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Abstract In this paper, we suggested a new transformation for the selection a sample with probability proportional to
size measure with replacement under a positive correlation coefficient between the study variable y and the measure of size
variable x . The relative efficiency of the proposed estimator has been studied under a super-population model. A numerical
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1. Introduction

When supplementary size metrics are available, Probability Proportional to Size (PPS) sampling is frequently
employed in finite population sampling. Even though traditional estimators like the Simple Random Sampling
(SRS) estimator and the Hansen-Hurwitz (HH) estimator are well-established, they might not function as effectively
when there is a weak positive correlation between the auxiliary variable (x) and the study variable (y). By
stratifying the population prior to selection. Recently presented a transformed PPS estimator (Ŷ p) that is intended
to increase efficiency in situations where correlation is low.

The performance of four estimators, SRS, HH, and the suggested Ŷ p under a superpopulation model with
weak positive correlation is assessed in this study for sample sizes ranging from 20 to 150. Our simulation
evaluates robustness, relative performance, and variance efficiency, offering insights into the best estimator choice
for practical sampling situations.

When sampling from a finite population, probability proportional to size (PPS) sampling is used, where the
probability of choosing a unit is proportional to its size and a size measure is available for each population unit
prior to sampling. A modified on PPS sampling estimation studded by [12].

Take into consideration a finite population made up of distinct and identifiable units,
U = (U1, U2, ..., UN ). Assume that yi is the study variable's value on the unit Ui, i = 1, ..., N . In actuality, we

would like to calculate the population's overall, Y =
∑

yi based on the values of the units drawn in a sample
with maximum precision. The simple random sampling with replacement (SRSWR) scheme is the simplest of the
probability sampling schemes for selecting a sample, and its unbiased estimator of y is given by:

T̂srs =
N

n

n∑
i=1

yi
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With variance is given by:

V
(
T̂srs

)
=

N

n
[

N∑
i=1

y2i –

(∑
y

)2

/N ]

The concept of sampling with probability proportional to size and with replacement (PPSWR) is proposed by [9].
The plan calls for only one unit to be chosen at each of the n draws. The selection probability for every individual
chosen from the population is provided pi =

xi

X , where X =
∑N

i=1 xi

The estimator of the population total Y was given by [6], as

T̂HH =
1

n

n∑
i=1

yi
pi

with variance

v
(
T̂HH

)
=

1

n

[
n∑

i=1

y2i
pi

− Y 2

]
If the line of regression y on x crosses through the origin, PPS sampling should be more effective than SRS

sampling. If not, it is possible to change the auxiliary variable to increase the efficiency of PPS sampling with
adjusted sizes. [9] proposed a method for estimating variance that consistently has a smaller variance than the
standard in a sample with unequal probability with replacement. [20] proposed a new transformation on the
auxiliary variable x, which changed the Midzuno sampling strategy. [7] studded the optimum utilization of auxiliary
information.

[1] provide a simple alternative estimator of the population total when the correlation between the study and
auxiliary variable is positive; the estimators as follows:

T̂ =

N∑
i=1

yi
p∗i

, p∗i =
1− ρ

N
+ ρpi , pi =

xi∑
xi

An alternative estimator to estimating a population total when the correlation between the certain variables is
poor positive with selection probabilities suggested by [18]. [17] suggested the following estimator of population
total:

p∗i =
(1− ρ)(1 + ρ)

N
+

1

2

[
ρ(1 + ρ)p+i − ρ(1− ρ)p−i

]
where p+i = xi

X , X =
∑N

i=1 xi, p
−
i = zi∑

x , with zi =
X−nxi

N−n

[2] created a novel transformed estimator of population total when the attributes under study are poorly
associated with selected probability after observing that the[10] model works with zero correlation. A
straightforward substitute for the changes in [2] process was put forth by [1]. Research on negatively correlated
coefficients has been undertaken by [3, 8, 14, 15, 16]. [21] considered the Probability-proportional-to-size Ranked-
set Sampling from Stratified Populations. A modification in ratio estimator by using rank set sampling created by
[19].

