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Abstract The Internet of Things (IoT) offers the ability of device-to-device seamless connectivity, which enables real-time
data collection and collaboration. Wireless Sensor Networks (WSNs), which are collections of geographically dispersed
sensor nodes, are integral to IoT systems but suffer from low energy, storage, and wasteful data transmission, causing
network instability, latency, and high energy consumption. To address these issues, the current research proposes a novel
Pathfinding algorithm based on the Improved Whale Optimization Algorithm (IWOA) for WSNs. The aim of the current
research is to enhance the network’s performance by optimizing energy consumption, hop count, and data transmission
efficiency. The proposed method utilizes intermediate sensors and optimizes the transmission paths step by step with the
assistance of IWOA, thus performing efficient energy-saving data routing. The simulation outcomes indicate that the Whale
Optimization Algorithm outperforms the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approaches with
30% improvement in network lifetime, 10% higher number of active nodes, 15% higher successful packet deliveries, and
17% lower data transmission delay. These results illustrate the effectiveness of the introduced algorithm in maximizing WSN
performance and hence are an important contribution to decentralized peer-to-peer and distributed systems.
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1. Introduction

The advent of the Internet of Things has catalyzed a massive transformation in modern technology; this revolution
enables a wide array of devices and objects to communicate and engage with each other through a network without
direct commands. Such high interconnectivity enhances efficiency and automation across industries like healthcare,
agriculture, and smart home applications, among others[1, 2, 3].

Here, WSNs occupy an important position as they constitute one of the building blocks of the IoT, which allows
the continuous collection and delivery of information. A WSN typically consists of several Sensor Nodes (SNs) and
at least one Base Station (BS), commonly known as the sink. An SN is a small device with limited resources such
as energy, processing capability, and memory [4]. These nodes are strategically placed in different environments to
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sense the relevant information and send it to the sink using either single-hop or multi-hop communications to the
nearest sink [5]. The BS has the responsibility of receiving the gathered information and then relaying the same
to the end user for analysis and action. Moreover, WSNs have a key role in industrial automation and smart home
systems, where the environment is monitored and critical data are collected to support informed decision-making.
Figure 1 illustrates a demonstrative system featuring a blended architecture of IoT and WSN technologies[6].

Figure 1. Architecture for IoT and WSN.

Despite their transformative potential, traditional WSN routing methods, while possessing some promising
attributes, encounter serious effectiveness challenges. Unfavorable data transmission strategies can result in
network instability [7, 8, 9], lead to high energy consumption[10], cause delayed data delivery [11], and ultimately
degrade overall network performance [12]. Given the critical role of energy conservation in WSNs, improving the
effectiveness of data exchange in IoT applications is of prime importance for ensuring sustainable operation and
reliability [13].

Traditional routing approaches often prioritize single objectives, such as minimizing hop count or balancing
energy consumption, yet frequently struggle to provide holistic solutions that simultaneously address multiple
critical performance metrics like network lifetime, data delivery ratio, and end-to-end latency. Furthermore, many
existing metaheuristic-based solutions, while effective in certain scenarios (e.g., Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO)), may suffer from issues such as slow convergence, susceptibility to local
optima, or inadequate adaptation to the dynamic and multi-objective nature of real-world WSN environments.
There remains a significant need for robust and efficient pathfinding mechanisms that can optimize multiple
interdependent factors to ensure the longevity and high performance of WSNs.

Addressing these identified gaps, this paper proposes a novel energy-efficient pathfinding model for WSNs
that leverages an Improved Whale Optimization Algorithm (IWOA). This IWOA is specifically engineered to
tackle the critical multi-objective routing challenges inherent in WSNs, with its innovation residing not in a
fundamental paradigm shift of the metaheuristic, but in the meticulous adaptation and precise parameter refinement
of the original Whale Optimization Algorithm (WOA). This yields a solution uniquely capable of optimizing
concurrently for energy consumption, hop count, and data volume. Through rigorous, high-fidelity simulations—a
standard and essential initial step in WSN research—we demonstrate significant performance improvements over
existing optimization techniques like GA and PSO. Specifically, our simulation results prove the efficacy of IWOA,
leading to a network lifetime increase of 30%, an alive node ratio increase of 10%, an improvement in successful
transmission packets by 15%, and a reduction in data transfer latency by 17%. These improvements collectively
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signify the algorithm’s ability to effectively optimize data transmission in WSNs. While the current model operates
under initial simplifying assumptions, such as uniform node distribution and static topology, to establish a robust
baseline for algorithmic performance, the IWOA is fundamentally designed with resource-constrained WSN nodes
in mind, exhibiting efficient computational complexity. Furthermore, the inherent structure of the IWOA shows
promising potential for scalability in larger network deployments. This foundational work sets the stage for future
empirical validation in real-world scenarios, the relaxation of current model assumptions, and dedicated large-scale
scalability analyses.

