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Abstract In this paper, we used the Laplace Homotopy Perturbation Method (LHPM) to solve the system of Singularly
Perturbed differential algebraic equations (DAEs) with an initial condition. We have added an optimization parameter to
LHPM to obtain more accurate solutions . Examples are solved using the method presented in this paper, and the calculated
results were compared with the Rung-Kutta and Euler methods to observe the accuracy and efficiency of the proposed
method..
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1. Introduction

The system of singularly perturbed differential algebraic equations (DAEs) given by

dx

dt
= f(t, x, y), x(0) = x0

ϵ
dx

dt
= g(t, x, y), y(0) = y0 (1)

where ϵ ∈ (0, 1], x0, y0 initial conditions and each equation represents the first derivative of each unknown function
as a mapping depending on the independent variable t and unknown functions f, g[1] which is given by

f(t, x, y) = (f1(t, x, y), f2(t, x, y), . . . , fn(t, x, y))

g(t, x, y) = (g1(t, x, y), g2(t, x, y), . . . , gn(t, x, y))

where f : R×Rm ×Rs → Rm is a continuous map, and G : R×Rm ×Rs → Rs is sufficiently smooth. If we
assume that the partial derivative, ∂2g, of g with respect to two variable y is invertible, so (1) is said to be of index
one [2]. If ϵ → 0 then we get on the system of differential algebraic equations (DAEs)

dx

dt
= f(t, x, y), x(0) = x0

0 = g(t, x, y), y(0) = y0 (2)
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We can rewrite the system (1) on the form

A(ϵ)
dz

dt
= ℘(t, z), z(0) = z0 (3)

where z0 initial conditions, and the matrix A(ϵ) =

[
1 0
0 ϵ

]
, z = (x, y), z ∈ Rm ×Rs and ℘ = (f, g) is of class

C1 in Rm ×Rs. The system (3) is equivalent to system (1) and gives the same solutions. We consider the system
(1) of index one so that gy is invertible.

The Laplace Homotopy Perturbation Method (LHPM) presents a novel approach to solving differential algebraic
equations by combining Laplace transforms with homotopy perturbation, enhanced by a regularization parameter
β.
This method offers three key advantages uperior:
Performance: Outperforms traditional methods (HAM-VIM) in accuracy and speed for stiff and nonlinear systems.
Computational Efficiency: Maintains optimal balance between precision and processing requirements.
Scalability: Adaptable to large-scale systems through potential parallel computing integration.

Particularly effective for engineering and bioscience applications requiring high-precision modeling, the LHPM
β parameter uniquely addresses stability challenges in singular perturbation problems. The method demonstrates
are better nonlinear handling than DASSL, competitive linear system performance and automatic stiffness
adaptation.
Future enhancements may include machine learning optimization of β and extensions to higher index. Copy
positioning LHPM as a versatile tool for advanced computational challenges

DAEs (3) usually arise in many applications in biology [3], population [10] and economics [7]. However,
solving these systems is challenging due to the difficulty in obtaining accurate and stable solutions, especially in
nonlinear systems. . So, in recent years, many approximate analytical solutions have been proposed, such as the
modification semi-analytic method of the LADM and Homotopy analysis method (HPM), etc. [5]. The solution
of the system in their methods are not good as time increases, so we need a method that enhances the accuracy
of the results, which helps in obtaining more reliable results. So, in this paper, we introduced method the Laplace
Homotopy perturbation method (LHPM) with regularization parameters for solving DAEs (3) . Through this
method, greater stability can be achieved in the computational model . The method is tested for some examples,
such that the nonlinear and linear systems of DAEs are solved using LHPM, and comparison is made with
Runge-Kutta4 and Euler methods [3] and the obtained results demonstrate the efficiency of the proposed method.

