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Abstract The rapid integration of Large Language Models (LLMs) in Internet of Things (IoT) security presents
both unprecedented opportunities and complex challenges. This systematic literature review examines 34 recent studies
(2022-2024) to evaluate the effectiveness, challenges, and architectural innovations of LLM implementations in IoT
security environments. Through a rigorous methodology following PRISMA guidelines, we analyze performance metrics,
implementation strategies, and resource optimization approaches across diverse security applications. Our findings
reveal significant advancements in detection capabilities, with frameworks like SecurityBERT achieving 98.2% accuracy
while reducing model size by 89.85%, and privacy-preservation mechanisms demonstrating up to 98.247% protection
effectiveness. However, persistent challenges emerge in resource optimization, real-time processing requirements, and
cross-platform compatibility. The review identifies critical research gaps in standardization frameworks, ultra-constrained
device optimization, and privacy-preserving architectures. Our analysis reveals promising architectural innovations,
including hybrid deployment strategies reducing energy consumption by 45% and federated learning approaches achieving
97.12% accuracy while maintaining data privacy. This comprehensive review provides a foundation for future research
directions in LLM-based IoT security, emphasizing the need for balanced approaches between security effectiveness and
resource constraints. The findings suggest that successful implementation requires careful consideration of computational
requirements, privacy preservation, and architectural optimization for resource-constrained environments.
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1. Introduction

The Internet of Things (IoT) is fundamentally transforming digital infrastructure across global sectors, with
projections indicating over 50 billion connected devices by 2030 [1]. This unprecedented growth has created
a complex technological ecosystem spanning healthcare, industrial automation, smart cities, and consumer
applications. In healthcare, IoT devices now manage critical patient monitoring systems and automated drug
delivery [2], [3]. Industrial settings leverage IoT for real-time production control and predictive maintenance [4].
Smart cities deploy IoT networks for traffic management, resource optimization, and public safety [5]. However,
this widespread integration of IoT technologies, while revolutionizing connectivity and automation, has also created
unprecedented security challenges that traditional cybersecurity approaches struggle to address effectively [6], [7].

Recent security incidents highlight the critical nature of these challenges. In 2023, IoT-connected assembly
lines in the automotive industry were identified as high-risk targets for sophisticated cyberattacks. Such attacks
have the potential to cause significant operational disruptions, including production shutdowns lasting multiple
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days and resulting in substantial financial losses. Studies document the growing vulnerability of IoT systems in
smart manufacturing environments, necessitating robust cybersecurity measures to prevent these scenarios [8], [9],
[10]. A recent breach in a smart building system within a European financial district compromised environmental
controls across multiple buildings, showcasing how IoT vulnerabilities can lead to cascading failures. In healthcare
settings, compromised IoT devices have disrupted patient care and exposed sensitive medical data, highlighting
the critical need for robust IoT security measures [11]. These incidents underscore the importance of safeguarding
interconnected systems to prevent significant operational and safety risks [12].

The security challenges in IoT environments are particularly complex due to several unique characteristics.
First, the heterogeneous nature of IoT devices creates diverse attack surfaces, ranging from physical tampering to
network-level exploits and application vulnerabilities [13]. Second, resource constraints on IoT devices limit the
implementation of traditional security measures. Third, the scale and complexity of IoT networks make traditional
monitoring and threat detection approaches increasingly ineffective [14], [15]. These challenges are further
compounded by the increasing sophistication of cyber threats targeting IoT infrastructure. Traditional security
mechanisms demonstrate significant limitations in the IoT context. Static rule-based systems and conventional
machine learning approaches often fail to adapt to the dynamic nature of emerging threats and struggle with the
scale and complexity of IoT networks [16]. These limitations are particularly evident in three critical areas: the
ability to process and analyze heterogeneous data streams in real-time, the capability to detect zero-day attacks and
novel threat patterns, and the challenge of maintaining security while operating within the resource constraints of
IoT devices [17].

Large Language Models (LLMs) represent a transformative approach to addressing these security challenges.
Unlike traditional security approaches, LLMs demonstrate remarkable capabilities in understanding context,
recognizing patterns, and generating adaptive responses to security threats [18]. Their sophisticated pattern
recognition capabilities enable the identification of subtle anomalies in device behavior that traditional systems
might miss. Furthermore, their ability to process and analyze unstructured data, combined with advanced semantic
understanding, offers promising solutions for enhancing IoT security across multiple dimensions: predictive
threat detection through pattern recognition and contextual analysis, automated security policy generation and
enforcement, intelligent anomaly detection with reduced false positives, and adaptive defense mechanisms that
evolve with emerging threats [19].

Figure 1. Timeline of LLM Evolution and IoT Security Applications: From BERT to IoT-Optimized Models

The evolution of Large Language Models (LLMs) in IoT security has seen significant developments from 2019
to 2024, progressing through distinct phases as illustrated in Figure 1. . This timeline demonstrates the field’s
rapid advancement from early transformer models to specialized IoT-optimized LLMs, marking key milestones
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including the GPT-3 release in 2020, the first IoT security applications, and the emergence of IoT-optimized LLMs
in 2024. The progression shows four main developmental stages: Foundation Period, Early Integration, Rapid
Development, and Specialization, reflecting the increasing sophistication and domain-specific adaptation of LLMs
for IoT security challenges [20].

The focus on the 2022-2024 timeframe is particularly significant due to transformative developments in LLM
capabilities during this period. The release of GPT-3.5 (2022) and GPT-4 (2023), along with the emergence of
open-source LLMs, marked a step change in natural language understanding and generation capabilities. This
period saw the first practical applications of LLMs to IoT security challenges, enabled by improvements in model
efficiency, context understanding, and domain adaptation. The emergence of specialized and IoT-optimized LLMs
in 2024 further accelerated adoption in security applications. Prior to 2022, LLM applications in IoT security were
largely theoretical due to computational constraints and limited model capabilities.

Early implementations have shown promising results, with some studies reporting detection accuracy
improvements of up to 20% compared to traditional approaches [21]. However, the integration of LLMs in
IoT security presents its own set of challenges. Questions remain about their computational requirements, their
ability to operate within resource-constrained environments, and the balance between model complexity and real-
time performance. Through a systematic analysis of 34 recent studies (2023-2024), we examine the evolution
of LLM applications in IoT security, focusing on architectural innovations, performance metrics, and practical
implementation challenges. Our review reveals significant advancements in several key areas: enhanced threat
detection accuracy, with performance improvements of up to 15-20% compared to traditional approaches, novel
lightweight LLM architectures specifically designed for resource-constrained IoT environments, and innovative
approaches to privacy preservation and model interpretability.

To further illustrate this evolution, Figure 2 presents a detailed analysis of the technological progression and
performance metrics across different implementation phases.

As shown in Figure 2, each phase introduced significant advancements in both capabilities and performance
metrics. The Initial Integration phase established baseline performance with BERT-based models achieving 85-90%
accuracy [2]. The Optimization phase marked a crucial advancement through SecurityBERT, achieving 89.85%
size reduction while maintaining detection effectiveness [2]. The Architecture Innovation phase demonstrated
substantial performance improvements through the EBIDS system, achieving 0.08273335s execution time and
99.96% detection accuracy [11]. The current state in 2024 represents significant maturity with 98-99% accuracy
rates and enhanced privacy preservation capabilities [10].

This progression demonstrates not only quantitative improvements in performance metrics but also qualitative
advancements in system capabilities, from basic classification to sophisticated privacy-preserving architectures.
The evolution particularly highlights the field’s response to core challenges in IoT security implementation,
showing systematic improvement in both resource utilization and security effectiveness. The transition from basic
BERT models to specialized architectures like SecurityBERT and EBIDS demonstrates the field’s growing maturity
in addressing IoT-specific security challenges while optimizing for resource constraints.

The contributions of this review are threefold: first, a comprehensive analysis of the current state-of-the-art in
LLM applications for IoT security; second, identification of key patterns and trends in architectural innovations
and implementation strategies; and third, critical analysis of research gaps and future directions requiring attention
from the research community.

The remainder of this paper is organized as follows: Section 2 describes our research methodology and selection
criteria. Section 3 presents a detailed analysis of the literature, organized by key themes and technological
approaches. Section 4 discusses our findings and their implications for future research and practical applications.
Finally, Section 5 concludes the paper and outlines future research directions.

2. METHODOLOGY

In this study, we conducted a Systematic Literature Review (SLR) to investigate the latest research on LLMs in
IoT security. Following established SLR guidelines [22], oOur methodology is structured into three pivotal stages,
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Figure 2. Technical Evolution and Performance Progression of LLM Integration in IoT Security

as shown in Figure 3: Planning, Conducting, and Reporting, each meticulously designed to ensure comprehensive
coverage and insightful analysis of the current state of research in this burgeoning field.

Following the established SLR guidelines, our methodology is structured into three pivotal stages as shown in
Figure 3: Planning (§2.1), Conducting (§2.2, §2.3), and Reporting (§2.4), each meticulously designed to ensure
comprehensive coverage and insightful analysis of the current state of research in this burgeoning field.

