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Abstract We address the sparse tensor train (TT) decomposition problem by incorporating an L1-norm regularization
term. To improve numerical stability, orthogonality constraints are imposed on the problem. The tensor is expressed
in the TT format, and the proximal alternating linearized minimization (PALM) algorithm is employed to solve the
problem. Furthermore, we verify that the objective function qualifies as a Kurdyka-Łojasiewicz (KL) function and provide a
convergence analysis. Numerical experiments on synthetic data and real data also demonstrate the efficiency of the proposed
algorithm.
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1. Introduction

Tensors, which are multidimensional arrays, are extensively utilized in fields such as computer vision [23],
signal processing [25], and data mining [9]. There exist several tensor decomposition formats, including CP
decomposition [17], Tucker decomposition [22], and TT decomposition [15]. Among these, TT decomposition
offers the advantages of linear growth in storage complexity with respect to dimension and enhanced reliability,
making it particularly suitable for high-order problems. In 2011, Oseledets proposed the TT decomposition, which
represents a tensor as a sequence of third-order tensors. Subsequently, Zhang et al. [30] and Bigoni et al. [7] further
developed the TT decomposition. There are different algorithms for computing TT decomposition including TT-
SVD, TT-ALS, and so on [28].

It is noteworthy that in many problems, both sparsity constraints and orthogonality constraints play significant
roles. Sparsity constraints facilitate feature extraction. For example, in signal transmission where we aim to
reconstruct received signals into original signals, since the original signal contains a large number of zero elements,
we can impose sparsity constraints on variables to derive useful solutions. This constitutes a compressed sensing
problem [8]. Similarly, in video processing where one seeks to extract static components from video footage,
by considering dynamic parts as noise, we can decompose the video information matrix into the sum of a low-
rank matrix and a noise matrix, requiring the noise matrix to be sparse. This represents a Robust Principal
Component Analysis (RPCA) problem [10][13, Section3.8]. Orthogonal constraints contribute to enhancing feature
independence and improving numerical stability. For instance, in Principal Component Analysis (PCA), where
we aim to find the projection of high-dimensional data points onto a low-dimensional subspace, requiring the
bases of this low-dimensional subspace to be orthogonal helps reduce redundant information in the data and

∗Correspondence to: Zhongming Chen (Email: zmchen@hdu.edu.cn). Department of Mathematics, School of Sciences, Hangzhou Dianzi
University, Hangzhou 310018, China.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2025 International Academic Press



ZHENLONG HU AND ZHONGMING CHEN 1

enhances feature independence [14]. Compared with Non-negative Matrix Factorization (NMF), Orthogonal Non-
negative Matrix Factorization (ONMF) demonstrates improved clustering performance through such orthogonal
constraints [26]. In addition, significant constraints such as non-negative constraints are also crucial. Naturally,
these constraints have been incorporated into fundamental tensor decomposition models. For instance, in terms
of non-negativity constraints, Max Welling et al. (2001) introduced positivity constraints into tensor factorization
[24]. Subsequently, Y. D. Kim et al. (2007) incorporated non-negativity constraints into the Tucker decomposition
model, significantly improving the interpretability of the resulting factors [27]. Regarding sparsity constraints, C.
Pan and C. Ling et al. (2020) imposed sparse constraints on a Tucker decomposition-based tensor completion
model to promote sparse core tensor generation [6]. In 2022, H. Kuang enhanced image recognition accuracy by
integrating sparsity constraints into a non-negative TT decomposition framework [12]. Additionally, to address the
non-uniqueness inherent in certain tensor decompositions, L. De Lathauwer et al. (2004) introduced orthogonal
constraints into tensor decomposition models to improve numerical stability [21]. However, the existing TT
decomposition models do not account for the sparsity and orthogonality of TT tensors.

In this paper, we consider the tensor decomposition problem in the TT format. Similar with NMF for the task
of image recognition, we can consider the first d− 1 TT-cores as a set of bases for the recognition space, and treat
the last TT-core as the representation vector of objects under these bases. To achieve better feature selection (e.g.,
highlighting eye and nose information in images), we desire this representation vector to be sparse. Therefore,
we choose to impose sparsity constraints on the last TT-core. Furthermore, due to the non-uniqueness of the
TT decomposition [3], we impose orthogonality constraints on the other TT-cores to enhance numerical stability,
referring to the case of Tucker decomposition [28, Section 2.3]. Additionally, there is another reason for applying
orthogonal constraints to the other TT-cores: when performing object classification, we want the bases of the
recognition space we select to be orthogonal to reduce redundant information in the data. This can be referenced
to the case in PCA [14]. Specifically, the model considered in this paper is as follows:

min
1

2
∥Φ(X1, ...,Xd)− Γ∥2F + µ∥Xd∥1

s.t. LT (Xj)L(Xj) = Irj , j ∈ [d− 1],

X1 ∈ Rr0×n1×r1 , ...,Xd ∈ Rrd−1×nd×rd ,

(1.1)

where Γ∈Rn1×n2×···×nd is the target tensor, µ ∈ R is the regularization parameter. The operator Φ(·) maps the
TT-cores to a tensor and L(·) denotes the left unfolding of a third-order tensor, which will be introduced in the
following subsections.

For this type of optimization problem with a block-separable structure, the PALM algorithm proposed by Jérôme
Bolte et al. is an effective algorithm [16]. The PALM algorithm selects one block in a cyclic manner and solves the
corresponding subproblem by approximating the differentiable term f with a first-order estimate. In this paper, we
apply the PALM algorithm to solve the problem (1.1). The numerical experiments are also presented to show the
efficiency of the propsoed algorithm.

1.1. Contributions

The main contributions of this paper are as follows:

• A new model for TT decomposition with orthogonal constraints and sparse constraints is proposed, and the
PALM algorithm is utilized for solving it.

• Based on the objective function being a KL function, we present a convergence analysis.

1.2. Notation

Throughout this paper, scalars are denoted by lower case letters e.g. a, b, c; vectors are represented by bold lower
case letters e.g. a, b, c; matrices are indicated by capital letters, e.g. A,B,C; tensors of order 3 or higher are
expressed by calligraphic letters e.g. A, B, C. The Kronecker product is denoted as ⊗. For any positive integer
n, denote [n] = {1, 2, . . . , n} and let In be the identity matrix of size n× n. We use the multi-index i1i2 · · · id to
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2 PALM ALGORITHM FOR SPARSE TENSOR TRAIN DECOMPOSITION

denote the element in
[∏d

k=1 nk

]
such that

i1i2 · · · id = i1 + (i2 − 1)n1 + · · ·+ (id − 1)n1 · · ·nd−1

for any ij ∈ [nj ] and j ∈ [d].
For any 3rd-order tensor A ∈ Rn1×n2×n3 , the ith slice of A is denoted by A(i) ∈ Rn1×n3 for i ∈ [n2], the left

unfolding L(A) ∈ Rn1n2×n3 is defined as L(A)(i1i2, i3) = A(i1, i2, i3) and the right unfolding R(A) ∈ Rn1×n2n3

is defined as R(A)(i1, i2i3) = A(i1, i2, i3). Denoted by L−1(·) the inverse operation of L(·) [18]. For any tensor
A ∈ Rn1×n2×···×nd , the kth unfolding matrix A⟨k⟩ ∈ Rn1···nk×nk+1···nd is defined as

A⟨k⟩(i1 · · · ik, ik+1 · · · id) = A(i1, i2, . . . , id)

where k ∈ [d]. For any two tensors A,B ∈ Rn1×n2×···×nd , the inner product is defined as

⟨A,B⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

A(i1, i2, . . . , id)B(i1, i2, . . . , id).

The L1-norm of A ∈ Rn1×n2×···×nd is defined as

∥A∥1 =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

|A(i1, i2, . . . , id)|,

and the Fobenius norm of A is defined as ∥A∥F =
√

⟨A,A⟩.
For any matrix A ∈ Rm×n, the matrix [A]+ ∈ Rm×n is the nonnegative part of A defined as

[A]+(i, j) = max(A(i, j), 0),

the matrix |A| ∈ Rm×n is the component-wise absolute values of A defined as

|A|(i, j) = |A(i, j)|,

and the matrix sgn(A) ∈ Rm×n is the component-wise sign function of A defined as

sgn(A)(i, j) =


1, A(i, j) > 0,

0, A(i, j) = 0,

−1, A(i, j) < 0.

For two matrices A,B ∈ Rm×n, the Hadamard product A⊙B ∈ Rm×n is defined as

(A⊙B)(i, j) = A(i, j)B(i, j).

The notations above are summarized in Table 1.

1.3. Organization

The organization of this paper is as follows. In Section 2, we introduce some preliminaries. The PALM algorithm
for solving problem (3.1) is proposed in Section 3, and the convergence analysis is presented in Section 4. In
Section 5, we evaluate the algorithm’s performance on both synthetic data and real facial dataset. Finally, the
conclusions are drawn in Section 6.
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Table 1. Description of notations.