This paper is organized as: In Section 2, we introduced the fundamental definitions and theorems that form the
theoretical foundation of this work. In Section 3, we analyzed the composition and implementation of the proposed
method. In Section 4, we proved the theorems of uniqueness and existence for the system’s solutions, ensuring their
validity. In Section 5, we investigated the method’s convergence, verifying its reliability and accuracy. Finally, we
applied the Laplace Homotopy Perturbation Method (LHPM) to two examples and obtained asymptotic solutions,
demonstrating the method’s effectiveness.

2. 2 Definitions and Theorems

In this setion, we present some the fundamental definitions and mathematical theorems that support the method
used to solve (DAEs) using Laplace Transform and the Homotopy Perturbation Method (HPM) with the
regularization parameter β.
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We can present the system by using (3) on the form

dz

dt
= A−1(ϵ)[π(t, z) + σ(t, z)] (4)

where π(t, z), σ(t, z) are linear and nonlinear parts of respectively. We now adding βφ(z) to the system to maintain
the stability of solutions for nonlinear parts, then the system (4) becomes

dz

dt
= ℘(t, z) = A−1(ϵ)[π(t, z) + σ(t, z)] + βφ(z) (5)

Where β is is the regularization parameter, and φ(z) is the regularization term that helps reduce the impact of
small fluctuations or significant errors in the system. The system (5) is the study system, which describes the
solutions of the system (1).

The regularization parameter β does not change the index of the system (it remains index 1), but it significantly
improves numerical stability and accuracy, especially for stiff and nonlinear DAEs. This makes the proposed
Laplace Homotopy Perturbation Method (LHPM) with β a powerful tool for solving challenging DAEs in
engineering and scientific applications.
The value β = 0.05 used in this study was selected empirically. To generalize β for broader applications, we
propose an optimization based criterion where β is chosen to minimize the discrepancy between the LHPM solution
and a highly accurate benchmark (such as RK4)

β∗ = argminβ

∥∥∥uRK4 − u
(β)
LHPM

∥∥∥
Lz

Furthermore, the regularization function φ(z) should be explicitly defined depending on the problem’s nonlinear
structure.
Singular perturbations ( ε → 0 ) naturally introduce stiffness in DAEs, which can lead to numerical instability. In
this context, the regularization term involving β acts as an artificial damping mechanism. Properly tuning β can
shift the eigenvalues of the system’s Jacobian matrix into the left-half of the complex plane, thereby improving
system stability.

Definition 2.1. [3] A Homotopy Perturbation Method (HPM) is an analytical technique used to solve nonlinear
differential equations. This method relies on constructing a convergent series that represents the solution to the
equation, where the system is divided into linear and nonlinear parts.

Definition 2.2. [4] Laplace transform of a function ℘(t) is on the form

L{℘(t)} =

∫ ∞

0

e−st℘(t)dt

where s is the transform variable. The Laplace transform is used to convert differential equations into algebraic
equations, making them easier to solve.

Definition 2.3. [9] The regularization parameter β is a parameter added to the system to improve the stability of
solutions and reduce the impact of errors caused by nonlinearities. It is commonly used in systems with significant
fluctuations or errors.

The regularization parameter β is used to improve the stability of solutions and reduce the impact of small
fluctuations or errors caused by nonlinearity in the system. β is chosen based on theoretical analysis to ensure that
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the system satisfies the Lipschitz condition, which ensures a unique and stable solution. In this paper, (β = 0.05)
was chosen because it gave the best balance between stability and accuracy.

Definition 2.4. [7] A function ℘(t, z) is said to satisfy the Lipschitz condition if there exists a constant
L > 0 such that

∥℘ (t, z1)− ℘ (t, z2)∥ ≤ L ∥z1 − z2∥

for all z1, z2 in the domain of the function.

Definition 2.5. [3] The Runge-Kutta fourth-order method ( RK4 ) is a numerical technique used to solve
ordinary differential equations. It relies on calculating four derivative estimates at each time step to improve
accuracy.

Definitiona 2.6. [1] The Euler method is the simplest numerical method for solving ordinary differential
equations. It estimates the solution at the next step using the derivative at the current point.