2.1. Research Questions

This systematic review examines the integration of Large Language Models (LLMs) in IoT security through four
refined research questions, each with corresponding analytical dimensions. The first research question investigates
quantitative performance metrics characterizing the effectiveness of LLM-based approaches in IoT security
compared to traditional methods. This encompasses examination of detection accuracy, precision, and recall rates
across different implementation approaches, temporal performance characteristics including detection speed and
response time, and resource utilization metrics differentiating LLM-based on conventional security solutions.

The second research question explores architectural and implementation challenges emerging when deploying
LLM-based security solutions in IoT environments. This investigation focuses on how resource constraints impact
deployment strategies, what privacy preservation mechanisms are necessary for secure implementation - including
advanced password protection systems utilizing RAG (Retrieval Augmented Generation) for dynamic security
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Figure 3. Systematic Literature Review Methodology for LLMs in IoT Security

recommendations, as demonstrated in recent implementations achieving significant improvements in recall and F1-
scores for password vulnerability prediction - and how different architectural approaches address cross-platform
compatibility

Our third research question examines innovative solutions and architectural patterns that have emerged to address
identified implementation challenges. This includes analysis of edge-centric deployment strategies optimizing
resource utilization, federated learning approaches maintaining privacy while ensuring security effectiveness, and
hybrid architectures balancing computational requirements with security capabilities.

The fourth research question addresses critical research gaps requiring attention for advancing LLM applications
in IoT security. This encompasses standardization needs for evaluation frameworks, approaches for improving
resource optimization in ultra-constrained devices, and methods for enhancing real-time adaptation capabilities.To
systematically address these research questions, we developed a comprehensive analysis framework examining
both quantitative and qualitative aspects of LLM implementation in IoT security. This framework evaluates
implementations across three primary dimensions: performance metrics examining quantitative measures including
detection accuracy and resource utilization; implementation challenges systematically categorizing resource
constraints, privacy requirements, and cross-platform compatibility issues; and architectural innovations evaluating
emerging patterns and their effectiveness in addressing identified challenges.

The selection process followed PRISMA guidelines, with papers evaluated against comprehensive inclusion
and exclusion criteria. We focused on primary research articles published between 2020-2024 that specifically
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addressed LLM applications in IoT security. Papers were excluded if they were short papers (<8 pages), non-
English publications, or secondary studies. This rigorous selection process resulted in 34 papers for final analysis.

2.2. Search and Selection Process

Our comprehensive search strategy encompassed three major academic databases: IEEE Xplore, Web of Science
(WoS), and Scopus. Initial searches employed carefully selected keywords combining LLM-related terms (“Large
Language Model”, “LLM”, “Language Model”, “Pre-trained”, “GPT”, “ChatGPT”, “T5”) with IoT security-related
terms (“IoT Security”, “Smart Device Security”, “IoT Vulnerability”, “IoT Threat Detection”). This initial search
yielded 1077 papers across all databases. Following the removal of duplicates and initial screening based on titles
and abstracts, 215 papers were identified for detailed evaluation.

2.3. Quality Assessment Framework

Each selected paper underwent thorough quality assessment based on five comprehensive criteria: research
objective clarity, methodological rigor, data collection thoroughness, results validity, and documentation quality.
Papers received scores from 0 to 2 for each criterion, with detailed scoring guidelines ensuring consistent
evaluation. Research objective clarity assessed both the explicit statement of aims and their alignment with current
research gaps. Methodological rigor examined the appropriateness and detailed description of chosen methods.
Data collection thoroughness evaluated both the comprehensiveness of data gathering and the clarity of analysis
procedures. Results validity focused on the appropriateness of analysis techniques and the support for conclusions.
Documentation quality assessed the completeness of technical details and the effectiveness of result presentation.
Papers needed to achieve a minimum score of 7 out of 10 for inclusion in our final analysis.

2.4. Data Synthesis and Analysis Framework

Our data synthesis approach employed a comprehensive framework integrating performance metrics,
implementation characteristics, and resource requirements. Table 1 presents this unified analysis framework:

Table 1. Comprehensive Analysis Framework

Implementation
Aspect

Traditional
Approaches

LLM Implementa-
tion

Performance
Metrics

Resource
Requirements

Detection Capability 85-90% baseline
accuracy

95-99% enhanced
accuracy

Precision,
Recall, F1 scores

Memory utiliza-
tion (2-25GB)

Adaptation Mecha-
nisms

Static rule-based
systems

Dynamic learning
capability

Response latency
(0.08-0.5s)

Processing over-
head

Privacy Protection Basic encryption
methods

Advanced
contextual
preservation

Protection effec-
tiveness scores

Computational
demands

Processing
Efficiency

Fixed processing
patterns

Adaptive processing
systems

Real-time perfor-
mance metrics

Edge/cloud
resource
allocation

This framework enabled systematic comparison of implementation approaches while maintaining clear
connections to our research objectives. The analysis examined both quantitative performance metrics and
qualitative aspects of implementation strategies, ensuring comprehensive evaluation of each study’s contribution to
the field.

2.5. Validity Considerations

To ensure the validity and reliability of our findings, we implemented several quality control measures throughout
the review process. Multiple researchers independently evaluated papers during the selection and assessment
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phases, with disagreements resolved through consensus discussions. We maintained detailed documentation of all
selection and evaluation decisions, enabling transparency and reproducibility of our review process. Additionally,
we conducted sensitivity analyses to assess the robustness of our findings to different quality threshold criteria.

2.6. Methodological Considerations and Study Limitations

2.6.1. Temporal Scope Rationale The restriction to studies published between 2022-2024 reflects the paradigmatic
shift in LLM accessibility and IoT security applications during this period. This timeframe encompasses several
critical milestones:

The release of GPT-3.5 in November 2022 marked the democratization of advanced language model capabilities,
enabling practical implementation in resource-constrained IoT environments [23]. Subsequently, the introduction
of GPT-4 in March 2023 established enhanced reliability standards for security-critical applications. Concurrently,
the emergence of specialized IoT-optimized LLMs in 2024 directly addressed the computational constraints
inherent in embedded device deployments.

Prior to this period, LLM applications in IoT security remained predominantly theoretical due to computational
constraints and limited model sophistication [23]. The evolution from basic natural language processing to
sophisticated security applications represents a fundamental shift enabled by these technological advances.

2.6.2. Database Selection and Coverage Analysis The systematic search employed three complementary
databases: IEEE Xplore, Scopus, and Web of Science. While this multi-database approach follows established
systematic review protocols, several methodological limitations warrant acknowledgment:

Linguistic Coverage Constraints: The English-language restriction potentially excludes significant
contributions from regional research communities, particularly those developing LLM-IoT security solutions for
local infrastructure requirements.

Implementation Accessibility: Analysis of the surveyed literature reveals a critical reproducibility challenge,
with SecurityBERT [23], IoV-BERT-IDS [24], and EBIDS [32] lacking publicly accessible implementations
despite reporting substantial performance improvements.

Temporal Publication Dynamics: The rapidly evolving nature of LLM research necessitates consideration of
preprint repositories, as peer-review lag may delay dissemination of cutting-edge implementations.

2.7. RQ1: HOW EFFECTIVELY DO CURRENT LLM-BASED APPROACHES ADDRESS THE CORE
SECURITY CHALLENGES IN IOT ENVIRONMENTS COMPARED TO TRADITIONAL METHODS?

Our systematic analysis reveals significant improvements in IoT security through LLM-based approaches compared
to traditional methods. Through examination of 34 papers, we observe consistent performance enhancements across
multiple security domains.

In threat detection capabilities, LLM-based systems demonstrate substantial improvements over conventional
approaches. SecurityBERT [23] achieved 98.2% detection accuracy while reducing model size by 89.85%,
significantly outperforming traditional rule-based systems. Similarly, IoV-BERT-IDS [24] demonstrated 99.96%
accuracy in vehicle network security, particularly excelling in detecting sophisticated attacks where traditional
methods often fail.

For vulnerability assessment, LLM-based approaches show enhanced detection capabilities. LuaTaint [25]
discovered 68 previously unknown vulnerabilities across firmware samples from eight vendors, demonstrating
superior analysis capabilities compared to conventional static analysis tools. This improvement is particularly
notable in identifying complex vulnerabilities that traditional tools often miss.

In network security applications, BERTAD [26] achieved 99.89% accuracy with 98.78% precision in anomaly
detection, representing a significant advancement over traditional IDS systems. The system demonstrated particular
strength in reducing false positives, a common challenge in conventional approaches.

Privacy and policy management also show marked improvements through LLM integration. The LLM-CI
framework [27] achieved over 90% accuracy in contextual integrity standards, while iConPAL [28] demonstrated
93.61% translation accuracy for security policies. These results represent substantial improvements over traditional
manual and rule-based policy management approaches.
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Real-time processing capabilities have also improved significantly. Wang et al. [29] achieved 98.39% accuracy in
smart home environments while maintaining practical processing times, demonstrating that LLM-based approaches
can operate effectively within IoT timing constraints.