Notation Meaning
a Scalar
a Vector
A Matrix
A dth-order tensor (d ≥ 3)

[n] The set {1, 2, . . . , n}
⊗ Kronecker product
In Identity matrix of size n× n

A(i) The ith slice of 3rd-order tensor A
L(A) The left unfolding of 3rd-order tensor A
R(A) The right unfolding of 3rd-order tensor A
L−1(·) The inverse operation of L(·)
A⟨k⟩ The kth unfolding matrix of tensor A
∥·∥1 L1-norm
∥·∥F Frobenius norm
[A]+ The nonnegative part of matrix A

|A| The component-wise absolute values of matrix A

sgn(A) The component-wise sign function of matrix A

A⊙B The Hadamard product of matrices A and B

2. Preliminaries

2.1. TT Decomposition

For any X ∈ Rn1×n2×···×nd , the TT decomposition factorizes X into a series of third-order tensors {X1, ...,Xd}
such that

X (i1, i2, . . . , id) = X1(i1)X2(i2) · · · Xd(id), (2.1)

where Xk ∈ Rrk−1×nk×rk , k ∈ [d] are called TT-cores. To make the matrix-by-matrix product a scalar, we assume
r0 = rd = 1. The tensor X is also denoted by

X = Φ(X1,X2, ...,Xd), (2.2)

where the notation Φ maps a series of third-order tensors (X1,X2, ...,Xd) to X through the product defined in
(2.1). The TT-rank of X is defined as the smallest r = (r0, r1, . . . , rd) that allows a TT decomposition with
core tensors Xk ∈ Rrk−1×nk×rk for k ∈ [d]. It has been shown that the TT-rank of X is equal to r if and only
if rank(L(Xk)) = rk and rank(R(Xk)) = rk−1 for k ∈ [d] [18].

The interface matrices X≤k ∈ Rn1···nk×rk and X≥k ∈ Rnk···nd×rk−1 are defined as

X≤k = reshape(Φ(X1, ...,Xk),

k∏
i=1

ni, rk)

and

X≥k =

(
reshape(Φ(Xk, ...,Xd), rk−1,

d∏
i=k

ni)

)T

for k ∈ [d], where the reshape function rearranges the elements in the input tensor into a tensor with specified
shape. Denote X≤0 = X≥d+1 = 1.
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4 PALM ALGORITHM FOR SPARSE TENSOR TRAIN DECOMPOSITION

According to the definitions of X≤k and X≥k, we have the following recursive formulas:

X≤k = (Ink
⊗X≤k−1)L(Xk),

X≥k = (X≥k+1 ⊗ Ink
)R(Xk)

T .
(2.3)

By the definition of unfolding matrices, we have

X⟨k⟩ = X≤kX T
≥k+1, ∀ k ∈ [d]. (2.4)

2.2. The KL Property

In this subsection, we give a brief introduction of the KL property which plays a crucial role in the convergence
analysis of the PALM algorithm.

A proper and lower semicontinuous function h : Rd → (0,+∞] is said to have the KL property at x ∈ dom ∂h :=
{y ∈ Rd : ∂h ̸= ∅} if there exists η ∈ (0,+∞], a neighborhood U of x and a continuous concave function
φ : [0, η) → [0,∞) such that

(i) φ(0) = 0;
(ii) φ is C1 on (0, η) and continuous at 0;
(iii) for all s ∈ (0, η), φ

′
> 0;

(iv) for all y ∈ U ∩ {y ∈ Rd : h(x) < h(y) < h(x) + η}, there exists φ
′
(h(y)− h(x))dist(0, ∂h(y)) ≤ 1, where

dist(0, ∂h(y)) = inf{∥z∥ : z ∈ ∂h(y)} and ∂ denotes the subdifferential.
The function h is defined as a KL function if h satisfy the KL property at each point of dom ∂h [16, 20].

3. Model and Algorithm

In this paper, we investigate the problem of sparse TT decomposition, which can be formally expressed as problem
(1.1). This problem aims to decompose a high-order sparse tensor into a sequence of third-order core tensors
while preserving its sparsity structure. Specifically, the sparse TT decomposition problem could be equivalently
formulated as:

min
X1∈Rr0×n1×r1 ,...,Xd∈Rrd−1×nd×rd

F (X1, ...,Xd) = f(X1, ...,Xd) +

d∑
j=1

gj(Xj), (3.1)

where
f(X1, ...,Xd) =

1

2
∥Φ(X1, ...,Xd)− Γ∥2F ,

gj(Xj) = δMj
(Xj), j ∈ [d− 1],

gd(Xd) = µ∥Xd∥1.

