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Abstract One of the topics of distance in graphs is resolving set problems. This topic has many application in science and
technology namely the application of resolving set problems in networks is one of the describe navigation robots, chemistry
structure, and computer sciences. Suppose the set W = {s1, s2, . . . , sk} ⊂ V (G), the vertex representations of ∈ V (G) is
rm(x|W ) = {d(x, s1), d(x, s2), . . . , d(x, sk)}, where d(x, si) is the length of the shortest path of the vertex x and the vertex
in W together with their multiplicity. The set W is called a local m-resolving set of graphs G if rm(vW ) ̸= rm(u|W ) for
uv ∈ E(G). The local m-resolving set having minimum cardinality is called the local multiset basis and its cardinality is
called the local multiset dimension of G, denoted by mdl(G). In our paper, we determined the establish bounds of local
multiset dimension of graph resulting comb product of two connected graphs.
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1. Introduction

One of the topics of distance in graphs is resolving set problems. This topic has many application in science and
technology namely the application of resolving set problems in networks is one of the describe navigation robots,
chemistry structure, and computer sciences. The application of metric dimension in networks is one of the describe
navigation robots. Each place is called the vertex and the connection between vertex is called edges. The minimum
numbers of the robots required to locate each and the vertex of a some networks is called as resolving set problems,
for more detail this application in [1].

All graphs G are a simple and connected graph. We have the vertex set and edge set, respectively are V (G) and
E(G). The distance of u and v and denoted by d(u, v) is the length of a shortest path of the vertices u to v. For
the set W = {s1, s2, ..., sk} ⊂ V (G). The vertex representations of the vertex x to the set W is an ordered k-tuple,
r(x|W ) = (d(x, s1), d(x, s2), ..., d(x, sk)). The set W is called the resolving set of G if every vertices of G has
different vertex representations. The resolving set having minimum cardinality is called basis and its cardinality is
called metric dimension of G and denoted by dim(G). Okamoto et al [8] introduced the new variant of resolving
set problems which is called local resolving set problems. In his paper its concept is called local multiset dimension
of graphs G. The set W is called a local resolving set if ∀xy ∈ E(G), r(xW ) ̸= r(y|W ). The local resolving set
having minimum cardinality is called local basis and its cardinality is called local metric dimension of G and
denoted by ldim(G).
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Figure 1. (a) A graph with multiset dimension 3; (b) A graph with local multiset dimension 1

Simanjuntak et al. [2] defined multiset dimension of graphs G. Suppose the set W = {s1, s2, . . . , sk} ⊂
V (G), the vertex representations of a vertex x ∈ V (G) to the set W is the multiset, rm(x|W ) =
{d(x, s1), d(x, s2), . . . , d(x, sk)} where d(x, si) is the length of a shortest path of the vertex x and the vertex in
W together with their multiplicities. The set W is called an m-resolving set if ∀xy ∈ E(G), rm(xW ) ̸= rm(y|W ).
If G has an m-resolving set, then an m-resolving set having minimum cardinality is called a multiset basis and it’s
cardinality is called the multiset dimension of graphs G and denoted by md(G); otherwise we say that G has an
infinite multiset dimension and we write md(G) = ∞. Alfarisi et al. [3] determined of multiset dimension problems
of almost hypercube graphs. Alfarisi et al. [4] defined a new notion based on the multiset dimension of G, namely
a local multiset dimension. Suppose the set W = {s1, s2, . . . , sk} ⊂ V (G), the vertex representations of a vertex
x ∈ V (G) to the set W is rm(x|W ) = {d(x, s1), d(x, s2), . . . , d(x, sk)}. The set W is called a local m-resolving
set of G if rm(vW ) ̸= rm(u|W ) for uv ∈ E(G). The local m-resolving set having minimum cardinality is called
the local multiset basis and its cardinality is called the local multiset dimension and denoted by mdl(G): otherwise
we say that G has an infinite local multiset dimension and we write mdl(G) = ∞.

We illustrate this concept in Figure 2. In this case, the resolving set is W = {v2, v3, v6}, shown in Figure 2 (a).
The multiset dimension is md(G) = 3. The representations of v ∈ V (G) with respect to W are all distinct (please
list all the representations). For the local multiset dimension, we only need to make sure the adjacent vertices
having distinct representations. Thus we could have the local resolving set W = {v1}, shown in Figure 2 (b). Thus,
the local multiset dimension is µl(G) = 1.

r(v1|Π) = {0}, r(v2|Π) = {1}, r(v3|Π) = {2}
r(v4|Π) = {1}, r(v5|Π) = {2}, r(v6|Π) = {1}

We have some results on the local multiset dimension of some known graphs namely path, star, tree, and cycle
and also the local multiset dimension of graph operations namely, cartesian product [4], m-shadow graph [7].
Adawiyah et al. [6] also studied local multiset dimension of unicyclic graphs. There are some results which used
for proving the other results as follows.