1.1. The superpopulation model

The superpopulation model proposed by [9] must be taken into consideration in order to examine the relative
effectiveness of the proposed estimator with regard to PPSWR and SRSWR sampling. A general superpopulation
model suitable for our case is

yi = Bpi + ei, i = 1, 2, ..., N
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Where pi =
xi∑
xi

where yi and pi stand for the relative measure of size p and the value of attributes y, respectively, for the ith unit
in the population (i = 1,2,...,N). where errors ei are such that

E(ei/pi) = 0, E(e2i /pi) = σ2pgi

E(eiej/pipj) = 0

Where σ2, g are a superpopulation model parameters
(
σ2 > 0, g > 0

)
For g = 0, the variance of ei constant.
For g = 1, variance of eiproportional to pi.
For g > 1, variance ei increase more rapidly with pi, where the average overall finite population that can be

extracted from the superpopulation is shown by E(.) . Several studies, including [4, 5, 7, 11], and many more,
successfully compare various sample procedures using the supperpopulation model.

2. Suggested Estimator

Assume that there is a positive correlation between the research variable y and the auxiliary variable x > 0. Next,
we propose to transform x to x∗ in such a way that x∗ = xi+nX

N−n , i = 1, 2, . . . , N , where x∗is obviously bigger
than zero. Furthermore, it is evident that there is a positive association between y and x∗. Thus, the altered selection
probabilities turn into

p∗i =
n+ pi
Nn+ 1

, i = 1, 2, . . . , N.

Then the unbiased estimator of the population total Y is provided by

Ŷp =
1

n

n∑
i=1

yi
p∗i

It is known that the variance of the usual estimator T̂HH is given by

v
(
T̂HH

)
=

1

n

 N∑
i=1

y2i
pi

−

(
n∑

i=1

yi

)2


The corresponding variance of the estimator due to [11] is given by

v
(
T̂R

)
=

N2

n

 N∑
i=1

y2i pi −

(
N∑
i=1

yipi

)2


The variance of proposed estimator is obtain by replacing p iby p∗i in(2.2)and is given by

v
(
Ŷp

)
=

1

n

 N∑
i=1

y2i
p∗i

−

(
N∑
i=1

yi

)2


2.1. RobustnessEstimator

Now, we state two lemmas by [13], which are useful for estimator’s comparisons
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Lemma 2.1
Let 0 ≤ b1 ≤ b2 ≤ ... ≤ bm and c1 ≤ c2 ≤ ... ≤ cm satisfying

m∑
i=1

ci ≥ 0

Then

m∑
i=1

bici ≥ 0

Lemma 2.2
Let b1 ≥ b2 ≥ ... ≥ bm ≥ 0 and c1 ≥ c2 ≥ ... ≥ cmsatisfying

m∑
i=1

ci ≥ 0

Then

m∑
i=1

bici ≥ 0

Theorem 2.3
Under the super population model, the sufficient condition that T̂HH has smaller expected variance than Ŷp is

g ≥ 1 +
pimax

(Nn+ 1)p∗imax

where the superpopulation model's heteroscedasticity is controlled by g.

Proof
Under the superpopulation model the expected variance of T̂HH and Ŷ p are respectively given by

nE
(
v
(
T̂HH

))
= σ2

N∑
i=1

pg−1
i (1− pi) ,

And the expected value under superpopulation model for the variance of proposed estimator is

nE
(
v
(
Ŷp

))
= B2

[
N∑
i=1

p2i
p∗i

− 1

]
+ σ2

N∑
i=1

pgi

(
1

p∗i
− 1

)
.

see the appendix.
The difference between them can be written as

nE
(
v
(
Ŷp

)
− v

(
T̂HH

))
= B2

[
N∑
i=1

p2i
p∗i

− 1

]
+ σ2

N∑
i=1

pg−1
i

[
pi

(
1− p∗i
p∗i

)
− (1− pi)

]

= B2

[
N∑
i=1

p2i
p∗i

− 1

]
+ σ2

N∑
i=1

pg−1
i

p∗i
(pi − p∗i )

= B2

 N∑
i=1

(
pi√
p∗i

−
√

p∗i

)2
+ σ2

N∑
i=1

pg−1
i

p∗i
(pi − p∗i )

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 NEW TRANSFORMATION FOR THE SELECTION PROBABILITY

= B2
N∑
i=1

(
pi√
p∗i

−
√

p∗i

)2

+ σ2
N∑
i=1

bići

where ći = (pi − p∗i ) and bi =
pg−1
i

p∗
i
. Note that, the above first term of the above expression is always positive.