The rest of the paper is organized as follows: Section 2 summarizes related research. Section 3 explains the
methodology in detail, including the WSN system model and the proposed IWOA algorithm. Section 4 discusses
the simulation setup, results, and implications of the findings. Section 5 concludes the paper by summarizing the
contributions and future work in the area of IoT and optimization of WSNs.

2. Related Works

Given the constrained power supply inherent in WSNs, achieving energy efficiency is paramount. The central
challenge often revolves around determining an efficient routing path to extend the network’s lifetime. This section
reviews various metaheuristic algorithms and their applications in WSNs and IoT [14]. Metaheuristic algorithms
provide a cost-effective approach to solving real-world optimization challenges. In WSNs, these algorithms are
essential for efficient pathfinding and energy conservation. In pathfinding problems, Swarm Intelligence (SI)
[15, 16, 17] methods emerge as the preferred choice due to their superior performance compared to other
methodologies. SI methods draw typically inspiration from nature, leveraging herd or cooperative social behaviour
and a neighbourhood mindset.

These algorithms are composed of fundamental particles and uniform members that interact with one another
as well as with their surroundings. Their agents aim to find optimum solutions by collaborating in specific search
regions and leveraging the aggregate effort of all participating agents. The paper discusses the usefulness of SI
approaches in WSN and IoT environments to identify the best pathways [18, 19].

A first research [20] describes the Ant Colony Algorithm for data aggregation in WSN. This technique builds
an efficient data aggregation tree that reduces energy by minimizing the number of transmissions required to carry
data from source nodes to a single sink. It exploits the natural behavior of ant colonies in exploring and optimizing
the search space for the best routing paths. However, as the number of nodes increases, so does runtime complexity,
and hence a network is more expensive to maintain. A challenge is thus to choose a suitable set of sink locations
in order to retain efficiency while prolonging the lifetime of WSN.

Similarly, a study [21] is currently being performed to investigate the performance of ABC against the routing
in WSN. In this scheme, the foraging behavior of honey bees in finding the optimal paths of data will be adopted,
aiming to enhance routing efficiency and prolong network lifetime. Although there is a number of advantages
of ABC like energy efficiency, scalability, and flexibility; nonetheless, applying ABC in high-dimensional data
or complex network topologies may lead to delayed convergence. This is because, for the same problem, the
convergence to the optimal solution takes more iterations, which may be inappropriate for some scenarios.
Nevertheless, ABC seems a promising method to improve routing in dynamic network environments.

In [22], the authors use the GWO algorithm to implement a new routing method in a hierarchical architecture.
This technique tries to avoid energy holes by dividing the load equally among nodes that are closer to CH and BS.
The optimization process by wolves is supported by the newly included fitness function, which considers both the
overall distance and number of hops. The study has, however, one crucial shortcoming in the form of insufficient
attention to efficient parameterization. Results from the fitness function could not be very applicable in practical
situations if essential and sufficient parameters are not taken into sufficient account. On the other hand, our study’s
fitness function is flexible and may be used to a range of metaheuristic algorithms. This flexibility is mostly made
possible by the suggested architecture.

Another meta-heuristic approach, PSO [23], has been presented for WSN routing. The authors describe a
PSO-based routing system that optimizes sensor node distribution for improved target detection. This method
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exploits particle interaction to determine optimal routes, enabling effective information transfer and less energy
consumption. However, PSO necessitates precise parameter adjusting and may find challenges in high-dimensional
search spaces or complicated network topologies, potentially resulting in slower convergence rates [24, 25].

Various optimization strategies have been implemented to improve the energy efficiency of IoT networks.
The studies [26, 27] explore the application of fuzzy clustering and particle swarm optimization to achieve this
objective. These investigations demonstrate a significant reduction in energy consumption by enhancing both
the clustering and routing methods. These strategies improve network performance and overall energy efficiency.
However, the research highlights that the high computational demands of the clustering and optimization methods
could pose a limitation. Despite these challenges, the findings underscore how these strategies can enhance
the sustainability and performance of IoT networks. The works also emphasize the importance of balancing
energy efficiency and processing overhead when developing practical and adaptable solutions for real-world IoT
applications.

The authors of [28] focuses on a multi-vehicle supply chain logistics transportation scheduling model, employing
an improved ant colony algorithm for high-speed, high-quality path optimization, aiming to reduce transportation
cost and time. The algorithm enhances the basic ant colony algorithm by incorporating heuristic information
functions and a refined pheromone update model. It integrates various constraint factors such as transportation
cost, shipping time, vehicle fuel consumption, distribution range, and capacity into the scheduling model to
achieve supply chain logistics optimization. The model assumes uniformity in constraint factors across all vehicles
and distribution scenarios, which may not accurately reflect the complexities of real-world supply chain logistics
operations.

The research [29] introduces a hybrid method combining fuzzy with adaptive sailfish optimizer (ASFO) for CH
selection and an improved elephant herd optimization technique for route optimization aimed at improving energy
efficiency in WSNs. However, this approach might assume uniformity in network characteristics and environments,
potentially resulting in suboptimal performance when applied to real-world WSN deployments due to overlooking
the complexities inherent in practical scenarios.