Recent advancements in privacy-preserving LLM architectures have demonstrated remarkable effectiveness.
Rehman et al. [30] developed an adaptive contextual privacy preservation framework combining CGANs with
BERT, achieving 98.218% accuracy, 98.247% precision, and 98.218% recall on the CSE-CIC-IDS2018 dataset.
This was complemented by Li et al. [31], who achieved even higher metrics (98.799% accuracy, 98.805% precision)
through their pre-trained language model-enhanced CGAN approach. The EBIDS system [32] further demonstrated
the versatility of BERT-based approaches, achieving 97.49% accuracy in network layer detection and 94.25% in
application layer detection, while maintaining significantly faster execution times (0.08273335 seconds) compared
to traditional approaches like CNN (0.50371706s) and LSTM (0.4222699s).

2.8. RQ2: WHAT ARE THE PRIMARY CHALLENGES IN IMPLEMENTING LLM-BASED SECURITY
SOLUTIONS IN IOT ENVIRONMENTS?

Our analysis of the literature reveals several significant challenges in implementing LLM-based security solutions
in IoT environments. These challenges manifest across multiple dimensions of implementation and deployment.

Resource constraints emerge as a fundamental challenge in IoT deployments. Xiao et al. [33] demonstrated
that even with advanced quantization techniques, significant computational resources remain necessary, with their
implementation requiring 25GB of GPU memory even in optimized configurations. This resource intensity poses
particular challenges for edge deployment scenarios, where computational capabilities are often limited.

Real-time processing requirements present another significant challenge. Fu et al. [34] highlighted the difficulties
in maintaining consistent performance under strict timing constraints, particularly in vehicle network security
applications. Despite achieving high accuracy, the need to process security threats in real-time while operating
within IoT device limitations remains challenging.

Device classification and computational complexity present significant implementation hurdles. Morales et
al. [35] highlighted that while LLM-based approaches achieved 79.44% accuracy in device classification, the
computational requirements remain substantial. Their analysis revealed that RoBERTa’s complexity of O(n²d)
requires approximately 4.9 × 10¹² FLOPs for basic operations, presenting significant challenges for resource-
constrained IoT devices. The SPELL framework [36] further identified limitations in current LLMs’ capabilities
for security policy enforcement, particularly in CWE identification and mapping, where inconsistent rankings and
incorrect mappings persist despite advanced filtering mechanisms.

Privacy preservation during model operation presents complex challenges. Shvartzshnaider et al. [37]
demonstrated through LLM-CI that maintaining privacy while processing security-relevant data requires
sophisticated architectural approaches. The challenge becomes particularly acute when dealing with sensitive IoT
data that must remain protected during analysis.

Model generalization across diverse IoT environments proves challenging. Wang et al. [38] highlighted
difficulties in developing models that can effectively operate across different device types and network
configurations. Their work in smart home environments revealed that maintaining consistent performance across
heterogeneous IoT ecosystems requires careful architectural considerations.

Scalability challenges become apparent in large-scale deployments. Baral et al. [39] identified significant
difficulties in scaling LLM-based security solutions across multiple IoT nodes while maintaining performance.
Their adaptive framework, despite achieving 99.97% accuracy, revealed challenges in maintaining consistent
performance across distributed systems.

Integration with existing security infrastructure presents operational challenges. Hassanin et al. [38] noted
difficulties in seamlessly incorporating LLM-based solutions into established security frameworks. Despite
achieving perfect accuracy on standard datasets, practical deployment often requires complex integration strategies.

The maintenance of model effectiveness over time poses ongoing challenges. Nakanishi et al. [40] highlighted the
difficulty of keeping models current with evolving security threats. Their work in firmware security demonstrated
that maintaining model relevance requires continuous updates and refinements.
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2.9. RQ3: WHAT OPPORTUNITIES DO ARCHITECTURAL INNOVATIONS AND IMPLEMENTATION
STRATEGIES PRESENT FOR OVERCOMING THESE CHALLENGES?

The systematic analysis of architectural innovations and implementation strategies reveals significant opportunities
for addressing IoT security challenges through LLM-based solutions. These opportunities emerge from both
technical advancements and novel implementation approaches.

Model compression and optimization techniques present promising opportunities. SecurityBERT [23]
demonstrated that significant model size reduction (89.85%) could be achieved while maintaining high detection
accuracy (98.2%). This architectural innovation suggests a path forward for deploying sophisticated security
measures in resource-constrained IoT environments.

Hybrid architectural approaches offer enhanced capabilities. IoV-BERT-IDS [24] showed that combining in-
vehicle and external network analysis could achieve exceptional accuracy (99.96%) in vehicle network security.
This integration of multiple architectural components demonstrates the potential for comprehensive security
coverage while maintaining efficiency.

Edge-centric deployment strategies show promise for addressing latency concerns. Xiao et al. [41] demonstrated
that quantized implementations could maintain competitive performance while significantly reducing resource
requirements. Their work suggests opportunities for practical edge deployment of LLM-based security solutions.

Novel architectural approaches have emerged to address these challenges. The TFHSVul system [42] introduced
a fine-grained hybrid semantic approach combining CodeBERT, Multi-Scale Fusion CNN, and Residual Graph
Convolutional Networks, achieving precision of 0.97 and recall of 0.89 in vulnerability detection. BT-TPF
[43] demonstrated remarkable efficiency through improved BERT-of-Theseus knowledge distillation, reducing
parameters by 90% while maintaining over 99% accuracy. The domain-adaptive framework proposed by Che et al.
[44] further advanced the field by developing a specialized corpus refinement approach, achieving a word similarity
score of 0.7423 compared to BERT’s 0.4382 in cybersecurity-specific tasks.

Federated learning architectures present opportunities for distributed security implementation. Adjewa et al.
[45] achieved 97.12% accuracy with IID data while maintaining data privacy through federated approaches. This
architectural innovation addresses both privacy concerns and distributed deployment challenges.

Domain-specific optimization techniques reveal opportunities for enhanced performance. LuaTaint [25]
demonstrated that specialized architectural adaptations for firmware analysis could significantly improve
vulnerability detection capabilities. Their discovery of 68 previously unknown vulnerabilities highlights the
potential of targeted architectural optimization.

Privacy-preserving architectures show promise for sensitive applications. The LLM-CI framework [27] achieved
over 90% accuracy while maintaining privacy requirements through innovative architectural design. This suggests
opportunities for deploying LLM-based security in privacy-sensitive IoT environments.

Real-time processing innovations present opportunities for immediate threat response. BERTAD [26] achieved
99.89% accuracy while maintaining practical processing times through efficient architectural design. This
innovation demonstrates the potential for real-time security applications in IoT environments.

Cross-domain integration strategies reveal opportunities for comprehensive security coverage. Baral et al. [39]
showed that adaptive frameworks could achieve high accuracy across multiple attack types through architectural
innovation. Their work suggests possibilities for unified security approaches across diverse IoT applications.

2.10. RQ4: WHAT ARE THE CRITICAL GAPS AND FUTURE RESEARCH DIRECTIONS IN
LEVERAGING LLMS FOR IOT SECURITY?

Through our systematic analysis of the literature, several critical gaps and promising research directions emerge in
the application of LLMs to IoT security. These findings indicate significant opportunities for future research and
development.

The standardization of evaluation frameworks represents a significant gap. While studies like SecurityBERT [23]
and IoV-BERT-IDS [24] demonstrate impressive results, the lack of standardized evaluation metrics makes direct
comparisons challenging. Future research should focus on developing comprehensive evaluation frameworks that
enable consistent assessment of LLM-based security solutions across different IoT environments.
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Resource optimization for ultra-constrained devices remains an open challenge. Although Xiao et al. [41]
demonstrated progress in model quantization, achieving 60.52% accuracy with reduced memory requirements,
significant work remains in optimizing LLM-based security solutions for highly resource-constrained IoT devices.
Future research should explore novel compression techniques and architectural innovations specifically designed
for minimal resource environments.

Real-time adaptation capabilities require further development. While BERTAD [26] achieved high accuracy in
anomaly detection, the ability of LLM-based systems to adapt to emerging threats in real-time remains limited.
Future research directions should explore mechanisms for dynamic model adaptation and continuous learning in
production environments.

Privacy preservation techniques need enhancement. The LLM-CI framework [27] demonstrated progress in
privacy-aware security implementation, but gaps remain in ensuring robust privacy guarantees while maintaining
security effectiveness. Future work should investigate advanced privacy-preserving techniques specifically
designed for IoT security applications.

Cross-platform compatibility presents ongoing challenges. Despite the success of frameworks like LuaTaint
[25] in firmware analysis, the ability to deploy LLM-based security solutions across diverse IoT platforms remains
limited. Future research should address the challenges of developing platform-agnostic security solutions.

Automated response mechanism development requires attention. While HuntGPT [46] showed promise in
automated threat detection, the development of sophisticated automated response mechanisms remains an
important area for future research. Studies should explore the integration of LLMs in autonomous security decision-
making systems.

Energy efficiency optimization presents a critical gap. Although studies have addressed computational efficiency,
comprehensive analysis of energy consumption in LLM-based security solutions remains limited. Future
research should investigate energy-aware architectures and deployment strategies specifically designed for IoT
environments.

Scalability across heterogeneous networks needs further investigation. The work by Wang et al. [29]
demonstrated success in smart home environments, but challenges remain in scaling LLM-based security solutions
across diverse IoT networks. Future research should address the complexities of deploying these solutions in large-
scale, heterogeneous environments.

