
MA(2), MSD(2)). XGBoost was configured and trained. Using the training data, we conducted a comprehensive
grid search to identify the optimal parameters. Table (1) provides a detailed of search ranges for XGBoost
hyperparameters.

Table 1. XGBoost Hyperparameter Search Ranges

Hyperparameter Search Ranges
Max-depth 3-50
Minimum child weight 1-25
Gamma 0-25
Subsample 0.1-1
Learning rate 0.01-1
Colsample by tree 0.1-1
Alpha for L1 regularization 0-25
n estimators 5-500
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The optimal set of parameters that give the best model performance for the XGBoost model is as follows:
“learning rate” is 0.28; “min child weight” is 33; gamma is 12; “n estimators” is 571, and “max depth” is 18
levels. The contribution to model performance for the hyperparameter is as follows: the “learning rate” at 0.43
and “min child weight” at 0.32 have the highest importance of hyperparameters in XGboost, while the importance
decreases for gamma at 0.11, “n estimators” at 0.09, and “max depth” at 0.05.

Fig. 13 demonstrates the Tigris River flow for the testing data and showcases the actual values and the model’s
predicted values. The plot illustrates a close match between the actual and the predicted lines, reflecting a similar
movement. This reveals the model’s competence in capturing the latent patterns and temporal dependencies in the
testing data, highlighting its effectiveness in providing precise predictions for the dataset.

5.4. Ensemble Model

Our study used an ensemble approach. The initial step involved identifying the optimal ARIMA forecasters by
selecting and using an automatic framework from a broad range of combinations as a univariate model to analyze
the intervention’s impact. The second step included constructing an ARIMAX model as a multivariate time series
model, linking the explanatory variables to the Tigris River flow to model interdependencies between variables.
The third step included constructing an XGBoost model as a machine learning (ML) model, associating with the
explanatory variables to the Tigris River flow to capture nonlinear relationships. Finally, to integrate and enhance
the predictive outcomes of these methods, we combined the prediction of the best ARIMA models and XGBoost
as inputs into a Random tree, enabling the assessment of Tigris River flow to produce the final forecast.

The forecast results for the SARIMA, ARIMAX, and XGBoost models were combined to produce the forecast
results of the Random trees ensemble model. The optimal set of parameters that give the best model performance
for the Random Trees Ensemble model is as follows: “n estimators” is 145, “Maximum Depth” is 26; “Minimum
Samples per Split” is 11; “Minimum Samples per Leaf” is 7, “Maximum Samples per Tree” is 2. “Maximum
Features” is auto”. From Fig. (13), it is observable that the forecasting results using the Random trees ensemble
model demonstrate high potential in the context of Tigris River flow. The forecasts using the ensemble model
are aligned with the actual and fit better than the ARIMAX, SARIMA, and XGBoost models, indicating the
feasibility and effectiveness of the Random trees ensemble model. Furthermore, the forecasted Tigris River flow
of the ensemble model changed the trend of the actual Tigris River flow. It matched the actual values well with the
January to March 2019 peak. Demonstrated superior predictive accuracy and effectively accounted for fluctuations
inherent in the Tigris River flow data, establishing it as the most suitable option for this study.

Figure (14) illustrates the performance of a Random Trees ensemble model applied to testing data from Jan 2020
to May 2021. The predicted values from the model are displayed alongside the actual observed data, highlighting
the model’s ability to reflect variations during the testing phase. The model accurately reflects key patterns, like
prominent rises and falls, indicating strong performance.

Statistical metrics have been employed to assess the model’s performance, providing valuable insights and
complementary methods for forecast analysis and assessment. The RMSE, MAE, MAPE, R2 and AIC of the
SARIMA (2, 1, 0)× (5, 0, 1)8, ARIMAX, XGBoost, along with are Random Trees ensemble model presented in
Table 1. The results highlight that the Random Trees ensemble model exhibits reliable forecasting accuracy and
surpasses the performance of the SARIMA, ARIMA, and XGBoost models.

Table 2. Comparison of Forecasting Methods using Evaluation Metrics

Model RMSE MAE MAPE R2 AIC
SARIMA 168.3 35.5 7.4 0.73 -98.38
ARIMAX 121.1 24.9 5.2 0.82 -107.46
XGBoost 77.9 17.7 3.7 0.88 -124.08
Random Trees ensemble model 53.7 13.4 2.8 0.92 -141.66

Figure (15) illustrates the prediction for the Tigris River flow in Iraq up to the Dec. year 2026. The projection
indicates a noticeable increase in River flow starting in early 2022. Following this increase, the trend stabilizes,
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Figure 13. The forecast curves of the Random Trees ensemble model, SARIMA model, ARIMAX model, XGBoost model,
and the Tigris River flow time series in Iraq (Oct. 2014 to May 2021). The forecasted values of the Random trees ensemble
model demonstrated superior fitting accuracy over the SARIMA, ARIMAX, XGBoost models.

Figure 14. Forecasted vs. Actual Values for Testing Dataset for the Random Trees ensemble model for the Tigris River flow
time series in Iraq.
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aligning with the long-term average for river flow level with variations observed, particularly during the rainy
season in Iraq and Turkey, where River flow varies based on the season. These seasonal changes reflect the impact
of increased rainy season activity during peak times. Overall, the forecast suggests a stabilization of river flow until
Oct. 2030.

Figure 15. Projected Trends in Tigris River flow in Iraq (Oct. 2021–Oct. 2030).

Water plays a fundamental role in life-sustaining and vital availability. It is a primary challenge to national
security. When scarce, it is a fundamental catalyst for conflicts, and its abundance brings prosperity and flourishing.
It is essential in development, with the rising demand for this resource for sustained food availability and
power generation. Therefore, extensive government measures to govern access to rivers and transboundary water
sources are targeted at safeguarding their water resources. Environmental challenges such as climate change,
drought, and land degradation are escalating, combined with human-driven threats represented by squandering,
resource mismanagement, and pollution. Furthermore, unawareness about water’s worth, with the belief that this
resource is everlasting and replenishable. Some nations are also strategically controlling common resources through
international pressure and economic blackmail. Reaching an agreement with Turkey on Iraq’s water share requires
collaboration through the sharing of information and technical knowledge. Conducting discussions, seeking advice,
and creating a reliable framework based on mutual trust and promoting fair participation while upholding a
commitment to protecting Iraq’s water by adhering to the principle of equitable distribution, fostering cooperation
with respect for sovereignty, and formulating a stable policy for shared river management. Moreover, establishing
collaborative commercial projects and boosting inter-trade between basin countries, with the goal of achieving
future partnerships, can mitigate tensions and contribute to shared economic growth.

6. Conclusion

The river flow system is the most vibrant and dynamic constituent, including linear and nonlinear components.
Furthermore, its relationship with numerous variable factors is the most elaborate. So, predicting the results is
highly challenging. This paper employed two distinct linear regression models to extract linear features, ARIMAX
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and SARIMA. While XGBoost of the nonlinear regression model was used to extract nonlinear features. Additive
Regression with Random Trees ensemble is used to reach the conclusions. The analysis shows that the proposed
method can significantly enhance the ability to forecast river flow, and it is an up-and-coming technique. The
forecast suggests a stabilization of the river flow aligning with the low average river flow level, with variations
observed. These seasonal changes reflect the impact of increased river flow during the rainy season in Iraq and
Turkey during peak times and reduced river flow in the summer months.
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