Several optimization methods are suggested for selecting the suitable path from sensor(transmitter) to
Sink(recipient) nodes in IoT and WSNs according to the survey of relevant research. These methods have
limitations such as picking the optimum path in order to minimize and maximize the values of the fitness function
parameters. Additionally, many optimization techniques require extensive time to analyze the fitness function,
which can be a significant drawback. Table 1 presents a comparison of different optimization methods reviewed in
the literature, highlighting their advantages, limitations, and performance metrics.

The adoption of metaheuristic techniques has surged in popularity within IoT and WSN systems. This paper
introduces IWOA to offer versatility and optimize paths for these applications.

In summary, while existing metaheuristic approaches provide significant benefits in optimizing energy efficiency
and routing, they still face challenges in adaptability and practical applicability. This study proposes a WOA-
based approach to address these issues, providing a dynamic and flexible solution tailored to various network
environments. The next section will detail the proposed system architecture and its anticipated contributions to the
field.

3. Method

This section consists of three subsections. The first subsection introduces the WSN system model and the adopted
energy model. The second and last subsection outlines the proposed energy routing method, focusing on optimizing
data transmission in WSN while introducing the IWOA, which describes a method for achieving this optimization
through iterative adjustments of sensor positions based on a cost function.

3.1. System and Energy Model

In our model, we assume a total of N nodes dispersed randomly across the terrain, each possessing a unique
identifier known as its ID. The assumptions include SN being uniformly distributed throughout the terrain for equal
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Table 1. Comparative Analysis of Metaheuristic Algorithms for WSN/IoT Optimization

Algorithm
Application

Area
Main

Benefits
Energy

Efficiency Scalability Adaptability
Computational

Complexity Limitation
Ant Colony
Optimization
(ACO) [20]

Data
Aggregation in
WSNs

Reduces energy
consumption,
improves data
aggregation
efficiency

High High Moderate Moderate Slower
convergence in
complex
topologies

Artificial Bee
Colony (ABC)
[21]

Routing in
WSNs

Enhances routing
efficiency, extends
network lifespan

High High High Moderate Slower
convergence in
high-
dimensional
datasets

Grey Wolf
Optimizer
(GWO) [22]

Hierarchical
WSN Routing

Balances load,
reduces energy
holes

High Low Moderate Low Limited param-
eterization for
practical
situations

Particle Swarm
Optimization
(PSO) [26]

Wireless Sensor
Networks for
Target Tracking

Enhances
accuracy and
efficiency of target
tracking

High High High High Requires
fine-tuning for
specific
applications

Fuzzy
Clustering and
Particle
Optimization
[27]

IoT Networks Optimizes
clustering and
routing, reduces
energy use

High Moderate Moderate Moderate High
computational
requirements
due to
clustering and
optimization
processes

Improved Ant
Colony
Algorithm
[28, 19]

Supply Chain
Logistics

Optimizes
transportation
routes efficiently,
reduces
operational costs

High High Moderate Moderate May struggle
with very large
datasets

Fuzzy-ASFO +
Improved
Elephant Herd
Optimization
[29]

Cluster Head
Selection in
WSNs

Enhances energy
efficiency

High Moderate Moderate Moderate Assumes
uniform
network
characteristics

coverage and density, nodes equipped with initial energy reserves, capable of aggregating data from neighboring
nodes, a static topology with no changes in node positions post-deployment, reliable communication within a
predefined range, and the presence of only one fixed BS (or Sink) placed at the center. Energy scavenging is critical
in WSNs since each SN has a restricted battery source. Once deployed, WSNs continue to gather data regularly (or
in response to events). A SN comprises various functional units including sensors, processors, memory, batteries,
and transceiver units. It is commonly known that among them, the transmitter consumes the most energy [30].
According to the first-order radio model, if node i has to send k-bit data to node j, which is d distance distant, then
the energy spent by node i may be stated as:

ETx(k, d) =

{
Eelec · k + Efs · k · d2 if d < d0

Eelec · k + Emp · k · d4 if d ≥ d0
(1)

Node i’s energy consumption is stated as follows:

ERx(k, d) = Eelec · k (2)

Where k denoted the quantity of bits (data) transmitted across a distance d, Eelec (nJ/bit) denotes the overall
electrical energy necessary for operations like modulation, digital coding, and other electronic processes per single
bit transmission or reception, Efs (nJ/bit/m2) represents the power consumption required by an amplifier for direct
transmission to the receiver, considering path loss over distance, and Emp (nJ/bit/m4) indicates the energy needed
by an amplifier for data transmission in scenarios where it’s relayed through multiple nodes in a multi-hop manner.
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In these formulations, Eelec characterizes the energy dissipation in the circuitry of either the transmitting or
receiving elements. Meanwhile, Efs and Emp depict the energy usage attributed to the transmitting amplifier in
settings defined by free space and a multipath model, respectively. Additionally, d0 represents the critical threshold
value, which is equivalently expressed as:

Efs · d20 = Emp · d40 =⇒ d0 =

√
Efs

Emp
(3)

These energy formulations assume static node deployments, which align with three key IoT application
domains: (1) fixed industrial equipment monitors where vibration sensors track machinery health [31], (2)
permanent agricultural field sensors measuring soil conditions [32], and (3) structural health monitoring nodes
in bridges/buildings. This static approach enables unambiguous evaluation of routing efficiency by eliminating
mobility-induced energy variations, while covering 62% of current industrial WSN deployments [33]. The
threshold distance d0 remains stable in such fixed topologies, ensuring consistent energy model behavior.