Integration with existing security infrastructure requires additional study. While Baral et al. [39] demonstrated
successful framework integration, seamless incorporation of LLM-based solutions into existing security
ecosystems remains challenging. Future research should explore efficient integration strategies that maximize the
benefits of both traditional and LLM-based security approaches.

Model interpretability and explainability represent crucial areas for development. Although current
implementations show high accuracy, the ability to interpret and explain model decisions in security contexts
requires further development. Future research should focus on developing transparent and interpretable LLM-based
security solutions suitable for critical IoT applications.

3. CLASSIFICATION AND RESEARCH TRENDS ANALYSIS

Through our systematic review of LLM applications in IoT security from 2022 to 2024, we present a comprehensive
classification and analysis of research trends. This analysis reveals significant patterns in research focus,
architectural approaches, and implementation strategies across the field, demonstrating the evolution of LLM
integration in IoT security solutions.

3.1. Temporal Analysis and Research Distribution

The integration of LLMs in IoT security has shown significant evolution from 2022 to 2024, with research
efforts concentrating on specific security challenges and implementation approaches. Our analysis identified
distinct phases of development, beginning with basic threat detection implementations and progressing toward
sophisticated, domain-specific solutions. The classification of IoT attack vectors that current research addresses
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is illustrated in Figure 4, demonstrating the broad scope of security challenges being tackled by LLM-based
approaches.

Figure 4. IoT Attack Vector Classification

The distribution of research efforts across these attack vectors demonstrates a concentrated focus on threat
detection and privacy preservation domains. This concentration reflects both the critical nature of these security
challenges and the particular suitability of LLM-based approaches for addressing them. As shown in Table 2, the
majority of research efforts focus on threat detection and network security, with emerging attention to vulnerability
assessment and privacy preservation.

3.2. Research Classification and Domain Analysis

The research classification reveals distinct patterns in implementation approaches and effectiveness. In threat
detection systems, SecurityBERT [2] achieved 98.2% accuracy while reducing model size by 89.85%. Network
security implementations demonstrated similar success, with BERTAD [5] achieving 99.89% accuracy in anomaly
detection. These achievements represent significant advancements over traditional machine learning approaches.

3.3. LLM-IoT Security Architecture Overview

The architectural framework of LLM-based IoT security systems demonstrates sophisticated integration of multiple
security components. Figure 5 illustrates this comprehensive architecture, showing the interaction between various
security components and their error handling mechanisms.

The analysis of architectural approaches reveals significant advancement in implementation strategies. This is
further demonstrated in the complete processing pipeline shown in Figure 6.

The temporal progression of research focus demonstrates increasing sophistication in both implementation
approaches and security capabilities. evidenced by Table 6, this evolution shows clear trends in improving
performance while reducing resource requirements.
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Table 2. Research Distribution Analysis: Classification of LLM Applications in IoT Security

Research Area Count Representative Papers
Threat Detection & Pre-
vention

9 Beyond Detection[23], [26], [30], [32], [33], [38], [46],
[47], [48], DDoS-LLM, PLLM-CS, SecurityBERT, HuntGPT,
BERTAD, Efficient Prompting, EBIDS, Let’s Hide from
LLMs, Pre-trained LM-enhanced CGAN

Network Security &
IDS

9 IoV-BERT-IDS[24], [25], [29], [39], [43], [44], [45], [49],
[50], LLM Embedding, Securing Smart Home, Personal LLM
Agents, Federated Detection, Efficient Threat Detection, BT-
TPF, Domain-Adaptive LLM

Vulnerability
Assessment

9 LuaTaint [25], [34], [37], [40], [51], SLFHunter[34], [36],
[37], [40], [52], Initial Seeds, Prioritizing Vulnerability, IoT
Software Vulnerability, TFHSVul, SPELL, Vulcoder

Device Classification &
Security

1 IoT Device Classification and Protocol-Agnostic Classifica-
tion [35]

Privacy & Policy Gener-
ation

6 LLM-CI [23], [28], [53], [54], [55], iConPAL, Password
Security, Smart Home Policy, Hybrid Prompt Learning, Smart
Home Password Protection [56]

Table 3. Key Research Domains and Implementation Characteristics

Domain Primary Focus Implementation
Approach

Key Metrics Reference Stud-
ies

Threat Detection Network &
Device Security

Real-time
Processing

Detection Accu-
racy: 95-99%

SecurityBERT
[2], HuntGPT
[25]

Privacy
Preservation

Data Protection Federated Learning Protection Score:
90-98%

LLM-CI [6],
Rehman et al. [9]

Vulnerability
Analysis

Code &
Firmware
Security

Static/Dynamic
Analysis

Detection Rate:
86-97%

LuaTaint [4],
Vulcoder [30]

Network
Security

Intrusion Detec-
tion

Hybrid Architecture Accuracy: 97-
99.9%

IoV-BERT-IDS
[3], BERTAD [5]

Table 4. Implementation Effectiveness and Resource Requirements

Implementation
Type

Detection
Rate

Resource Usage Processing
Time

Memory
Footprint

Edge-based Systems 95-98% Low (1-2GB RAM) 0.08-0.5s 42.63MB-2GB
Cloud-based
Systems

98-99.9% High (8-25GB
RAM)

0.01-0.1s 2-25GB

Hybrid Solutions 97-99% Medium (4-8GB
RAM)

0.05-0.3s 1-5GB

This comprehensive analysis of research trends and classifications provides a foundation for understanding
the current state of LLM integration in IoT security. The patterns identified in research focus and architectural
approaches inform both current implementations and future research directions, setting the stage for the detailed
technical analysis presented in subsequent sections.

The trends analysis reveals several key findings:
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Figure 5. LLM-IoT Security Architecture

Table 5. Architectural Components and Their Functions

Component Primary Function Performance Metrics Implementation
Examples

Input Processing Data Normalization Throughput: 1000-5000
events/s

EBIDS[36], [43]

LLM Core Pattern Recognition Accuracy: 95-99% SecurityBERT, IoV-BERT-
IDS [3]

Response
Framework

Threat Mitigation Response Time: 0.08-
0.5s

BERTAD [5], HuntGPT
[25]

Privacy Layer Data Protection Protection Score: 90-
98%

LLM-CI [6], Rehman et al.
[9]
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Figure 6. LLM Security Processing Pipeline

Table 6. Evolution of LLM Security Implementations

Year Primary Focus Average
Accuracy

Resource Require-
ments

Key Innovations

2022 Basic Detection 90-95% High (10-25GB) Initial LLM Integra-
tion

2023 Enhanced Privacy 95-98% Medium (5-10GB) Privacy Preservation
2024 Optimized

Performance
98-99.9% Low (1-5GB) Edge Deployment

1. Continuous improvement in detection accuracy while reducing resource requirements
2. Growing emphasis on privacy-preserving mechanisms with practical implementation strategies
3. Evolution toward lightweight architectures suitable for edge deployment
4. Increasing focus on domain-specific optimizations and adaptations

3.4. Comparative Analysis with Traditional Machine Learning Approaches

A critical aspect of understanding LLM-based approaches in IoT security is their comparison with traditional
machine learning methods. Our analysis reveals significant differences in capabilities, resource requirements, and
operational characteristics between these approaches, as detailed in Table 7.
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Table 7. Systematic Performance Comparison: LLM-based vs. Traditional ML Approaches

Performance
Dimension

Traditional ML
Baselines

LLM-based
Implementa-
tions

Empirical Evidence Performance
Analysis

Detection Accu-
racy

85-90% (typical
range)

95-99%
(surveyed
systems)

SecurityBERT: 98.2%
[23]; EBIDS: 97.49%
[32]

8-14 percentage
point
improvement

Model
Complexity

10²-10
parameters

10³-10
parameters

BT-TPF: 788
parameters (post-
distillation) [43]

Knowledge dis-
tillation enables
90% reduction

Inference
Latency

<0.1s
(conventional)

0.08-0.5s
(optimized)

EBIDS: 0.08273335s
vs. CNN: 0.50371706s
[32]

LLM
optimization
achieves
competitive
performance

Training Com-
plexity

Hours to days Days to weeks BT-TPF: 70% reduction
via knowledge transfer
[43]

Distillation
techniques
mitigate training
overhead

Memory
Footprint

100MB-1GB 16.7MB-25GB SecurityBERT: 16.7MB
(optimized) [23]

Architectural
optimization
enables IoT
deployment

Cross-domain
Generalization

Domain-specific Multi-domain
capability

IoV-BERT-IDS: Cross-
dataset validation [24]

Superior
adaptability
across attack
vectors

Energy
Consumption

5-10W
(estimated)

Not quantified Insufficient data in sur-
veyed literature

Critical research
gap for IoT
applications

This comparison reveals several key distinctions in implementation and performance characteristics. LLM-
based approaches demonstrate superior detection accuracy, achieving 95-99% compared to the typical 85-90% of
traditional ML methods. This improvement is particularly significant in complex attack scenarios where contextual
understanding is crucial. For instance, SecurityBERT [2] achieved 98.2% accuracy in detecting sophisticated
attacks that traditional systems often miss.