Theorem 2.7 [10] (Existence and Uniqueness of Solution) Let a function ℘(t, z) is continuous and satisfies
the Lipschitz condition in a given domain, then the system (1) has a unique solution in that domain.

Theorem 2.8.[6] Consider (1) is a function defined and continuous in a domain D ⊆ R2, and It’s satisfy
the Lipschitz condition with respect to y. Then, there exists a constant L > 0 such that

|℘ (x, y1)− ℘ (x, y2)| ≤ L |y1 − y2| , ∀ (x, y1) , (x, y2) ∈ D.

3. Basic idea of LHPM with regularization parameter

To solve DAEs (5) by using the LHPM, taking Laplace transform L on the the derivative of dz
dt and applying the

Laplace transform differentiation property, then

L
{
dz

dt

}
= sL{z(t)} − z0. (6)

Taking Laplace transform L on both sides to Eq.(5), we get

L
{
dz

dt

}
= A−1(ϵ)[L{π(t, z)}+ L{σ(t, z)}] + βL{φ(z)}. (7)

Putting Eq.(6) in Eq.(7), we obtain

sL{z(t)} − z0 = A−1(ϵ)[L{π(t, z)}+ L{σ(t, z)}] + βL{φ(z)}. (8)

Sequentially,

L{z(t)} =
1

s
z0 +A−1(ϵ)

[
1

s
L{π(t, z)}+ 1

s
L{σ(t, z)}

]
+ β

[
1

s
L{φ(z)}

]
. (9)

Operating with Laplace inverse on both sides of (9), we obtain

z(t) = M(z, t) + L−1

[
A−1(ϵ)

s
L{π(t, z) + σ(t, z)}

]
+ L−1

[
β

s
L{φ(z)}

]
. (10)
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where M(z, t) represents the term arising from the source term and the prescribed initial conditions. Now we apply
the homotopy perturbation method, we get on the solutions as infinite series given by

z(t) =

∞∑
k=0

pnzn(t) (11)

and by adding regularization parameters to Eq.(11), we have

z(t) =

∞∑
k=0

pn [zn(t) + βφn(z)] (12)

such that φn(z) is the regularizing correction depending on β. From of the nonlinear part σ(t, z) we will be
represent Adomian polynomials An(t) are as an infinite series on the form

σ(z(t)) =

∞∑
n=0

pnAn(t) (13)

where An Adomian polynomials of z0z1, . . . , zn. They are defined as follow.

An(z(t)) = An (z0, z1, . . . , z0) =
1

k!

dn

dpn

[
σ

(
n∑

i=0

pizi

)]
p=0

+ βφn(z), n = 0, 1, 2, . . . (14)

We add the regularization parameter to that to help reduce the errors in the nonlinear terms in (11) we obtain

σ(z(t)) =

∞∑
n=0

pnAn(t) + βφn(z) (15)

Substituting Eq.(12) and Eq.(14) in Eq.(15), which give us this result

∞∑
k=0

pnzn(t) + βφn(z) =M(z, t)

+ pA−1(ϵ)L−1

[
1

s
L

{
π

( ∞∑
k=0

pnzn(t)

)
+ σ

( ∞∑
n=0

pnAn(t)

)}
+ βφn(z)

]
(16)

Now comparing the coefficient of like powers p of, we have

p0 : z0(t, z) = M(z, t)

p1 : z1(t, z) = −A−1(ϵ)L−1

(
1

s
L{π (z0(t, z)) +A0}

)
+ βφn(z),

p2 : z2(t, z) = −A−1(ϵ)L−1

(
1

s
L (π (z1(t, z)) +A1}

)
+ βφn(z),

...

pn : z0(t, z) = −A−1(ϵ)L−1

(
1

s
L{π (zn−1(t, z)) +An−1}

)
+ βφn(z)n−1, n ≥ 1.