3.2. Energy Routing

In a WSN, a sensor can transmit its data directly to the sink if the distance is within its communication range and it
has sufficient energy; can transmit its data directly to the sink if the distance is within its communication range and
it has sufficient energy. However, when the distance is too great or the sensor has limited energy, it is more efficient
to transmit the data through intermediary sensors. These intermediary sensors act as relays, thereby reducing the
overall distance and energy required to reach the sink. To ensure optimal network performance, it is essential to
consider factors such as residual energy, distance, and the number of hops. A new fitness value, outlined in Eq.(4),
is developed to determine the optimal route using the IWOA. Direct transmission is feasible if the distance between
the sensor and the BS falls within the communication range. However, the multi-hop mechanism introduces the
challenge of multiple paths with varying lengths and the involvement of intermediate nodes. To address this, the
optimal route for any number of hops is determined at the end of each iteration based on Eq.(5), with the best path
being chosen using Eq.(6). This method enhances the WSN’s performance by identifying the most efficient path at
the least cost between nodes i and j :

costi,j = c1× di,j
Ei

+ c2×Hj + c3× Vdata (4)

Where the term di,j

Ei
represents the ratio between the distance di,j between SN i and SN j, and the initial energy

Ei of sensor i. Hj is the hop count of node j to the BS, Vdata is the volume of transmitted data, and c1, c2, c3, and
c4 are weights or coefficients that determine the relative importance of each component in the overall cost function.
Moreover, c1, c2, c3, and c4 are four control parameters, each ranging between 0 and 1, such that the constraint
their sum equals 1: c1 + c2 + c3 = 1 with c1 < c2 < c3 was designed to achieve three objectives:

1. The normalized sum ensures balanced consideration of energy, hop count, and data volume metrics while
preventing any single factor from dominating arbitrarily;

2. The specific hierarchy c1 ¡ c2 ¡ c3 reflects our finding that in dense IoT deployments, congestion control
(prioritized via c3, related to data volume) and latency reduction (c2, related to hop count) outweigh
pure energy conservation (c1, related to energy consumption), as demonstrated by our 30% performance
improvement over traditional models;

3. This configuration maintains numerical stability during optimization while enabling direct comparison with
other studies using similar normalization [34, 35, 30]. Our sensitivity analysis confirmed that alternative
weight distributions either degraded network lifetime by≥15% or increased latency by≥20%. The proposed
approach is formally presented as a flowchart in figure 2.

The flowchart outlines the role of each node in transmitting its sensed data to the sink. Nodes are classified into
two distinct categories depending on there communication range: those in the first category directly transmit their
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data to the sink, while those in the second category participate in a routing process. In the routing phase, each node
maintains a Neighbor Table (NT), which contains comprehensive information about its neighboring nodes, such as
their IDs, geographic locations, and remaining energy levels. This table serves as a critical resource for nodes to
make informed decisions regarding data forwarding.

Using this table, nodes determine the Next Hop Set (NHS) by selecting neighboring nodes that meet specific
criteria. For example, consider nodes m, j, and k, which form the Neighbor Set (NS) of node i. Any node within
the NS that lies between node i and the sink is eligible for inclusion in the NHS. To be included in node i’s NHS,
node j must satisfy two conditions: (1) node j ∈ NS, and (2) dist(sink, j) < dist(sink, i).

Once the Next Hop Set is constructed, the cost between Si and each next hop is calculated using Eq.(4). The
process of determining the next hop set is iterated by recalculating the cost at each step, continuing until the next
hop is the sink. The IWOA method efficiently searches for the best coefficient numbers for each parameter in order
to get the best path cost.Subsequently, the cost of the candidate paths is computed using Eq.(5). Candidate paths
from Si to the BS are evaluated based on their respective costs.

Total CostPathk
l
=

{
k = 1, 2, . . . ,m;

∑
costi,j

}
(5)

Where Pathl is the path between a node i and the sink and k is the number of all possible Pathl. The IWOA
identifies the Best route by selecting the path with the minimum cost, as determined by Eq.(6).

OptimalPathk
l
= min(Total CostPathk

l
) (6)

Algorithm 1 integrates energy-aware routing techniques with the IWOA. When a SN, denoted as Si, assesses
its proximity to the sink and energy level, it determines whether to pursue a direct path to the sink or employ
intermediary nodes for data transmission. If Si’s distance to the sink is within the communication range and
possesses sufficient energy, it adds itself to the set of Direct path. Otherwise, Si applies the IWOA to identify
the optimal transmission path.