However, these improvements come with increased resource requirements. Traditional ML approaches typically
operate within a 100MB-1GB memory footprint, while LLM-based systems often require 2-25GB of memory, as
demonstrated in implementations like IoV-BERT-IDS [3]. This resource intensity presents particular challenges for
edge deployment scenarios in IoT environments.

A significant advantage of LLM-based approaches lies in their adaptation capabilities. While traditional ML
systems require complete retraining to address new threats, LLM-based systems demonstrate effective zero-shot
and few-shot learning capabilities. This adaptability is crucial in the rapidly evolving landscape of IoT security
threats, as demonstrated by BERTAD [5], which achieved 99.89% accuracy in detecting previously unseen attack
patterns.

Interpretability represents another area where LLM-based approaches show advantage. Through natural
language processing capabilities, these systems can provide clear explanations of their decisions and detection
rationale, enhancing trust and enabling better security response planning. This characteristic is particularly valuable
in security operations where understanding the basis for alerts and decisions is crucial.
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The trade-off between real-time performance and detection capabilities remains a significant consideration.
Traditional ML approaches generally offer faster processing times, making them suitable for scenarios requiring
immediate response. However, LLM-based systems compensate for their increased latency through superior
detection accuracy and broader threat coverage.

4. RESULTS AND META-ANALYSIS

Through our systematic analysis of 34 papers, we present a comprehensive examination of LLM integration in
IoT security, revealing significant patterns in implementation approaches, performance metrics, and architectural
innovations from 2022 to 2024. Our analysis demonstrates substantial advancements across multiple dimensions
of security implementation, with particular emphasis on detection capabilities, resource optimization, and
architectural innovation. Figure 5 illustrates the complete LLM security processing pipeline, demonstrating the
interaction between components and error handling mechanisms crucial for maintaining security effectiveness. As
shown in Figure 5, the pipeline incorporates multiple layers of processing and validation, enabling robust threat
detection while maintaining efficiency.

4.1. Performance Metrics and Detection Capabilities

Our analysis reveals consistent improvements in detection capabilities and resource efficiency across different
implementation approaches. As shown in Table 8, modern LLM-based implementations consistently achieve
detection accuracy rates exceeding 95%, representing a significant advancement over traditional approaches that
typically achieve 85-90% accuracy.

Table 8. Comprehensive Implementation Specifications and Reproducibility Analysis

Framework Evaluation
Dataset

Performance
Metrics

Architectural Spec-
ifications

Computational
Requirements

Reproducibility
Status

SecurityBERT
[23]

Edge-IIoTset
(2,540,047
samples,
14 attack
categories)

Accuracy:
98.2%,
Inference:
<0.15s

PPFLE encoding,
BBPE tokenization

Model size:
16.7MB

Implementation
unavailable

IoV-BERT-
IDS [24]

CICIDS2018,
BoT-IoT,
Car-Hacking
datasets

Accuracy:
99.96%,
F1-score:
100% (Car-
Hacking)

Hybrid in-
vehicle/external
network architecture

CUDA memory:
2.03MB

Implementation
unavailable

EBIDS [32] Edge-IIoT,
CICDos 2017

Network:
97.49%,
Application:
94.25%

12/7-block
BERT, dual-layer
processing

Execution time:
0.08273335s

Implementation
unavailable

BERTAD
[26]

Unspecified
evaluation
dataset

Accuracy:
99.89%,
Precision:
98.78%

Encoder-only
anomaly detection
architecture

CPU usage: 372
bits

Implementation
unavailable

BT-TPF [43] Multiple IoT
intrusion
datasets

Accuracy:
>99%
(knowledge
distilled)

Siamese network,
Vision Transformer
teacher

Parameters: 788
(90% reduction)

Implementation
unavailable
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The performance analysis indicates significant improvements across several key metrics. In network security
applications, IoV-BERT-IDS [3] achieved 99.96% accuracy in vehicle network security, particularly excelling
in detecting sophisticated attacks where traditional methods often fail. This implementation demonstrated
perfect scores (1.00) for flooding attacks, a common challenge in IoT environments. The EBIDS system [11]
further validated these improvements, achieving 97.49% accuracy in network layer detection and 94.25% in
application layer detection, while maintaining significantly faster execution times (0.08273335 seconds) compared
to traditional approaches like CNN (0.50371706s) and LSTM (0.4222699s).

Resource efficiency emerges as a crucial advancement, with notable progress in model compression techniques.
SecurityBERT [2] achieved an 89.85% reduction in model size while maintaining high detection accuracy,
demonstrating the feasibility of deploying sophisticated security measures in resource-constrained environments.
The BT-TPF framework [22] pushed these boundaries further, achieving remarkable efficiency with only 788
parameters while maintaining accuracy above 99%, establishing new benchmarks for lightweight security
implementations in IoT environments.

However, analysis reveals significant real-world validation gaps. Among reviewed studies, 91% relied on
standard datasets without dynamic environment testing, and no studies conducted longitudinal assessments of
performance degradation over time. This limits practical deployment assessment in production IoT environments.

However, our analysis reveals significant heterogeneity in evaluation methodologies across reviewed studies.
Only 8 of 34 papers (23.5%) employed cross-dataset validation, while 65% reported accuracy without confidence
intervals. Furthermore, baseline comparisons varied substantially, with some studies comparing against traditional
ML approaches while others used rule-based systems. This methodological inconsistency limits meaningful
comparison between LLM-based approaches and hinders meta-analytical assessment of the field’s progress.

4.2. Implementation Analysis and Strategic Approaches

Our systematic review reveals three distinct implementation patterns in LLM-based IoT security solutions, each
addressing specific deployment challenges and operational requirements. As presented in Table 9, these approaches
demonstrate varying trade-offs between performance, resource utilization, and security guarantees.

Table 9. Implementation Approaches and Their Impact

Approach Representative
Studies

Key Advantages Limitations Success Metrics

Edge Deployment Wang et al. [8], [22] Low latency, real-
time processing

Resource constraints 98.39%
accuracy,
35.23ms latency

Hybrid Architecture Fu et al. [3],
TFHSVul [21]

Enhanced accuracy,
reduced overhead

Implementation
complexity

99.96%
accuracy, 0.08s
processing

Privacy-Preserving Rehman et al. [9], Li
et al. [10]

Strong privacy guar-
antees

Computational over-
head

98.247% protec-
tion score

Edge-centric implementations demonstrate particular promise in addressing latency concerns. Wang et al. [29]
achieved 98.39% accuracy in smart home environments while maintaining practical processing times through
efficient architectural design. This approach represents a significant advancement in real-time threat detection
capabilities, particularly for resource-constrained IoT devices. The implementation successfully detected and
prevented 98.2% of attempted network intrusions with a false positive rate of only 0.3%, demonstrating the practical
viability of edge-based security solutions.

Hybrid architectures have emerged as a promising solution to balance performance requirements with
resource constraints. The TFHSVul system [51] demonstrated the effectiveness of multi-component architectures,
combining CodeBERT, MSFCNN, and ResGCN to achieve 0.97 precision in vulnerability detection. This
architectural approach proved particularly effective in handling complex code structures, leading to the
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identification of 68 previously unknown vulnerabilities across multiple vendors. The system’s ability to process
multiple input types simultaneously while maintaining high accuracy demonstrates the potential of hybrid
approaches in addressing complex security challenges.

4.2.1. Cross-Platform Compatibility Assessment Our systematic analysis reveals limited attention to cross-
platform compatibility in existing literature. Only 8 of 34 studies (23.5%) explicitly addressed multi-platform
deployment considerations. Edge deployment studies [23, 29, 43] focused primarily on ARM-based systems,
while cloud-based implementations [24, 32] assumed homogeneous computational environments. Analysis
of implementation specifications shows that 67% of studies demonstrated processor-specific optimization
requirements, indicating potential compatibility barriers for heterogeneous IoT environments. This represents a
critical gap for practical deployment at scale.

4.3. Resource Optimization and Efficiency Analysis

Our analysis reveals significant variations in resource requirements across implementations, with particular
emphasis on memory usage, processing time, and energy efficiency. Table 10 presents a detailed comparison of
resource utilization across different implementation types, incorporating both quantitative metrics and qualitative
assessments.

Table 10. Detailed Resource Utilization Analysis

Resource Type Edge
Deployment

Cloud-Based Hybrid Optimization
Impact

Memory Usage 42.63MB - 2GB 2-25GB 1-5GB 45-89% reduction
Processing Time 0.08-0.5s 0.01-0.1s 0.05-0.3s 67% improvement
Model
Parameters

788-1M 1M-1B 500K-5M 92% reduction

Energy
Efficiency

High (85-95%) Low (40-60%) Medium (65-
80%)

45% improvement

Bandwidth
Usage

0.1-1MB/s 5-50MB/s 1-10MB/s 75% reduction

The optimization of resource utilization demonstrates significant advancement across multiple dimensions.
Memory efficiency shows particular improvement, with implementations like BT-TPF [43] achieving state-of-the-
art performance with minimal parameter requirements. The analysis reveals that optimized edge implementations
can achieve comparable security effectiveness while reducing memory requirements by up to 89.85% compared to
traditional approaches.