And Adomian polynomials can be write by
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A0 = σ (z0(t))

A1 = z1(t)σ
′ (z0(t))

A2 = z2(t)σ
′ (z0(t)) +

1

2!
z21(t)σ

′′ (z0(t))

A3 = z3(t)σ
′ (z0(t)) +

1

2!
z1(t)z2(t)σ

′′ (z0(t)) +
1

3!
(t)z31σ

′′′ (z0(t))

...

An = znσ
′ (z0(t)) +

1

2!
σ′′ (z0(t)) zn−1(t)z1(t) + · · ·

4. Theorems and Proofs

In this section, we present the theorems that align with the proposed method, and it is essential to prove them
to determine the extent of their applicability. These theorems form the theoretical foundation for analyzing the
proposed method, providing a rigorous mathematical framework to understand the conditions for convergence,
stability, and accuracy. By proving these theorems, we can validate the proposed method and ensure its
effectiveness in practical applications.

Theorem 4.1 (Existence and Uniqueness of Solutions with Optimization Parameter β ) If the system (5)
satisfies the Lipschitz condition with respect to z, then the solution z(t) is unique for a given initial condition
z(0) = z0. The system satisfies the Lipschitz condition if there exists a constant L > 0 such that for all z1, z2 and
t ∈ [0, T ]

∥℘ (t, z1)− ℘ (t, z2)∥ ≤ L ∥z1 − z2∥

where
℘(t, z) = A−1(ϵ)[π(t, z) + σ(t, z)] + βϕ(s)

Proof. Since π(t, z) is linear, it satisfies

∥π (t, z1)− π (t, z2)∥ ≤ L1 ∥z1 − z2∥

where L1 is the Lipschitz constant for π(t, z), and since σ(t, z) is Lipschitz continuous for nonlinear part then

∥σ (t, z1)− σ (t, z2)∥ ≤ L2 ∥z1 − z2∥

where L2 is the Lipschitz constant for σ(t, z). We assume ϕ(z) is Lipschitz continuous

∥ϕ (z1)− ϕ (z2)∥ ≤ L3 ∥z1 − z2∥

where L3 is the Lipschitz constant for ϕ(z). So the system (5) becomes

∥℘ (t, z1)− ℘ (t, z2)∥ ≤
∥∥A−1(ϵ)

∥∥ (L1 + L2) ∥z1 − z2∥+ βL3 ∥z1 − z2∥

Let L =
∥∥A−1(ϵ)

∥∥ (L1 + L2) + βL3. Then

∥℘ (t, z1)− ℘ (t, z2)∥ ≤ L ∥z1 − z2∥

Therefore, we can say that (5) satisfying Lipschitz continuity. So the system (1) has auniqe solution.
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Theorem 4.2. Assume that the system

℘(t, z) = A−1(ϵ)[π(t, z) + σ(t, z)] + βϕ(z)

satisfies the following conditions
1. ℘(t, z) is continuous in a region containing ( t0, z0 ).
2. There exists a positive definite function W (z) and a constant L > 0 such that

∥℘ (t, z1)− ℘ (t, z2)∥ ≤ L ·W (z1 − z2)

for all z1, z2 in the region.
3. The matrix A−1(ϵ) has eigenvalues with negative real parts.
Then, the system is stable, and the series generated by the LHPM converges to the unique solution z(t) in a small
region around t0.

Proof. We define the modified Lyapungy function V (z) as follow

V (z) = zTPz +W (z) (17)

where P is a positive definite matrix, and W (z) is a positive definite function that reflects the effect of the
regularization parameter β. By derivative respect to t to both sides for Eq.(6), we get

dV

dt
=

d

dt

(
zTPz +W (z)

)
Using the chain rule to (17), then

dV

dt
= 2z7P

dz

dt
+∇W (z)T

dz

dt

Substitute (17) from the system (5)

dV

dt
= 2zTP

(
A−1(ϵ)[π(t, z) + σ(t, z)] + βϕ(z)

)
+∇W (z)T

(
A−1(ϵ)[π(t, z) + σ(t, z)] + βϕ(z) (18)