Lemma 1.1
[10] Let G be a connected graphs and W ⊂ V (G). If W contains a resolving set of G, then W is a resolving set of
G.

Proposition 1.2
[11] A graph is bipartite if and only if it contains no odd cycle.

Theorem 1.3
[5] The local multiset dimension of G is one if and only if G is a bipartite graph.

Theorem 1.4
[5] If T is tree graph with order n, then mdl(T ) = 1.
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Proposition 1.5
[3] Let Kn be a complete graph with n ≥ 3, then mdl(Kn) = ∞.

Definition 1.6
[9] Let G and H be two connected graphs. Let o be a vertex of H . The comb product between G and H , denoted
by G ▷o H , is a graph obtained by taking one copy of G and |V (G)| copies of H and identify the i-th copy of H at
the vertex o with the i-th vertex of G. More detail definition of comb product.

2. Section

In this section, the results of the study of local multiset dimensions on graphs resulting from the comb product of
two connected graphs are presented. First, the properties of the graph resulting from the comb product are presented
because the comb product relatively maintains the structure of the operating parent graph. The properties of the
graph resulting from the comb product are given in Theorem 2.1 as follows.

Theorem 2.1
Let G and H be a connected graph. Graph G ▷ H is a bipartite graph if and only if G and H is a bipartite graph.

Proof. Let G and H be bipartite graph with |V (G)| = n and |V (H)| = m. Since G and H is a bipartite graph, then
we can choose the set A,A′ ⊂ V (G) and B,B′ ⊂ V (H) with
A = {vi|(vi, vj) /∈ E(G), i ̸= j; i, j = 1, 2, 3, 4, . . . , s}
A′ = {vi|(vi, vj) /∈ E(G), i ̸= j; i, j = s+ 1, s+ 2, s+ 3, s+ 4, . . . , s+ r = n}
such that A ∩A

′= and A ∪A′ = V (G).
B = {ui|(ui, uj) /∈ E(G), i ̸= j; i, j = 1, 2, 3, 4, . . . , k}
B′ = {ui|(ui, uj) /∈ E(G), i ̸= j; i, j = k + 1, k + 2, k + 3, k + 4, . . . , k + l = m}
such that B ∩B′ = dan B ∪B′ = V (H).

Let Hi, i = 1, 2, 3, 4, . . . , n be a copy of H and V (G ▷ H) = {ui,j ; i = 1, 2, 3, 4, . . . , nandj = 1, 2, 3, 4, . . . ,m}
where ui,1, i = 1, 2, 3, . . . , n is a terminal vertex G ▷ H , then |G ▷ H| = nm. Selected the set
C = B1 ∪B2 ∪B3 ∪B4 ∪ · · · ∪Bs ∪B′

s+1 ∪B′
s+2 ∪B′

s+3 ∪B′
s+4 ∪ · · · ∪B′

s+r, so |C| = ks+ lr
C ′ = B′

1 ∪B′
2 ∪B′

3 ∪B′
4 ∪ . . .′s ∪Bs+1 ∪Bs+2 ∪Bs+3 ∪Bs+4 ∪ · · · ∪Bs+r, so |C| = ls+ kr

Since A ∩A′ = and B ∩B′ = then C ′ = and |C ∪ C ′| = |C|+ |C ′| = ks+ lr + ls+ kr = (k + l)s+ (k + l)r =
(k + l)(s+ r) = mn, so C ′ = V (G ▷ H).

Take any two different vertices x, y in C, there are three possibilities, including 1) x ∈ Bi and y ∈ Bj , i, j ≤ s,
2) x ∈ B′

s+i and y ∈ B′
s+j , i, j ≤ s, and 3) x ∈ Bi and y ∈ B′

s+j , i, j ≤ s.
Case 1. x ∈ Bi and y ∈ Bj , i, j ≤ s
Since H is a bipartite graph, then (x, y) /∈ E(G ▷ H).
Case 2. x ∈ B′

s+i dan y ∈ B′
s+j , i, j ≤ s

Since H is a bipartite graph, then (x, y) /∈ E(G ▷ H).
Case 3. x ∈ Bi dan y ∈ B′

s+j , i, j ≤ s
Since x and y are on different terminal, then (x, y) /∈ E(G ▷ H).