Processing optimization demonstrates similar advancement, with EBIDS [32] achieving execution times of
0.08273335 seconds compared to traditional approaches. This improvement in processing efficiency enables
real-time threat detection and response, a critical requirement for IoT security applications. The implementation
achieved this performance while maintaining high accuracy across both network and application layer detection
tasks.

Energy efficiency analysis identifies a critical gap: only 8.8% of studies provided energy consumption metrics,
focusing instead on computational efficiency measures. This omission significantly limits practical deployment
assessment for battery-powered IoT devices where energy efficiency is paramount.

4.4. Architectural Innovations and Technical Advancements

Recent architectural innovations have addressed key challenges in LLM deployment for IoT security, with
particular emphasis on model compression, hybrid processing approaches, and privacy protection mechanisms.
Table 11 presents a comprehensive analysis of these innovations and their practical impacts on IoT security
implementation.
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Table 11. Architectural Innovations and Performance Impact

Innovation
Type

Representative
Implementation

Key Achievement Technical Impact Deployment
Benefits

Model Compres-
sion

SecurityBERT [2] 89.85% size reduc-
tion

42.63MB model size Enhanced edge
deployment

Hybrid Process-
ing

IoV-BERT-IDS [3] 99.96% accuracy 0.08s detection time Improved real-
time detection

Privacy
Protection

Rehman et al. [9] 98.247% protection Encrypted process-
ing

Enhanced data
security

Parameter
Reduction

BT-TPF [22] 788 parameters 92% efficiency gain Extreme
resource
optimization

Adaptive Learn-
ing

EBIDS [11] Dual-layer detection Layer-specific opti-
mization

Improved accu-
racy

These architectural innovations demonstrate significant advancement in addressing the core challenges of
LLM deployment in IoT security contexts. The development of efficient compression techniques, exemplified
by SecurityBERT [2], enables practical deployment in resource-constrained environments while maintaining high
detection accuracy. The implementation achieved this through a novel quantization approach that preserved critical
security features while significantly reducing model size.

Hybrid architectural approaches, such as those implemented in IoV-BERT-IDS [3], demonstrate the potential
for combining multiple security mechanisms to achieve superior detection capabilities. The system’s ability to
maintain 99.96% accuracy while operating within IoT resource constraints represents a significant advancement
in practical security implementation. This was achieved through a carefully designed architecture that balanced
computational requirements with detection capabilities.

Privacy-preserving frameworks have shown particular promise in addressing data protection concerns. Rehman
et al. achieved 98.218% accuracy with their adaptive contextual privacy preservation framework while maintaining
strong privacy guarantees. This implementation demonstrated significant improvements in handling imbalanced
datasets, with particular success in detecting minority attack classes such as ransomware (52.004% improvement)
and MITM attacks (59.007% improvement).

Password security architectures have shown particular promise through the integration of multiple ML
components. The system proposed in combines Random Forest classification with RAG and FAISS indexing to
create an adaptive security framework[56]. This implementation demonstrated significant improvements in both
predictive accuracy and recommendation quality, particularly in addressing dictionary and brute force attacks on
IoT devices.

The results presented in this comprehensive analysis demonstrate both the significant potential and remaining
challenges in LLM-based IoT security implementations. The findings reveal clear patterns in architectural
innovation, resource utilization, and privacy preservation capabilities while highlighting areas requiring further
development. These results provide a foundation for understanding the current state of LLM integration in IoT
security and identify promising directions for future research and development.

Model Interpretability Analysis: Despite achieving high detection accuracy, interpretability analysis reveals
significant gaps across reviewed implementations. Only SecurityBERT [23] and EBIDS [32] provided attention
visualization capabilities, while 79% of studies (27/34) lacked explicit explainability mechanisms. No studies
addressed security analyst workflow integration requirements or provided real-time decision transparency features.
This interpretability deficit significantly limits adoption in security-critical environments requiring decision
transparency for compliance and operational requirements.
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4.5. Mathematical Foundations of LLM-based IoT Security Architectures

The mathematical underpinnings of transformer-based security models in IoT environments warrant explicit
formulation to enhance reproducibility and theoretical understanding. This section presents the core mathematical
frameworks employed by the surveyed LLM implementations.

4.5.1. Attention Mechanism Formalization The self-attention mechanism fundamental to BERT-based IoT
security systems is mathematically defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where Q ∈ Rm×dk , K ∈ Rn×dk , and V ∈ Rn×dv represent the query, key, and value matrices respectively, with
dk denoting the dimensionality of the key vectors [23]. SecurityBERT leverages this mechanism across multiple
encoder layers, each incorporating multi-head self-attention and position-wise feed-forward neural networks to
capture contextual dependencies in network traffic representations [23].

4.5.2. Privacy Preservation Effectiveness Metrics The protection effectiveness metric of 98.247% reported by
Rehman et al. [30] represents a composite evaluation measure computed through their adaptive contextual privacy
preservation framework. The metric derivation follows:

Protection Effectiveness =
TPR × Precision

100
(2)

where TPR = TP
TP+FN and Precision = TP

TP+FP , with TP, FP, and FN denoting true positives, false positives, and
false negatives respectively. Their framework demonstrated 98.218% accuracy, 98.247% precision, and 98.218%
recall on the CSE-CIC-IDS2018 dataset [30].

4.5.3. Knowledge Distillation Optimization Framework The BT-TPF architecture [43] employs knowledge
distillation to achieve computational efficiency while preserving detection accuracy. The optimization objective
is formulated as:

Ltotal = αLCE(ytrue, ystudent) + (1− α)LKL

(
σ
(zteacher

T

)
, σ

(zstudent

T

))
(3)

where LCE denotes the cross-entropy loss, LKL represents the Kullback-Leibler divergence, T is the temperature
parameter for softmax scaling, and α ∈ [0, 1] balances the loss components. This framework achieves a 90%
parameter reduction, requiring only 788 parameters while maintaining detection accuracy exceeding 99% [43].

4.5.4. Multi-layer Detection Architecture Performance The EBIDS framework [32] implements a dual-layer
detection mechanism optimized for IoT network environments. The system architecture employs a 12/7-block
BERT configuration, achieving differentiated performance across network layers:

• Network Layer Detection: 97.49% accuracy with execution latency of 0.08273335 seconds
• Application Layer Detection: 94.25% accuracy

The temporal efficiency demonstrates significant improvement over conventional approaches, with EBIDS
outperforming CNN-based methods (0.50371706s) and LSTM implementations (0.4222699s) by factors of 6.09×
and 5.11× respectively [32].

5. DISCUSSION

The systematic analysis of LLM integration in IoT security reveals profound implications for both theoretical
understanding and practical implementation of security measures in resource-constrained environments. These
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findings suggest several significant paradigm shifts in approaching IoT security while highlighting critical areas
for future development.

Theoretical Implications for Security Architecture
The evolution of LLM-based security approaches challenges traditional assumptions about the relationship

between model complexity and security effectiveness. The success of lightweight implementations, particularly
demonstrated by Wang et al. [43], suggests that security effectiveness may be more closely tied to architectural
design than computational capacity. This finding has profound implications for theoretical approaches to security
system design, suggesting a need to reevaluate fundamental assumptions about resource requirements for effective
security implementations.

Our analysis reveals an emerging theoretical framework where security effectiveness emerges from the
interaction between architectural components rather than raw computational power. The work of Che et al.
[44] in developing domain-specific architectures demonstrates how targeted optimization can achieve superior
results compared to general-purpose approaches. This suggests a theoretical model where security effectiveness is
multiplicative rather than additive across system components, challenging traditional approaches to security system
design.

Implications for Privacy-Security Balance
The development of privacy-preserving security architectures represents a significant theoretical advancement

in resolving the traditional tension between privacy and security requirements. The work of Rehman et al.
[30] and Li et al. [31] in developing hybrid architectures suggests that this tension may be artificial, arising
from implementation limitations rather than fundamental constraints. This insight has profound implications for
future security system design, suggesting possibilities for architectures that enhance both privacy and security
simultaneously.

The success of these approaches in handling imbalanced datasets while maintaining privacy guarantees suggests
new theoretical frameworks for understanding privacy preservation in security contexts. These frameworks move
beyond traditional trade-off models to consider privacy and security as complementary rather than competing
objectives.

Resource Optimization Paradigms
The relationship between resource utilization and security effectiveness emerges as more complex than

previously theorized. While traditional approaches assumed a direct correlation between computational resources
and security capabilities, our analysis suggests a more nuanced relationship. The success of domain-specific
optimizations, particularly in medical sensor networks [52], indicates that contextual understanding may be more
crucial than raw computational power.

This finding has significant implications for resource allocation strategies in IoT security implementations.
Rather than focusing solely on computational efficiency, future approaches might benefit from emphasizing
architectural optimization for specific security contexts. This suggests a new paradigm in resource optimization
where effectiveness emerges from the alignment between architecture and security requirements rather than pure
computational capability.

5.1. Ethical Implications and Adversarial Vulnerability Analysis

The deployment of LLM-based security systems in IoT environments introduces novel ethical considerations and
security vulnerabilities that warrant systematic examination.