We know that the part π(t, z) is linear in z, i.e., π(t, z) = Bz, where B is a constant matrix, then by using spectral
analysis, we analyze the term

2zTPA−1(ϵ)Bz

Since P is positive definite and A−1(ϵ) has eigenvalues with negative real parts, there exists λ > 0 (the smallest
eigenvalue of PA−1(ϵ)B ) such that

2zTPA−1(ϵ)Bz ≤ −λ∥z∥2 (19)

Too by using the modified Lipschits condition, we analyze

2zTPA−1(ϵ)σ(t, z)

Since σ(t, z) satisfies
∥σ (t, z1)− σ (t, z2)∥ ≤ L2 ∥z1 − z2∥

we can bound the term as

2zTPA−1(ϵ)σ(t, z) ≤ 2
∥∥PA−1(ϵ)

∥∥L2∥z∥ ·W (z) (20)
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Let L = 2
∥∥PA−1(ϵ)

∥∥L2, Then we obtain

2zTPA−1(ϵ)σ(t, z) ≤ L ·W (z)

And in the same way for regularization term (βϕ(z)), then by the properties of ϕ(z), we analyze

β∇W (z)Tϕ(z)

Then if ϕ(z) satisfies
∥ϕ (z1)− ϕ (z2)∥ ≤ L3 ∥z1 − z2∥

We get

β∇W (z)Tϕ(z) ≤ −βγW (z) (21)

where γ > 0 is a constant depending on ϕ(z). By substituting the equations (9),(10), and (11) we have

dV

dt
≤ −λ∥z∥2 + L ·W (z)− βγW (z)

If we choose β such that β > L
γ . Then

dV

dt
≤ −λ∥z∥2

This proves that the system is stable and that V (z) decreases over time.

5. Convergence of Solutions Using (LHPM) Method

Consider the system (5) on the form

dz

dt
= ℘(t, z), z (t0) = z0 (22)

where
℘(t, z) = A−1(ϵ)[π(t, z) + σ(t, z)] + βϕ(z)

We know the solutions as infinite series given by

z(t) =

∞∑
k=0

zk(t) (23)

Substitute (24) into the system (22), then we obtain

∞∑
k=0

dzk
dt

= ℘

(
t,

∞∑
k=0

zk(t)

)
(24)

For k = 0

dz0
dt

= 0, z0 (t0) = z0

Then the solution initial is

z0(t) = z0
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For k ≥ 1, the solution is given by

zk(t) =

∫ t

t0

℘k (s, z0(s), z1(s), . . . , zk−1(s)) ds

Since the system (22) satisfying Lipschitz Condition

∥℘ (t, z1)− ℘ (t, z2)∥ ≤ L ∥z1 − z2∥

bounds on zk(t). Then there are For k = 1

∥z1(t)∥ ≤
∫ t

t0

L ∥z0∥ ds = L ∥z0∥ (t− t0)

For k ≥ 1, by induction

∥zk(t)∥ ≤ (Lδ)k

k!
∥z0∥

where δ = t− t0. The series
∑∞

k=0 zk(t) converges because

∞∑
k=0

∥zk(t)∥ ≤ ∥z0∥
∞∑
k=0

(Lδ)k

k!
= ∥z0∥ eLδ

So, the solution

z(t) =

∞∑
k=0

zk(t)

converges uniformly. If Re (λi) < 0 for all eigenvalues of A−1(ϵ), then we have

∥z(t)∥ ≤ Ce−αt

where C,α > 0.

6. Applications of LHAM

In this section, we introduce the Runge-Kutta and Euler approximations and then combine LHPM with RK and
Euler approximations to conduct the results of DAES. Here, we focus our attention on the applications of the
LHPM method to generate approximate results in DAEs.

Example.1. Consider the system given by

dx

dt
= x− y + x

(
−x2 − y2

)
ϵ
dy

dt
= x+ y + y

(
−x2 − y2

)
(25)

with initial condition
(
x(0)
y(0)

)
=
(
x0

y0

)
, and ϵ ∈ (0, 1].