Figure 2 depicts the successive processes required to optimize sensor data transmission channels using the
IWOA. Initially, the remaining sensor population is initialized, and the cost of sensors is assessed. Next, a sensor
is chosen as the best next hop, and the Maximum Iteration count (MaxIter) is established. The algorithm then
enters a loop and iterates until the maximum number of iterations is reached. Within each iteration, the algorithm
determines if the current best next hop is the best choice. If it is, the system proceeds to select this sensor as the best
next hop. Otherwise, the algorithm updates parameters A, D, and C, changes the next hop, recalculates the cost, and
looks for a better option. This iterative process continues until the maximum iteration count is reached, optimizing
the selection of the most efficient path for data transmission. Through this systematic approach, the algorithm
effectively navigates through potential pathways, updating sensor positions, and evaluating the cost function to
identify the most optimal transmission path, thus minimizing energy consumption, the number of hops, and the
volume of transmitted data.

The IWOA iteratively navigates through potential pathways, updating sensor positions and evaluating the cost
function at each step. A specified process is initiated for each node in the optimal path, and packets are transmitted
to the next hop along the path. If the sink is identified as the next hop, the process concludes, and the sink is prepared
to receive packets. Otherwise, the process continues with the next hop until an optimal path is established.

In this network, Sink contains all of the topological details. During the network’s startup phase, the sink sends
a request data packet to the SNs with the aim to obtain this information. The neighbor list, distance, and residual
energy statistics are all stored in the BS.

3.3. Proposed Algorithm

To apply this algorithm in a WSN environment, each sensor can act as a ”node,” representing a potential solution,
i.e., a possible path to the sink. Sensors evaluate their path based on the defined cost function, considering consumed
energy, the number of hops, and the volume of data to be transmitted. Sensors can either directly transmit their data
to the sink if their communication range is sufficient, or act as intermediary nodes, relaying data to other sensors
better positioned to minimize the total cost of the path. The IWOA algorithm guides the sensors in searching for
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Figure 2. Flowchart for Determining the Best Route
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Algorithm 1 WSN Route Optimization using IWOA

Require: Population size n, number of dimensions d, maximum number of iterations MaxIter
Ensure: Optimal path for data transmission (Sleader)

1: Phase 1: Initialization
2: Randomly generate an initial population of n sensor nodes (SNs), where each SN represents a candidate path

in the network.
3: Define algorithm parameters: n, d, MaxIter, and other IWOA-specific constants.
4: Phase 2: Network Setup (NT and NHS) {This phase sets up network topology information for routing

decisions.}
5: for each SN i in the population do
6: Initialize NT for SN i //list of directly reachable nodes.
7: Initialize NHS for SN i as empty.
8: for each neighbor j in the NT of SN i do
9: if Neighbor j is closer to the sink than SN i then

10: Add j to NHS of SN i.
11: end if
12: end for
13: end for
14: Phase 3: Initial Fitness Evaluation {Calculate the initial quality of each generated path.}
15: for each SN i in the population do
16: Calculate TotalCost(SNi) using the defined cost function.
17: end for
18: Identify and set Sleader as the SN (path) with the lowest TotalCost found in the initial population.
19: Phase 4: Iterative Optimization (Whale Optimization Process)
20: t← 0
21: while t < MaxIter do
22: Update control parameter a
23: for each SN i in the population do
24: Generate random vector r in [0, 1].
25: Calculate coefficient A using Eq.(8)
26: Calculate coefficient C using Eq.(9)
27: Generate random probability p in [0, 1].
28: if p < 0.5 then
29: if |A| < 1 then
30: Update SN i’s position (path) using Eq.(10) //Shrinking Encircling Mechanism towards Sleader.
31: else
32: Select a random SN Srand from the population.
33: Update SN i’s position (path) using Eq.(12) //Search for Optimal Paths randomly towards Srand.
34: end if
35: else
36: Update SN i’s position (path) using Eq.(11) //Perform Spiral Update Movement around Sleader.
37: end if
38: Calculate TotalCost(SNi) for the newly updated position (path).
39: end for
40: Update Best Solution:
41: Compare the TotalCost of all currently updated SNs with the TotalCost of Sleader.
42: If any updated SN has a lower TotalCost, update Sleader to this new best SN.
43: t← t+ 1
44: end while
45: Return Sleader (the optimal path with the lowest TotalCost found after all iterations).
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the most optimal path by adjusting their positions and iterating until the best solution is found. Using this approach,
sensors can effectively select the optimal path to transmit their data to the sink while minimizing consumed energy,
the number of hops, and the volume of transmitted data. The algorithm consists of several steps: Population
Initialization, Exploration, and Exploitation.

3.3.1. Population Initialization During this phase, a crucial first step is to generate an initial population of
solutions, representing various possible paths for data transmission to the sink. Each solution is then evaluated
based on the previously defined cost function, determining the initial quality of each solution and serving as the
basis for subsequent steps of the algorithm.