For these condition we observe that
∑N

i=1 ći = 0 and ći is an increasing function of pi. So in view Royall’s lemma
1 it can be shown that

∑
bići > 0 provided bi is also increasing function of pi. By deriving bi with respect to pi we

get that the sufficient condition that makes T̂HH has smaller variance than Ŷ p is

g ≥ 1 +
pimax

(Nn+ 1)p∗imax

Hence the theorem is proved.

Example 2.4

g ≥ 1 +
pimax

(Nn+ 1)p∗imax

Solution: Suppose that n = 5, pimax = 0.108 for xi = 54 and p∗imax = 0.0843 for xi = 54 then

g ≥ 1 +
0.108 f

(12 ∗ 5 + 1)0.0843
= 1.021

The estimator T̂HH will have smaller expected variance than Ŷp if g ≥ 1.021

Theorem 2.5
Under the superpopulation model the sufficient condition that the proposed estimator Ŷ has smaller expected
variance than the estimator T̂ srs is

g ≥ pimin

(Nn+ 1)p∗imin

Proof

Under the superpopulation model the expected variance of the estimator T̂ srs and Ŷ p are

nEv
(
T̂srs

)
= B2

[
N
∑
i=1

P 2
i − 1

]
+ σ2(N − 1)

∑
i=1

pgi

and

nEv
(
Ŷp

)
= B2

[
N∑
i=1

P 2
i

p∗i
− 1

]
+ σ2

N∑
i=1

pgi

(
1

p∗i
− 1

)
Then

nEv
(
T̂srs

)
− nEv

(
Ŷp

)
= B2

[
N∑
i=1

P 2
i

p∗i
(Npi − 1)

]
+ σ2

[
pgi
p∗i

(Np∗i − 1)

]
= B2

N∑
i=1

bici + σ2
N∑
i=1

b̀ici (1)

In view of Roayaii’s Lemma 2.1, both parts of Equation 1 are positive. Let

ci = (Npi − 1), bi =
P 2
i

p∗i
, and b̃i =

pgi
p∗i

.
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Now, since ∑
ci = 0

and ci is an increasing function of pi, and so is bi. To ensure that

nEv(Ŷp) < nEv(T̂srs)

for every possible unit, we must find the unit where pi

p∗
i

is larger.

By deriving b̃i with respect to pi, we get
g ≥ pi

(Nn+ 1) p∗i
.

This must hold for all i. The term pi

p∗
i

is maximized when pi is smallest. Then, the sufficient condition that makes

Ŷp have smaller variance than T̂srs is
g ≥ pimin

(Nn+ 1) p∗imin

.

Hence, the result.

3. Empirical study

To study the behavior of the estimator Ŷpwith the conventional estimator T̂srs,we will consider the four populations,
which are given as follow.

Table 1. population.I N=12

x 41 43 54 39 49 45 41 33 37 41 47 39
y 36 47 41 47 47 45 32 37 40 41 37 48

Table 2. population.II N=30

x 3 4 5 8 12 11 8 9 11 10 8 9 7 8 8
y 11 7 9 8 8 9 8 12 10 9 3 14 12 10 10

x 5 6 3 3 9 6 7 8 8 9 11 11 10 5 3
y 10 9 5 7 9 6 12 9 6 9 11 10 14 8 7

Table 3. Population.III N=10

x 25 32 14 70 24 20 32 44 50 44
y 11 7 5 27 30 6 13 9 14 18

Table 4. Population.III N=7

x 428 1177 1869 2544 2618 4113 4567
y 193 819 611 806 1149 1510 1970
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Table 5. Result of selection probability and generalized selection probability.