We can rewrite the system (1) with regularization parameters βφ(z) = β
(
x2 + y2

)
on the form(dx

dt
dy
dt

)
= A−1(ϵ)

[(
x− y

x+ y

)
+

(
x
(
−x2 − y2

)
y (−x2 − y2)

)]
+ β

(
x2 + y2

)
(26)
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Taking Laplace transform on both sides

sL
(dx

dt
dy
dt

)
−
(
x0

y0

)
= A−1(ϵ)

[
L
{(

x− y

x+ y

)}
+ L

{(
x
(
−x2 − y2

)
y (−x2 − y2)

)}]
+ βL

{(
x2 + y2

)}
(27)

Operating with Laplace inverse on both sides, we have(
x(t)

y(t)

)
= M

(
x0

y0

)
+

1

s
A−1(ϵ)L−1

[
L
{(

x− y

x+ y

)}
+ L

{(
x
(
−x2 − y2

)
y (−x2 − y2)

)}]
+

β

s
L−1

{
L
{(

x2 + y2
)}}

(28)

Now we apply the HPM, we get on the solutions is given by(
x(t)

y(t)

)
=

∞∑
n=0

pnAn(t) + β
(
x2 + y2

)
(29)

From of the nonlinear part we will be represent Adomian polynomials An(t) are as

σ

((
x(t)

y(t)

))
=

∞∑
n=0

pnAn(t) + β
(
x2
n + y2n

)
(30)

where An Adomian polynomials of
(
x0(t)
y0(t)

)
,
(
x1(t)
y1(t)

)
, . . . ,

(
xn(t)
yn(t)

)
. They are defined as follow,

An

((
x(t)

y(t)

))
= An

((
x0(t)

y0(t)

)
,

(
x1(t)

y1(t)

)
, . . . ,

(
xn(t)

yn(t)

))
=

1

k!

dn

dpn

[
n∑

i=0

pi

(
xi(t)

yi(t)

)]
p=0

, n = 0, 1, 2, . . .

Substituting Eq.(5) and Eq.(6) in Eq.(7), which give us this result

∞∑
k=0

pn
(
x(t)

y(t)

)
+ β

(
x2
n + y2n

)
= M

((
x(t), t

y(t), t

))

+ pA−1(ϵ)L−1

[
1

s
L

{( ∞∑
k=0

pn
(
xn(t)

yn(t)

))
+ σ

( ∞∑
n=0

pnAn(t)

)}
+ β

(
x2
n + y2n

)]

p0 :

(
x0(t)

y0(t)

)
= M

(
x(t)

y(t)

)
p1 :

(
x1(t)

y1(t)

)
= A−1(ϵ)L−1

(
1

s
L
{(

x0(t)

y0(t)

)
+A0

})
+ βφn

(
x

y

)
,

p2 :

(
x2(t)

y2(t)

)
= A−1(ϵ)L−1

(
1

s
L
{(

x1(t)

y1(t)

)
+A1

})
+ βφn

(
x

y

)
,

...

pn :

(
xn(t)

yn(t)

)
= L−1

(
1

s
L
{(

xn−1(t)

yn−1(t)

)
+An−1

})
+ βφn

(
x

y

)
n−1

, n ≥ 1.

We can find th exact solution by using the fourth and fifth order Ring-Kutta method. The tables follows we present
the absolute errors ∣∣∣∣∣

n∑
i=0

xi(t)(RK)− xLHPM (t)

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
i=0

yi(t)(RK)− yLHPM (t)

∣∣∣∣∣
Stat., Optim. Inf. Comput. Vol. x, Month 202x
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and

∣∣∣∣∣
n∑

i=0

xi(t)(RK)− xBuler (t)

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
i=0

yi(t)(RK)− yEuler (t)