3.3.2. Exploration Phase In this phase, sensors explore new regions of the search space to discover potential
solutions that have not yet been found. Sensor positions are updated based on the distance to the center of gravity
of the solution population and a random vector, with the cost function C influencing this update. The updated
position of a sensor SNew can be expressed as:

SNew = SCurrent −A · dBest · C (7)

A = 2 · a · r − a (8)

C = 2 · r (9)

Where SNew:The new, updated position of a sensor node, SCurrent:The current position of the sensor node at
iteration t, A :A coefficient vector that dynamically controls the step size of the update. Its value (influenced by a
and r) determines whether the algorithm performs exploitation or exploration, a: is linearly reduced from 2 to 0
over iterations, r: is a random vector in [0,1], dBest: Represents the calculated Euclidean distance from the current
sensor node’s position to the best solution found so far (the optimal path candidate) in the search space, and C :A
coefficient vector, derived from a random number, used to amplify the step size of movement towards or away from
the best solution.

3.3.3. Exploitation Phase During the exploitation phase, sensors focus on refining their positions within the most
promising regions of the search space, where the most efficient solutions are found. Sensor positions are adjusted
based on the best solution found so far, guided by the cost function. This refinement is specifically achieved by
the IWOA simulating the bubble-net feeding behavior of whales, which involves simultaneously applying both a
shrinking encircling mechanism and a spiral update movement. Specifically, during each iteration, if the random
vector p < 0.5, a search agent’s (sensor node’s) position is updated based on the distance to the prey (optimal
path candidate) using the shrinking encircling mechanism. Conversely, if p ≥ 0.5, the spiral movement is applied,
mimicking the helix-shaped path of whales attacking prey.

Neighboring Node Interaction: Sensors can locate the position of a better-performing node and adjust their
path accordingly. The algorithm models this behavior by considering the best sensor’s position as the target. Other
sensors move towards thisthis [best sensor’s] position, expressed by the equation:

SNew = Sleader −A · |Sleader − S| (10)

Where SNew: The new adjusted position of the sensor node, Sleader: The position of the ’best sensor’—the node
that currently offers the most optimal solution for data transmission based on the evaluation of the defined cost
function, A: The coefficient vector derived from Eq.(8), dictating the step size of movement and S: The current
position of the sensor node being updated. The term ”best sensor” refers to the node that currently offers the
most optimal solution for data transmission, based on the evaluation of a defined cost function. This cost function
typically considers several factors, including consumed energy, the number of hops, and data volume.

Data Transmission Optimization This involves two main mechanisms: reducing transmission range and
optimizing data relay, each with equal probability p = 0.5. In reducing transmission range, A is decreased from 2

Stat., Optim. Inf. Comput. Vol. x, Month 202x



10 AN ENERGY-EFFICIENT PATHFINDING MODEL FOR WIRELESS SENSOR NETWORKS

to 0 over iterations (Eq.9). Optimizing data relay simulates the dynamic adjustment of sensor positions, updating
positions as:

SNew = SCurrent +
S − SCurrent

1 + exp(A · |Sleader − S|)
(11)

Where SNew:The new, updated position of the sensor node,SCurrent:The current position of the sensor node and
Sleader: The position of the current best sensor. During the Search for Optimal Paths (Exploration Phase), sensors
search randomly for the best path when |A| is outside [−1, 1], moving sensors far from the reference path using:

SNew = Srand −A · |Srand − S| (12)

Where Srand: The position of a randomly selected sensor node from the current population, guiding the exploration.
By iterating and adjusting sensor positions based on these mechanisms, the IWOA algorithm effectively guides
sensors in selecting the optimal path for transmitting data to the sink while minimizing energy, hops, and data
volume.

3.3.4. Fitness Evaluation The cost function is fundamental to the Improved Whale Optimization Algorithm
(IWOA) as it serves as the objective function that the algorithm seeks to optimize (minimize in your case, as it
considers consumed energy, the number of hops, and the volume of data to be transmitted). It directly guides the
search process in the following ways:

• Population Evaluation:

– During Initialization: Each potential path (sensor position) in the initial population is evaluated using
this comprehensive cost function. This initial evaluation determines the quality of each solution and,
critically, helps identify the initial Sleader (the best sensor position found so far).

• The Optimization Process:

– Throughout Iterations: After sensor positions are updated by the IWOA’s mechanisms (Equations 7–
12, influenced by coefficients like A and C), their new fitness (cost) is re-evaluated using this same cost
function.

– This continuous evaluation allows the algorithm to compare the quality of new solutions against the
Sleader. If a newly explored or exploited position yields a better (lower) cost function value, it becomes
the new Sleader, effectively directing the search agents (sensors) towards more optimal paths.

– The IWOA’s movements (shrinking encircling, spiral movement, random search) are thus implicitly
driven by the goal of finding positions that minimize this overall cost function.

4. Simulation, comparison and results

This section outlines the simulation setup for the proposed methodologies, conducted using Python on a computer
equipped with a Core i5-1145G7 processor running at 2.60GHz base frequency and 2.61GHz turbo frequency, with
8 GB of RAM. The proposed methodologies involve the implementation of energy-efficient routing techniques
employing the metaheuristic IWOA.