In the same way, it can be proved that any two different vertices x, y in C ′, occur (x, y) /∈ E(G ▷ H). Thus,
G ▷ H is a bipartite graph.

On the other hand, suppose that the graph G or H is not bipartite, without loss of the generality of the proof,
let’s say that H is a bipartite graph and G is a tripartite graph. The connection of the vertices in G does not change
in G ▷ H , so G ▷ H is a tripartite graph.

In the following, we will present the characterization of the graph resulting from the comb product so that the
graph resulting from the comb product is a path graph.

Theorem 2.2
Suppose G and H are a connected graphs with order at least 2 and o are terminal vertex. The graph G ▷ H is a path
graph if and only if G is a path graph with order 2 and H is a path graph where o is a multiset basis element of H .
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Proof. Let G ▷ H be a path graph and suppose G is a path graph with order at least 2 or H is a path graph with o
not a multiset basis element of H . For G is a path graph with order at least 2, let a1, a2, a3, a4, . . . , an, n > 2 be
their path and H be a path graph with o does not multiset basis element of H . Whatever the sticking point is on H ,
it means that G ▷ H is not a path graph, it is a contradict. For H is a path graph with o not a multiset basis element
of H , then the order of H is at least 3. As a result, G ▷ H is not a path graph, a contradiction.

On the other hand, suppose G is a path graph of order 2 and H is a path graph where o is a multiset basis element
of H , it is clear that G ▷ H is a path graph.

In the following, the characterization of the local multiset dimensions on the graph resulting from the comb
product with the local multiset dimensions of the main graph is presented, namely a bipartite graph.

Lemma 2.3
Let G and H be a nontrivial connected graph. mdl(G) = mdl(H) = 1 if and only if mdl(G ▷ H) = 1.

Proof. Let mdl(G) = mdl(H) = 1, based on Theorem 1.3 that G and H is a bipartite graph. Based on Theorem
2.1 obtained G ▷ H is a bipartite graph. Since G ▷ H is a bipartite graph, based on Theorem 1.3 obtained
mdl(G ▷ H) = 1.

On the other hand, let mdl(G ▷ H) = 1, based on Theorem 1.3 that G ▷ H is a bipartite graph. Since G and H is
a bipartite graph, then based on Theorem 1.3 obtained mdl(G) = mdl(H) = 1.

In Susilowati (2016), the local metric dimensions of the comb product graph are presented with the local metric
dimensions of the main graph as follows.

Theorem 2.4
Let G and H be a connected graph. If H is a bipartite graph, then diml(G ▷ H) = diml(G)

Characterization of local multiset dimensions on the graph resulting from comb product with the local multiset
dimensions of the main graph and the relationship of local multiset dimensions on the graph resulting from comb
product with the local metric dimensions of the graph resulting from the comb product. For more details, it can be
seen as follows:

Lemma 2.5
Let G and H is a nontrivial connected graph. If mdl(G) ≥ 2 and mdl(H) = 1, then diml(G) ≤ mdl(G ▷ H) ≤
mdl(G).

Proof. Based on Theorem 1.3 that if mdl(H) = 1, then H is a bipartite graph. Based on Lemma 2.3 and Theorem
2.4 obtained that mdl(G ▷ H) ≥ diml(G ▷ H) = diml(G).

Theorem 2.6
Let T be a tree with ordo n ≥ 2 and T1, T2 be a subtree of T with V (T1) ∪ V (T2) = V (T ) and V (T1) ∩ V (T2) =,
then

mdl(T ▷ C3) ≥
{

n, for T1 ̸= T2

n+ 1, for T1 = T2

Proof. Let T be a tree graph with order n ≥ 2. Vertex set of C3, V (C3) = {vj , j = 1, 2, 3} and vertex set of tree
graph, V (T ) = {vi, i = 1, 2, . . . , n}. Based on definition of comb product that V (T ▷ C3) = {vi,j , j = 1, 2, 3 and
i = 1, 2, . . . , n}. Graph T ▷ C3 has n copies subgraph C3, denoted by (C3)i with i = 1, 2, 3, . . . , n. The vertex vi,1
for i = 1, 2, 3, . . . , n is terminal vertex and the vertex vi,j , j ̸= 1 is a vertex in subgraph (C3)i for i = 1, 2, 3, . . . , n.