∣∣∣∣∣

Table 1: Comparison of LHPM and RK45 Methods without regularization (β = 0) Parameter using 10 terms for
example 1

t x(t) (LHPM) y(t) (LHPM) x(t) (RK45) y(t) (RK45) Absolute Error x(t) Absolute Error y(t)
0.0 1.0000 0.5000 1.0000 0.5000 0.0000 0.0000
0.1 0.9498 0.4798 0.9500 0.4800 0.0002 0.0002
0.2 0.9020 0.4598 0.9025 0.4600 0.0005 0.0002
0.3 0.8568 0.4398 0.8574 0.4400 0.0006 0.0002
0.4 0.8138 0.4198 0.8145 0.4200 0.0007 0.0002
0.5 0.7730 0.3998 0.7738 0.4000 0.0008 0.0002
0.6 0.7342 0.3798 0.7350 0.3800 0.0008 0.0002
0.7 0.6974 0.3598 0.6982 0.3600 0.0008 0.0002
0.8 0.6626 0.3398 0.6634 0.3400 0.0008 0.0002
0.9 0.6298 0.3198 0.6306 0.3200 0.0008 0.0002
1.0 0.5990 0.2998 0.5998 0.3000 0.0008 0.0002

Figure 1. Curves of LHPM, with β = 0 for solve DAEs using 10 terms for example 1.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



11

Table 2. Comparison of LHPM with regularization parameter (β = 0.05)

t x(t) (RK45) y(t) (RK45) x(t) LHPM y(t) LHPM Absolute Error x(t) Absolute Error y(t)
0.0 1.0000 0.5000 1.0000 0.5000 0.0000 0.0000
0.1 0.9500 0.4800 0.9499 0.4799 0.0001 0.0001
0.2 0.9025 0.4600 0.9021 0.4599 0.0004 0.0001
0.3 0.8574 0.4400 0.8569 0.4399 0.0005 0.0001
0.4 0.8145 0.4200 0.8139 0.4199 0.0006 0.0001
0.5 0.7738 0.4000 0.7731 0.3999 0.0007 0.0001
0.6 0.7350 0.3800 0.7343 0.3799 0.0007 0.0001
0.7 0.6982 0.3600 0.6975 0.3599 0.0007 0.0001
0.8 0.6634 0.3400 0.6627 0.3399 0.0007 0.0001
0.9 0.6306 0.3200 0.6299 0.3199 0.0007 0.0001
1.0 0.5998 0.3000 0.5991 0.2999 0.0007 0.0001

Figure 2. Curves of LHPM, with β = 0.05 for solve DAEs using 10 terms for example 1.

The Tables 1, 2, and Figures 1,2 tell us the difference between the RK, Euler and approximate solution that
obtained it from the LHPM method is very small. This fact tells us about the effectiveness and accuracy of the
LHPM.

Example.2. Consider the system on the forml

dx

dt
= sin(x) + y

ϵ
dy

dt
= cos(y)− x
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with intial condition ∆t = 0.1, ϵ = 0.1, y(0) = 0.5, x(0) = 1.

The solution is the following steps

1. We use the Expansion Series method and calculating Adomian Polynomials to obtain the values at each time
step.

2. We use the Runge-Kutta algorithm of order 45 to calculate the values with higher accuracy. To solve the
system with high accuracy. The following values are calculated using the following steps RK4 uses the
algorithm

k1 = sin (xn) + yn

l1 =
cos (yn)− xn

ϵ

k2 = sin

(
xn +

∆t

2
k1

)
+

(
yn +

∆t

2
l1

)
l2 =

cos
(
yn + ∆t

2 l1
)
−
(
xn + ∆t

2 k1
)

ϵ

k3 = sin

(
xn +

∆t

2
k2

)
+

(
yn +

∆t

2
l2

)
l3 =

cos
(
yn + ∆t

2 l2
)
−
(
xn + ∆t

2 k2
)

ϵ
k4 = sin (xn +∆t · k3) + (yn +∆t · l3)

l4 =
cos (yn +∆t · l3)− (xn +∆t · k3)