X Y pi P ∗
i

41 36 0.082 0.0838
43 47 0.068 0.0827
54 41 0.108 0.0843
39 47 0.078 0.0831
49 47 0.098 0.0839
45 45 0.090 0.0836
41 32 0.082 0.0832
33 37 0.066 0.0826
37 40 0.074 0.0829
41 41 0.082 0.0832
47 37 0.094 0.0837
39 48 0.078 0.0831

Sum 1 1

From tables 5, 6, 7, and 8 above, we observed that the selection probability pi and hence, the generalized selection
probability p∗i satisfied the regularity condition of probability normed size measure

1. 0 < pi < 1
2.
∑N

i=1 pi = 1
3. 0 < p∗i < 1

4.
∑N

i=1 p
∗
i = 1

From table 12 The better precision of the suggested estimator Ŷp is confirmed by the fact that it regularly
displays the narrowest confidence intervals. As a result of its sensitivity to deviations from the proportionality
assumption y ∝ x, the Hansen-Hurwitz estimator T̂HH has intervals that are noticeably broader, particularly in
Populations I and II. Notably, Population IV exhibits an oddity in which the interval for Ŷp is incredibly wide but
T̂HH surprisingly has the narrowest interval.

4. Simulation study

We used the R software to conduct simulation research in which we generated 1000 samples
from gamma distribution with scale parameter 2 and shape parameter 10, with varying simple sizes
n = 20, 50, 100, and 150, to examine the behavior of the variance of Tsrs, THH, and the proposed estimator
Tp.

Table 13 presents the findings. By looking at these results, we found that all variances decrease with increasing
sample size, but the relative efficiency rankings stay the same, with ŶP continuing to be superior.

Conclusion

It is clear from Table 10 that when the correlation is weakly positive, the estimator is more efficient than the
estimators and in populations I, II, and III, but in population IV, when the correlation coefficient is strongly positive,
the estimator is more efficient than the estimator and since the typical PPS estimator is already quite effective when
the correlation is really strong.

In table 13 three estimators T̂rs, T̂hh, and the suggested Ŷp were tested in our simulation analysis under weak
positive correlation r = 0.3 for different sample sizes. The findings validate the robustness of the suggested Ŷp
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Table 6. Result of selection probability and generalized selection probability

Unit No X Y Pi P ∗
i

1 3 458 11 0.013333 0.033005
2 4 7 0.017778 0.033078
3 5 9 0.022222 0.033151
4 8 8 0.035556 0.033370
5 12 8 0.053333 0.033661
6 11 9 0.048889 0.033588
7 8 8 0.035556 0.033370
8 9 12 0.040000 0.033443
9 11 10 0.048889 0.033588
10 10 9 0.044444 0.033515
11 8 3 0.035556 0.033370
12 9 14 0.040000 0.033443
13 7 12 0.031111 0.033297
14 8 10 0.035556 0.033370
15 8 10 0.035556 0.033370
16 5 10 0.022222 0.033151
17 6 9 0.026667 0.033224
18 3 5 0.013333 0.033005
19 3 7 0.013333 0.033005
20 9 9 0.040000 0.033443
21 6 6 0.026667 0.033224
22 7 12 0.031111 0.033297
23 8 9 0.035556 0.033370
24 8 6 0.035556 0.033370
25 9 9 0.040000 0.033443
26 11 11 0.048889 0.033588
27 11 10 0.048889 0.033588
28 10 14 0.044444 0.033515
29 5 8 0.022222 0.033151
30 3 7 0.013333 0.033005

Sum 225 272 1 1

Table 7. Result of selection probability and generalized selection probability.

X Y Pi P ∗
i

25 11 0.070423 0.09852
32 7 0.090141 0.09951
14 5 0.039437 0.09716
70 27 0.197183 0.10468
24 30 0.067606 0.09847
20 6 0.056338 0.09791
32 13 0.090141 0.09951
44 91 0.123944 0.10114
50 14 0.140845 0.10195
44 18 0.123944 0.10114

Sum 1 1
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Table 8. Result of selection probability and generalized selection probability

X Y Pi P ∗
i

428 193 0.02477 0.13491
1177 819 0.06792 0.13785
1869 611 0.10795 0.14059
2544 806 0.14696 0.14318
2618 1149 0.15119 0.14343
4113 1510 0.23756 0.14918
4567 1970 0.26375 0.15096

Sum 1 1

Table 9. The Pearson correlation coefficient (r)for populations

Population Correlation
I 0.049988
II 0.338633
III 0.487686
IV 0.996524

Table 10. The Variance of the Estimators

Population T̂srs T̂HH Ŷp

I 3708 6364.892 3667.204
II 5276 12715.85 5201.921
III 6700 7478 6478.15
IV 7334906 2486528 12727941

Table 11. Percentage Variance relative for the Suggested Estimator Ŷp.