4.1. Simulation settings

In the network model, nodes are distributed randomly across a 100x100m² area. The proposed methods are
compared against PSO [23] and GA [36]. All algorithms share the same network input configuration parameters.
Furthermore, the BS is located at the center of the network, and each SN is connected to at least one neighbor.
Data packets can be transmitted from sensors to the BS in either single or multiple hops, with a maximum hop
limit of three. All SNs are homogeneous, possessing identical initial energy levels and communication ranges. The
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Table 2. Network Parameters

Parameters Values

Network Size 100× 100 m2

Number of nodes 100
Sink location Center
Data packet size 350 bits
Ei 0.5 J
Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

Eelec (Tx, Rx) 50 nJ/bit

simulation spans 400 rounds, each lasting 2 seconds. Additional system specifications are outlined in Table 2. And
Below are the defined parameters for various metaheuristic algorithms:

In the IWOA, there are 30 search agents forming the population. ’A’ takes values within the range of [-2, 2].
The maximum number of iterations is set to 100. The GA begins with an initial population of 30 chromosomes.
During crossover, 5% of the best chromosomes are chosen using the tournament selection procedure. Like IWOA,
the GA algorithm also runs for a maximum of 100 iterations. For the PSO methods, the population size is fixed
at 30 particles throughout 100 iterations. Additionally, After evaluating 26 weight combinations, the optimal
coefficients were determined to be: c1 = 0.25, c2 = 0.35, c4 = 0.4, and ρ (inertia weight) = 0.5. Table 3 presents
the performance metrics for the top configurations tested, with this combination demonstrating superior balance
across all key network parameters.

The performance evaluation metrics serve as crucial indicators for assessing the effectiveness of routing
methods within the network. These metrics, including network lifetime, alive node ratio, packet delivery ratio, lost
data packets, routing overhead, throughput, and convergence behavior, are simulated based on predefined input
parameters. They provide valuable insights into the performance of routing methods and are used for evaluation
and comparison purposes, ensuring a coherent and comprehensive assessment of the network’s efficiency.

Table 3. Performance Across Weight Combinations

Weights (c1, c2, c3) Lifetime Latency PDR

0.25, 0.35, 0.40 400 1.2 92
0.40, 0.40, 0.20 380 1.8 85
0.15, 0.25, 0.60 320 0.9 88

The chosen IWOA parameters, including a population size of 30 search agents and an ’A’ value range of [-
2, 2], along with p=0.5, align with established practices for the Whale Optimization Algorithm. These settings
were observed to provide a good balance between exploration and exploitation during initial testing phases for the
network scale considered.

4.2. Network Lifetime

Network lifetime i.e. number of rounds versus simulation residual energy of the network is an important metric
to check the efficiency of any method. Figure 3 intends to visualize the performance of three different algorithms
(GA, PSO, and IWOA) in terms of residual energy of the network over a certain number of rounds. The comparison
of the GA, PSO, and IWOA algorithms reveals similar performance in energy consumption. However, the energy
consumption of the routing method based on the IWOA is superior compared to the other methods. The routing
and data transfer mechanisms in all three algorithms are identical, with the difference lying in their metaheuristic
structures. From the simulations, it can also be observed that the IWOA demonstrates better energy consumption
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efficiency compared to GA and PSO. Therefore, The IWOA achieves the desired optimization within a smaller
number of rounds compared to the GA et PSO. By iteratively adjusting sensor positions based on the cost function,
the IWOA algorithm converges to the optimal solution more efficiently, reducing the overall number of rounds
required for data transmission.

GA tends to consume energy more rapidly than IWOA and PSO because its selection, crossover, and mutation
procedures introduce diverse paths that increase energy consumption. Also, GA may converge prematurely to
a suboptimal solution, hence expending more energy on inefficient paths. On the other hand, IWOA, through
its adaptive mechanism, and PSO, through its collaborative approach, ensure more energy-efficient pathfinding
through a better balance between exploration and exploitation.

Figure 3. Network lifetime ratio.

4.3. Alive Nodes Number

Figure 4 depicts the variation in the number of alive nodes over simulation time for three different algorithms: GA,
PSO, and IWOA. The number of alive nodes represents the count of nodes that remain active or energized during
each simulation time point. As the simulation progresses, the number of alive nodes decreases for all algorithms.
Observing the graph, we notice that the GA algorithm starts with the highest number of alive nodes but experiences
a steeper decline compared to the PSO and IWOA algorithms. This indicates that the GA algorithm may initially
energize more nodes but is less effective in sustaining their activity over time. In contrast, both the PSO and IWOA
algorithms maintain a relatively higher number of alive nodes throughout the simulation time. Although the PSO
algorithm shows a slightly faster decline compared to the IWOA, it still outperforms the GA algorithm in terms of
sustaining node activity. Overall, the IWOA and PSO algorithms demonstrate more balanced energy consumption,
as evidenced by the sustained number of alive nodes over time compared to the GA algorithm. This suggests that
the IWOA and PSO algorithms may offer better longevity and stability in terms of network performance, ensuring
a more consistent level of node activity throughout the simulation.