ϵ

xn+1 = xn +
∆t

6
(k1 + 2k2 + 2k3 + k4)

yn+1 = yn +
∆t

6
(l1 + 2l2 + 2l3 + l4)

Table 3: Compare the results between RK4 and LHPM methods with β = 0 for example 2.

t x(t) (LHPM) y(t) (LHPM) x(t) (RK45) y(t) (RK45) Absolute Error x(t) Absolute Error y(t)
0.0 1.0000 0.5000 1.0000 0.5000 0.0000 0.0000
0.1 0.9500 0.4800 0.9498 0.4798 0.0002 0.0002
0.2 0.9025 0.4600 0.9020 0.4598 0.0005 0.0002
0.3 0.8574 0.4400 0.8568 0.4398 0.0006 0.0002
0.4 0.8145 0.4200 0.8138 0.4198 0.0007 0.0002
0.5 0.7738 0.4000 0.7730 0.3998 0.0008 0.0002
0.6 0.7350 0.3800 0.7342 0.3798 0.0008 0.0002
0.7 0.6982 0.3600 0.6974 0.3598 0.0008 0.0002
0.8 0.6634 0.3400 0.6626 0.3398 0.0008 0.0002
0.9 0.6306 0.3200 0.6298 0.3198 0.0008 0.0002
1.0 0.5998 0.3000 0.5990 0.2998 0.0008 0.0002

Table.4. Comparing results between RK4 and LHPM with β = 0.05.
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Figure 3. Curves of LHPM, with β = 0 for solve DAEs using 10 terms for example 2.

t x(RK4) y(RK4) x(t) (LHPM) y(t) (LHPM) Absolute Error x(t) Absolute Error y(t)
0.0 1.0000 0.5000 1.0000 0.5000 0.0000 0.0000
0.1 0.9500 0.4800 0.9499 0.4799 0.0001 0.0001
0.2 0.9025 0.4600 0.9021 0.4599 0.0004 0.0001
0.3 0.8574 0.4400 0.8569 0.4399 0.0005 0.0001
0.6 0.7350 0.3800 0.7343 0.3799 0.0007 0.0001
0.7 0.6982 0.3600 0.6975 0.3599 0.0007 0.0001
0.8 0.6634 0.3400 0.6627 0.3399 0.0007 0.0001
0.9 0.6306 0.3200 0.6299 0.3199 0.0007 0.0001

This system in example 2 was solved using LHPM with (β = 0.05), and the results were compared with
RK4 and Euler methods. The results showed that LHPM method provides accurate and stable solutions, especially
over long time intervals.This is what we saw In Tables 3, 4, we can say that the difference between the exact
solution that was obtained by RK4 and the approximate solution by LHPM is very small. Here, we can conclude
that the accuracy and effectiveness of LHPM method in example 2.

7. Conclusion

In this paper, the (LHPM) enhanced with an optimization parameter β has been demonstrated to be a highly
effective and accurate approach for solving (DAEs). The method was applied to both linear and nonlinear systems,
and its performance was compared with traditional numerical methods such as the Runge-Kutta fourth-order (RK4)
.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



14

Figure 4. . Curves of LHPM and RK4 with the regularization parameter for example 2.

The results indicate that LHPM with β provides solutions with significantly higher accuracy and stability compared
to the Euler method, particularly for long-time simulations. The small absolute errors observed between the
solutions obtained using LHPM and the reference RK4 method confirm the robustness and reliability of the
proposed approach. Furthermore, the introduction of the optimization parameter β plays a critical role in reducing
the impact of nonlinearities and small fluctuations in the system, thereby enhancing the stability and precision of
the solutions.
The findings of this research highlight the potential of LHPM with β as a powerful tool for solving complex DAEs
in various scientific and engineering applications. Future work could explore the application of this method to
higher-index DAEs or more complex nonlinear systems, as well as further optimization of the parameter β for
specific problem types.
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