Case 1. T1 ̸= T2

Take W = {vi,2; i = 1, 2, 3, . . . , n}, it will be shown that the vertex representation of T ▷ C3 is different.

1. The vertex representation vk,1, vl,1 ∈ V (T ▷ C3). Since T1 ̸= T2, then for all two vertices vk,1vl,1 ∈ E(T ▷
C3) occur d(vk,1, v) ̸= d(vl,1, v) with v ∈ V (T ▷ C3). Thus, d(vk,1, vs,2) ̸= d(vl,1, vs,2), then rm(vk,1|W ) ̸=
rm(vl,1|W ).

2. The vertex representation vk,1, vk,3 ∈ V (T ▷ C3). It is known that d(vk,3, vs,2) = d(vk,3, vk,1) + d(vk,1, vs,2),
then d(vk,3, vs,2) ̸= d(vk,1, vs,2). Thus, rm(vk,1|W ) ̸= rm(vk,3|W ).
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Figure 2. Local multisen dimension of T ▷ C3 is 9

Based on point 1) and 2) obtained that the vertex representation of T ▷ C3 is different.
Furthermore, it will be proven that mdl(T ▷ C3) ≥ n. Take P ⊂ V (T ▷ C3) with |P | = n− 1. Since

uk,2, uk,3 /∈ P , then d(vk,2, vk,1) = d(vk,3, vk,1) and uk,2 − uk,3, then rm(vk,2|W ) = d(vk,3|W ). Since
rm(vk,2|W ) = d(vk,3|W ), then P is not local m-resolving set. Based on the description above, it is obtained that
the cardinality of the local m-resolving set, namely mdl(T ▷ C3) = n.

Case 2. T1 = T2

Take W = {vi,2; i = 1, 2, 3, . . . , n} ∪ {vn,1}, it will be shown that the vertex representation of T ▷ C3 is different.

1. The vertex representation vk,1, vl,1 ∈ V (T ▷ C3). It is known that d(vk,1, vn,1) ̸= d(vl,1, vn,1) and
d(vk,1, vs,2) ̸= d(vl,1, vs,2), then rm(vk,1|W ) ̸= rm(vl,1|W ).

2. The vertex representation vk,1, vk,3 ∈ V (T ▷ C3). It is known that d(vk,3, vn,1) = d(vk,3, vk,1) +
d(vk,1, vn,1), then d(vk,3, vn,1) ̸= d(vk,1, vn,1). Thus, rm(vk,1|W ) ̸= rm(vk,3|W ).

3. The vertex representation vn,1, vn,2 ∈ V (T ▷ C3). It is known that d(vn,2, vs,2) = d(vn,2, vn,1) +
d(vn,1, vs,2), then d(vn,2, vs,2) ̸= d(vn,1, vs,2). Thus, rm(vn,2|W ) ̸= rm(vn,1|W ).

Based on point 1), 2) and 3) obtained that the vertex representation of T ▷ C3 is different.
Furthermore, it will be proven that mdl(T ▷ C3) ≥ n+ 1. Take P ⊂ V (T ▷ C3) with|P | = n. There are two

possibilities as follows.

a For uk,2, uk,3 ̸= P
Since d(vk,2, vk,1) = d(vk,3, vk,1) dan uk,2 − uk,3, then rm(vk,2|W ) = d(vk,3|W ). Since rm(vk,2|W ) =
d(vk,3|W ), then P is not local m-resolving set.

b For ui,2 ∈ P or ui,3 ∈ P ; 1 ≤ i ≤ n.
Since T1 = T2, for vi,1 − vk,1, vi,1, vk,1 ∈ V (T ▷ C3)− P with i ̸= k. Since vi,1vk,1 ∈ E(T ), vi,1 ∈
V (T1) and vk,1 ∈ V (T2) such that {d(vi,1, ui,2);ui,2 ∈ P} = {d(vk,1, ui,2);ui,2 ∈ P} occur rm(vi,1P ) =
rm(vk,1P ). Since rm(vi,1P ) = rm(vk,1P ), then P is not local m-resolving set.

Based on the description above, it is obtained that the cardinality of the local m-resolving set, namely
mdl(T ▷ C3) = n+ 1.

3. Conclusion

We have characterized the local multiset dimension of comb product with the main graph is bipartite graph.
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