4.4. Packet delivery ratio

Figure 5illustrates the ratio of successfully delivered packets, which is used to assess the throughput across all
algorithms. Throughput in the network is evaluated based on the number of packets successfully reaching the BS.
Therefore, the total number of received packets from all nodes is summed to derive this metric. Specifically, the

Stat., Optim. Inf. Comput. Vol. x, Month 202x



S. BOUAROUROU, A. ZANNOU, EL H. NFOUI, C. KANZOUAI, A.BOULAALAM 13

Figure 4. Alive Nodes Number.

ratio is calculated by dividing the sum of successfully received data packets at the BS by the sum of all data packets.
Any packets not received successfully are deemed lost. As previously mentioned, the combined ratio of successful
and lost packets must equal 1. This implies that the performance of algorithms in terms of packet loss is inversely
related to their success rate. The proposed methods demonstrate a notably high rate of successful packet delivery
compared to others. Based on the findings, it can be confidently stated that in terms of network lifetime and alive
node ratio, IWOA ranks first, followed by PSO, with GA ranking last.

Figure 5. Succesuful transmission packets

4.5. Data transfer latency

Figure 6 presents the data transfer latency results obtained from the GA, PSO, and IWOA algorithms across
different rounds. Notably, IWOA consistently demonstrates the lowest latencies compared to GA and PSO. For
example, at 50 rounds, IWOA exhibits a latency of 0.5, while GA and PSO have latencies of 1.19 and 0.6,
respectively. This trend persists across subsequent rounds, with IWOA maintaining lower latencies than both GA
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and PSO. This superiority is attributed to IWOA’s integration of energy-aware routing techniques, optimizing
transmission paths. Unlike GA and PSO, IWOA leverages its unique optimization inspired by whale behavior
to efficiently navigate pathways, minimizing energy consumption, hops, and data volume. Through iterative
exploration and exploitation phases, IWOA achieves superior performance, making it the optimal choice for
reducing latency in WSNs.

Figure 6. . Latency Comparison across Different Rounds.

The effectiveness of the IWOA within the set maximum of 100 iterations is evidenced by its performance in
comparative studies. As shown in Figure 3, the IWOA exhibits more efficient energy consumption over simulation
rounds, indicating rapid convergence to optimal energy-efficient paths. Similarly, Figure 4 demonstrates the
IWOA’s ability to sustain a higher number of alive nodes, and Figure 6 shows consistently lower latency, all
achieved within the defined simulation rounds and thus, implicitly, within the 100 iterations, confirming that this
iteration count is adequate for obtaining robust and superior solutions.”

5. Conclusion

The current study outlines a complex pathfinding algorithm based on the IWOA to enhance the efficacy and
functionality of WSNs significantly. The IWOA works by mimicking the bubble-net hunting behavior typical of
humpback whales, which guides the SNs in finding the best data transmission paths. Through iterative processes,
the sensors adjust their positions adaptively until the optimum solution, regarding path cost, is reached. It enables
the sensors to find the best way of sending data to the sink while also being able to optimize crucial aspects such
as energy usage, hop count, and the amount of data. The general functional efficiency of WSN is dramatically
enhanced because the network lifespan and reliability are ensured.

Extensive simulations using different configurations and parameters demonstrate significant improvement over
current protocols. The methodology followed in this paper not only enhances energy efficiency but also prolongs
network longevity and data transmission, hence establishing its superiority in manifold contexts. However, it is
necessary to point out some specific limitations and further research opportunities. Notably, this research so far has
been mainly based on simulation and has not included empirical testing with large-scale datasets. This suggests
a topic that needs further investigation because the real-world application of IWOA in diverse environmental
conditions can lead to substantial knowledge of how applicable and resilient it is.

Although the methodology utilized uniform SNs in the simulations, subsequent research ought to incorporate
heterogeneous SNs to better tackle the increasing intricacies of IoT ecosystems. The incorporation of sensors
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exhibiting different capabilities and energy resources could further improve the network’s performance by
capitalizing on the advantages offered by various types of nodes.

Furthermore, investigating adaptive algorithms capable of self-adjusting parameters in accordance with real-time
network conditions would bolster the algorithm’s adaptability and overall efficiency. Our work lays the foundation
for future efforts in many other fields. Apart from WSNs, our pathfinding algorithm can be applied to address
complex problems such as electrical circuit optimization, where effective routing of signals can significantly
decrease power consumption and improve circuit performance. In feature selection, the application of IWOA will
help in determining important features for machine learning models, thus improving the prediction accuracy of
the model and reducing computational time. Moreover, While our static model effectively serves current fixed-IoT
applications, the IWOA framework can be extended for mobile scenarios like warehouse robots and drone swarms
to move effectively within dynamic environments by avoiding obstacles and reducing travel time.
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