Population T̂srs T̂HH Ŷp

I 98.90 57.62 100
II 98.59 40.91 100
III 96.69 86.63 100
IV 1.735 5.118 100

Table 12. The 95% confidence interval of the Estimators

Pop. T̂srs T̂HH Ŷp

I [3588.441, 3827.559] [6208.328, 6521.456] [3548.311, 3786.097]
II [5133.633, 5418.367] [12494.83, 12936.87] [5060.359, 5343.483]
III [6539.565, 6860.435] [7308.30, 7647.69] [6320.415, 6635.885]
IV [7281427, 7388385] [2483431, 2489625] [12720950, 12734930]

estimator in weak correlation situations by showing that it routinely performs better than T̂rs and T̂hh in terms
of variance reduction. All variances decline with increasing sample size, but the relative efficiency rankings hold
steady, with Yp continuing to be superior. Because Yp has a reduced variance, practitioners should favor it for
data that is weakly correlated. Adaptive estimators that alternate between Thh and Yp according to the estimated
correlation strength may be investigated in future studies. Future work could explore extensions of the proposed
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Table 13. The Variance of the Estimators with relative efficiency

Sample size T̂srs T̂HH Ŷp Re.ef. (srs vs. p) Re.ef. (hh vs. p)
20 239988 801636 239939 1 3.4
50 95995 320654 95987 1 3.4
100 47998 160327 47996 1 3.4
150 31998 106885 31998 1 3.4

sampling method under dynamic or feedback-driven settings. In this context, nonlinear models such as the discrete-
time FitzHugh–Nagumo neuron model incorporating a memristor [22] may offer inspiration for modeling complex,
evolving populations.

Appendix

The variance of proposed estimator is given by

v
(
Ŷp

)
=

1

n

 N∑
i=1

y2i
p∗i

−

(
N∑
i=1

yi

)2


Under the superpopulation model proposed by Cochran (1963)

yi = Bpi + ei, i = 1, 2, ..., N

where yi and pi stand for the relative measure of size p and the value of attributes y, respectively, for the ith unit
in the population (i = 1,2,...,N). where errors ei are such that

E(ei/pi) = 0, E(e2i /pi) = σ2pgi

E(eiej/pipj) = 0

σ2 > 0, g ≥ 0

The the expected value of Ŷp under superpopulation model is

E
(
v
(
Ŷp

))
= B2

[
N∑
i=1

p2i
p∗i

− 1

]
+ σ2

N∑
i=1

pgi

(
1

p∗i
− 1

)
Proof

E(v
(
Ŷp

)
) =

1

n

E
 N∑

i=1

y2i
p∗i

−

(
N∑
i=1

yi

)2


nE
(
v
(
Ŷp

))
=

N∑
i=1

E

(
y2i
p∗i

)
− E

(
N∑
i=1

yi

)2

(2)

E

(
y2i
p∗i

)
=

1

p∗i
E(β2p2i + 2Bpiei + e2i )
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E

(
y2i
p∗i

)
=

1

p∗i

(
β2p2i + σ2pgi

)
(3)

E

(
N∑
i=1

yi

)2

= E
(
y2i
)
+

N∑
i ̸=j

E (yiyj) (4)

E
(
y2i
)
=
(
β2p2i + σ2pgi

)
(5)

And

E (yiyj) = E [(Bpi + ei) (Bpj + ej)] = E
(
β2pipj +Bpiej +Bpjei + eiej

)
E (yiyj) = β2pipj (6)

Substituting Eq 5 and Eq 6 in Eq 4 we get

E

(
N∑
i=1

yi

)2

=
∑((

β2p2i + σ2pgi
)
+ β2pipj

)
=
∑

β2
(
p2i + pipj

)
+
∑

σ2pgi (7)

Substituting Eq 7 and Eq 3 in Eq 2 we get

nE
(
v
(
Ŷp

))
=

N∑
i=1

1

p∗i

(
β2p2i + σ2pgi

)
−
∑

β2
(
p2i + pipj

)
+
∑

σ2pgi

by simplification we get

E
(
v
(
Ŷp

))
= B2

[
N∑
i=1

p2i
p∗i

− 1

]
+ σ2

N∑
i=1

pgi

(
1

p∗i
− 1

)
.
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