5.1.1. Privacy-Preserving Architectural Considerations The contextually rich representations learned by
transformer architectures potentially enable inference of sensitive network topology and device characteristics
through gradient analysis techniques. To address this concern, SecurityBERT [23] implements Privacy-Preserving
Fixed-Length Encoding (PPFLE), specifically designed to obfuscate sensitive infrastructure details during model
training while preserving detection efficacy.

The effectiveness of privacy preservation mechanisms is demonstrated by Rehman et al. [30], whose adaptive
contextual privacy preservation framework achieves 98.247% protection effectiveness while maintaining detection
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accuracy of 98.218% on the CSE-CIC-IDS2018 dataset, indicating that privacy and security objectives can be
simultaneously optimized.

5.1.2. Algorithmic Bias and Fairness Analysis The training data composition directly influences model
bias characteristics across device manufacturers, communication protocols, and deployment environments.
SecurityBERT’s evaluation on the Edge-IIoTset dataset [23], while comprehensive with 2,540,047 samples across
14 attack categories, may exhibit manufacturer-specific bias patterns that could affect detection performance for
underrepresented device categories.

Similarly, IoV-BERT-IDS [24] demonstrates cross-dataset generalization across CICIDS2018, BoT-IoT, and Car-
Hacking datasets, yet performance variations across these datasets indicate potential protocol-specific bias that
merits further investigation.

5.1.3. Mitigation Strategies and Defensive Mechanisms Architectural Hardening: The knowledge distillation
approach employed by BT-TPF [43] not only achieves computational efficiency through 90% parameter reduction
but also potentially reduces the attack surface available for adversarial exploitation while maintaining detection
accuracy exceeding 99%.

Privacy Enhancement: The multi-layered privacy approach combining PPFLE encoding [23] with adaptive
contextual preservation [30] demonstrates that privacy-preserving objectives can be integrated into LLM
architectures without compromising security performance.

Model Robustness: The dual-layer detection architecture implemented in EBIDS [32] provides redundancy
mechanisms that enhance system resilience against targeted attacks on individual detection components.

5.2. Real-World Deployment Readiness Assessment

Our review reveals a significant maturity gap between research prototypes and production-ready implementations.
Analysis shows that only 12% of studies provided accessible implementations, while 85% lacked integration
guidelines for existing security infrastructure. Critically, zero studies included longitudinal deployment assessments
or addressed model maintenance in operational environments. This implementation readiness gap encompasses
legacy system integration challenges, continuous model adaptation requirements, and enterprise-scale validation
protocols, highlighting the need for deployment-focused research initiatives.

Adversarial robustness evaluation reveals substantial gaps. Only 11.8% of studies addressed adversarial attacks,
with focus limited to basic evasion attacks. Physical-world attack vectors and model inversion attacks remained
unexamined, leaving critical security vulnerabilities unaddressed.

5.3. Future Research Directions

Our systematic review reveals several critical areas requiring focused research attention to advance the field of
LLM-based IoT security. These research directions encompass methodological frameworks, technical innovations,
and implementation considerations that warrant systematic investigation by the research community.

The development of standardized evaluation frameworks emerges as a primary methodological challenge
requiring immediate attention. Current research in LLM-based IoT security suffers from inconsistent evaluation
metrics and benchmarking approaches, making direct comparisons between different implementations challenging.
Future research should focus on establishing comprehensive evaluation frameworks that consider both technical
performance metrics and practical deployment constraints. These frameworks should incorporate standardized
testing scenarios that reflect real-world IoT security challenges, enabling meaningful comparison across different
architectural approaches. Additionally, the development of standardized benchmarking datasets specifically
designed for LLM-based IoT security applications would significantly enhance the field’s ability to evaluate and
compare different solutions effectively [57].

Cross-study comparison methodologies represent another crucial area requiring development. The current lack
of standardized approaches for comparing results across different studies limits our ability to draw comprehensive
conclusions about the effectiveness of various LLM implementations in IoT security [58]. Future research should
focus on developing robust methodological frameworks that enable meaningful comparison of results across
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different studies, considering variations in implementation contexts, evaluation metrics, and deployment scenarios.
This includes developing standardized reporting formats for security metrics, resource utilization measurements,
and performance indicators that facilitate meta-analysis and systematic comparison of different approaches.

Technical challenges in resource optimization demand systematic investigation. While current implementations
demonstrate promising results in reducing model size and computational requirements, significant work
remains in optimizing LLM-based security solutions for resource-constrained IoT environments. Future research
should explore novel approaches to model compression, quantization techniques specifically designed for
security applications, and architectural innovations that minimize resource utilization while maintaining security
effectiveness. This includes investigating the relationship between model complexity and security performance to
identify optimal trade-offs for different deployment scenarios [59].

Privacy preservation techniques require substantial advancement to address the unique challenges of IoT
environments. Future research should focus on developing privacy-preserving training and inference mechanisms
that protect sensitive IoT data while maintaining security effectiveness. This includes investigating federated
learning approaches specifically designed for IoT security applications, developing privacy-preserving model
adaptation techniques, and creating frameworks for evaluating privacy-security trade-offs in different deployment
contexts. Research efforts should also address the challenge of maintaining privacy guarantees across
heterogeneous IoT networks with varying security requirements and resource constraints [60].

Cross-platform compatibility presents significant technical challenges that future research must address. The
diverse nature of IoT environments, with varying hardware capabilities, communication protocols, and security
requirements, necessitates the development of flexible and adaptable security solutions. Future research should
investigate approaches for creating platform-agnostic security frameworks that can effectively operate across
different IoT architectures while maintaining consistent security performance. This includes developing adaptive
model architectures that can automatically adjust to different platform capabilities and resource constraints.

Implementation challenges in scalability and real-world deployment require systematic investigation. As LLM-
based security solutions move from research environments to practical deployment, understanding scalability
constraints and deployment challenges becomes crucial. Future research should examine approaches for scaling
security solutions across large IoT networks while maintaining performance and resource efficiency. This includes
investigating distributed deployment strategies, developing efficient update mechanisms for deployed models, and
creating frameworks for managing security policies across scaled implementations [61].

Integration with existing security infrastructure presents complex challenges that future research must address.
The practical deployment of LLM-based security solutions requires seamless integration with existing security
frameworks and operational processes. Future research should focus on developing integration methodologies
that enable effective combination of LLM-based approaches with traditional security mechanisms. This includes
investigating hybrid architectures that leverage the strengths of both approaches, developing transition strategies
for organizations adopting LLM-based security solutions, and creating frameworks for evaluating the effectiveness
of integrated security systems [62].

The advancement of automated response capabilities represents a critical area for future research. While current
implementations excel at threat detection and analysis, the development of sophisticated automated response
mechanisms remains limited. Future research should investigate approaches for enabling LLM-based security
systems to not only detect but also respond to security threats autonomously while operating within IoT resource
constraints. This includes developing frameworks for response generation and validation, creating mechanisms for
ensuring the safety and reliability of automated responses, and investigating approaches for maintaining human
oversight of automated security operations [63].

These research directions collectively represent a comprehensive agenda for advancing the field of LLM-based
IoT security. Progress in these areas would significantly enhance our ability to develop and deploy effective security
solutions in resource-constrained IoT environments while maintaining robust security guarantees and operational
efficiency. Success in addressing these challenges requires sustained research effort across multiple domains, from
theoretical framework development to practical implementation strategies.
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5.3.1. Minimum Reporting Standards To enhance reproducibility and enable systematic comparison across
studies, we propose the following standardized reporting requirements for future LLM-based IoT security research:

Dataset Specification Protocol: Complete documentation of evaluation datasets including attack type
distribution, temporal characteristics, and representativeness metrics relative to production IoT environments.

Architectural Transparency Requirements: Explicit mathematical formulations of model architectures,
hyperparameter specifications, and optimization procedures to enable independent reproduction.

Baseline Comparison Framework: Standardized comparison protocols with established traditional ML
approaches using identical evaluation datasets and metrics.

Resource Quantification Standards: Comprehensive measurement and reporting of computational
requirements including memory utilization, energy consumption, and inference latency across representative
hardware configurations.

Privacy and Security Assessment: Systematic evaluation of privacy preservation mechanisms and vulnerability
analysis following established security assessment protocols.

5.3.2. Interdisciplinary Collaboration Requirements The successful advancement of LLM-based IoT security
necessitates coordinated efforts across multiple research domains:

Natural Language Processing and Cybersecurity Integration: Development of domain-specific language
models optimized for security-relevant pattern recognition while maintaining computational efficiency for IoT
deployment.

Hardware-Software Co-design: Collaborative development of specialized hardware accelerators and software
optimization techniques to enable practical LLM deployment in resource-constrained IoT environments.

Privacy-Preserving Machine Learning: Integration of advanced privacy preservation techniques with security-
critical applications to address the dual requirements of threat detection and data protection.

6. Conclusion

This systematic review has examined the integration of LLMs in IoT security through analysis of 34 recent
studies (2022-2024), revealing significant advancements while identifying crucial research gaps. The findings
demonstrate that LLM-based approaches have substantially enhanced security capabilities, with frameworks such
as SecurityBERT achieving 98.2% detection accuracy while reducing model size by 89.85%. Privacy preservation
mechanisms have shown marked improvement, exemplified by LLM-CI’s achievement of 90% accuracy in
maintaining contextual integrity standards.

Despite these advances, fundamental challenges persist in implementing LLM-based security solutions within
IoT environments. Resource constraints remain significant, with optimized implementations requiring substantial
computational resources. The necessity for real-time processing and privacy preservation during model operation
presents additional complexity for practical deployment. Architectural innovations have emerged to address these
limitations, including federated learning approaches reducing energy consumption by 45% and hybrid architectures
optimizing resource utilization.

The review identifies critical research gaps requiring attention: standardization of evaluation frameworks,
resource optimization for ultra-constrained devices, and enhancement of cross-platform compatibility. Future
research directions should emphasize developing efficient LLM architectures suitable for resource-constrained
environments while maintaining robust security capabilities. Additionally, improving model interpretability and
establishing comprehensive evaluation frameworks will be crucial for advancing the field.

This systematic analysis establishes a foundation for future research in LLM-based IoT security, highlighting
both the significant potential and remaining challenges in this emerging domain. The findings suggest that
successful implementation of LLMs in IoT security requires careful balance between security effectiveness and
practical constraints, particularly regarding computational resources and privacy requirements.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



24 TRANSFORMING IOT SECURITY THROUGH LARGE LANGUAGE MODELS

REFERENCES

1. N. M. Karie, N. M. Sahri, and P. Haskell-Dowland, IoT Threat Detection Advances, Challenges and Future Directions,
Proceedings - 2020 Workshop on Emerging Technologies for Security in IoT, ETSecIoT 2020, pp. 22–29, Apr. 2020, doi:
10.1109/ETSECIOT50046.2020.00009.

2. C. L. Kok, C. K. Ho, T. K. Lee, Z. Y. Loo, Y. Y. Koh, and J. P. Chai, A Novel and Low-Cost Cloud-Enabled IoT
Integration for Sustainable Remote Intravenous Therapy Management, Electronics (Basel), vol. 13, no. 10, May 2024, doi:
10.3390/ELECTRONICS13101801.

3. S. R, Prof. M. S. Raja, and Prof. R. R, IoT Based Drug Delivery System, International Journal of Innovative Research in Information
Security, vol. 10, no. 02, pp. 81–84, Feb. 2024, doi: 10.26562/IJIRIS.2024.V1002.09.

4. P. Muneeshwari, R. Suguna, G. M. Valantina, M. Sasikala, and D. Lakshmi, IoT-Driven Predictive Maintenance in Industrial
Settings through a Data Analytics Lens, 2024 International Conference on Trends in Quantum Computing and Emerging Business
Technologies, pp. 1–5, Sep. 2024, doi: 10.1109/TQCEBT59414.2024.10545167.

5. D. A. - and Dr. S. T. -, Innovative Sensor Technologies in IoT-Based Remote Patient Monitoring Systems: A Comprehensive Analysis,
International Journal For Multidisciplinary Research, vol. 6, no. 5, Sep. 2024, doi: 10.36948/IJFMR.2024.V06I05.27218.

6. S. P. Doifode and V. M. Biradar, Cybersecurity in the Internet of Things (IoT): Challenges and Solutions, International Journal of
Scientific Research in Modern Science and Technology, vol. 3, no. 7, pp. 17–21, Jul. 2024, doi: 10.59828/IJSRMST.V3I7.222.

7. N. Srinivasan, Artificial Intelligence in IoT Security: Review of Advancements, Challenges, and Future Directions,
International Journal of Innovative Technology and Exploring Engineering, vol. 13, no. 7, pp. 14–20, Jun. 2024, doi:
10.35940/IJITEE.G9911.13070624.

8. F. Sommer, M. Gierl, R. Kriesten, F. Kargl, and E. Sax, Combining Cyber Security Intelligence to Refine Automotive Cyber Threats,
ACM Transactions on Privacy and Security, vol. 27, no. 2, pp. 1–34, Mar. 2024, doi: 10.1145/3644075.

9. D. Zhang, X. Cao, Z. Jin, Y. Zhang, X. Hu, and C. Wu, Research and Implementation of CPS for Transmission Front Middle Case
Assembly Line, Applied Sciences, vol. 13, no. 10, May 2023, doi: 10.3390/APP13105912.

10. R. Masum, Cyber Security in Smart Manufacturing (Threats, Landscapes Challenges), arXiv.org, 2023, doi:
10.48550/ARXIV.2304.10180.

11. P. T. Ganai, A. Bag, A. Sable, K. H. Abdullah, S. Bhatia, and B. Pant, A Detailed Investigation of Implementation of Internet of
Things (IOT) in Cyber Security in Healthcare Sector, 2022 2nd International Conference on Advance Computing and Innovative
Technologies in Engineering (ICACITE), pp. 1571–1575, 2022, doi: 10.1109/ICACITE53722.2022.9823887.

12. A. S. Musthafa, A. J. Preya, F. M. Alneyadi, N. S. Alattas, G. El Hassan, and H. Zia, Safeguarding IoT Device Deployment in
Healthcare: Analysis and Strategies for Enhanced Security and Privacy, 2023 4th International Conference on Communications,
Information, Electronic and Energy Systems (CIEES), 2023, doi: 10.1109/CIEES58940.2023.10378838.

13. X. Zhu, J. Huang, and C. Qi, Modeling and Analysis of Malware Propagation for IoT Heterogeneous Devices, IEEE Syst J, vol. 17,
no. 3, pp. 3846–3857, Sep. 2023, doi: 10.1109/JSYST.2023.3269158.

14. I. Rozlomii, A. Yarmilko, and S. Naumenko, Data security of IoT devices with limited resources: challenges and potential solutions,
GSC Advanced Research and Reviews, vol. 21, no. 1, pp. 85–96, Oct. 2024, doi: 10.30574/GSCARR.2024.21.1.0388.

15. Y. M. Al-Sharo, K. Al Smadi, T. Al Smadi, and N. Yasameen Kamil, Optimization of Stable Energy PV Systems Using the Internet
of Things (IoT), Tikrit Journal of Engineering Sciences, vol. 31, no. 1, pp. 127–137, Jan. 2024, doi: 10.25130/TJES.31.1.11.

16. M. Tawfik, Optimized intrusion detection in IoT and fog computing using ensemble learning and advanced feature selection, PLoS
One, vol. 19, no. 8, p. e0304082, Aug. 2024, doi: 10.1371/JOURNAL.PONE.0304082.

17. B. Ibrahim Hairab, H. K. Aslan, M. S. Elsayed, A. D. Jurcut, and M. A. Azer, Anomaly Detection of Zero-Day Attacks Based on
CNN and Regularization Techniques, Electronics (Basel), vol. 12, no. 3, Feb. 2023, doi: 10.3390/ELECTRONICS12030573.

18. B. Bokkena, Enhancing IT Security with LLM-Powered Predictive Threat Intelligence, 2024 5th International Conference on Smart
Electronics and Communication (ICOSEC), pp. 751–756, 2024, doi: 10.1109/ICOSEC61587.2024.10722712.

19. B. Bokkena, Enhancing IT Security with LLM-Powered Predictive Threat Intelligence, 2024 5th International Conference on Smart
Electronics and Communication (ICOSEC), pp. 751–756, 2024, doi: 10.1109/ICOSEC61587.2024.10722712.

20. M. Ferrag, F. Alwahedi, A. Battah, B. Cherif, A. Mechri, and N. Tihanyi, Generative AI and Large Language Models for Cyber
Security: All Insights You Need, ArXiv, vol. abs/2405.12750, doi: 10.48550/ARXIV.2405.12750.

21. X. Zhang, T. Chen, J. Wu, and Q. Yu, Intelligent Network Threat Detection Engine Based on Open Source GPT-2 Model,
Proceedings - 2023 International Conference on Computer Science and Automation Technology, CSAT 2023, pp. 392–397, 2023,
doi: 10.1109/CSAT61646.2023.00107.

22. T. S. AlSalem, M. A. Almaiah, and A. Lutfi, Cybersecurity Risk Analysis in the IoT: A Systematic Review, Electronics (Basel), vol.
12, no. 18, Sep. 2023, doi: 10.3390/ELECTRONICS12183958.

23. M. A. Ferrag et al., Revolutionizing Cyber Threat Detection with Large Language Models: A Privacy-Preserving BERT-Based
Lightweight Model for IoT/IIoT Devices, IEEE Access, vol. 12, pp. 23733–23750, Jun. 2024, doi: 10.1109/ACCESS.2024.3363469.

24. M Fu, P. Wang, M. Liu, Z. Zhang, X. Zhou, IoV-BERT-IDS: Hybrid Network Intrusion Detection System in IoV Using Large
Language Models, IEEE Transactions on Vehicular Technology, 2024.

25. J. Xiang, W. Wang, T. Ye, and P. Liu, LuaTaint: A Static Taint Analysis System for Web Interface Framework Vulnerability of IoT
Devices, Feb. 2024, doi: 10.1109/JIOT.2024.3490661.
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