(3.2)

The function δMj
: Rrj−1×nj×rj → (∞,+∞] is the indicator function defined by

δMj
(X ) =

{
0, if X ∈ Mj ,

+∞, otherwise,

and the set Mj is defined as Mj := {Xj ∈ Rrj−1×nj×rj : LT (Xj)L(Xj) = Irj} for j ∈ [d− 1].
For problem (3.1), we apply the PALM algorithm which alternates between updating blocks of variables using

proximal operators and linearized approximations to efficiently solve non-convex and non-smooth problems [16].
For simplicity, denote X k = (X k

1 ,X k
2 , . . . ,X k

d ) and

X k,0 = (X k
1 ,X k

2 , . . . ,X k
d ),

X k,1 = (X k+1
1 ,X k

2 , . . . ,X k
d ),

· · ·
X k,d = (X k+1

1 ,X k+1
2 , . . . ,X k+1

d ).
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Clearly, X k,0 = X k and X k,d = X k+1. Denote by ∇jf(X1, . . . ,Xd) the gradient of f with respect to the jth
component Xj when all Xi, i ̸= j, are fixed. Starting with any X 0 ∈ Rr0×n1×r1 × · · · ×Rrd−1×nd×rd , the PALM
algorithm generates a sequence {X k}k∈N via the following successively scheme:

X k+1
j = argmin

Xj∈Rrj−1×nj×rj

⟨∇jf(X k,j−1),Xj −X k
j ⟩+

τkj
2
∥Xj −X k

j ∥2 + gj(Xj) (3.3)

for j ∈ [d], where τkj > τkj and τkj is the Lipschitz modulus of ∇jf(X k,j−1).
Before solving these subproblems, we need to compute the gradient of f and estimate the Lipschitz moduli of

∇f with respect to the jth component Xj , which will be shown in the following lemmas.

Lemma 3.1
Let the function f be defined in (3.2). The gradient of f with respect to the jth component at point (X1, ...,Xd) is

∇jf(X1, ...,Xd) = L−1((Inj
⊗X T

≤j−1)(Φ(X1, ...,Xd)− Γ)⟨j⟩X≥j+1).

Proof
For any ξj ∈ Rrj−1×nj×rj , it is not difficult to see that

lim
t→0

f(X1, ...,Xj + tξj , ...,Xd)− f(X1, ...,Xd)

t

= ⟨Φ(X1, ...,Xd)− Γ,Φ(X1, ..., ξj , ...,Xd)⟩
= ⟨(Φ(X1, ...,Xd)− Γ)⟨j⟩, (Inj

⊗X≤j−1)L(ξj)X T
≥j+1⟩

= ⟨(Inj
⊗X T

≤j−1)(Φ(X1, ...,Xd)− Γ)⟨j⟩X≥j+1, L(ξj)⟩
= ⟨L−1((Inj

⊗X T
≤j−1)(Φ(X1, ...,Xd)− Γ)⟨j⟩X≥j+1), ξj⟩,

where the second equation follows from (2.3) and (2.4). So the conclusion holds.

Lemma 3.2
Let the function f be defined in (3.2). For any fixed Xi ∈ Rri−1×ni×ri , i ̸= j, the partial gradient ∇jf(X1, ...,Xd)
with j ∈ [d] is globally Lipschitz continuous with moduli ∥Inj

⊗X T
≤j−1∥22∥X≥j+1∥2F , that is

∥∇jf(X1, ...,Xj , ...,Xd)−∇jf(X1, ...,X ′
j , ...,Xd)∥F ≤ ∥Inj ⊗X T

≤j−1∥22∥X≥j+1∥2F ∥Xj −X ′
j∥F ,

for any Xj ,X ′
j ∈ Rrj−1×nj×rj .

Proof
For any Xj ,X ′

j ∈ Rrj−1×nj×rj , we have

∥∇jf(X1, ...,Xj , ...,Xd)−∇jf(X1, ...,X ′
j , ...,Xd)∥F

= ∥(Inj
⊗X T

≤j−1)(Φ(X1, ...,Xj , ...,Xd)− Φ(X1, ...,X ′
j , ...,Xd))⟨j⟩X≥j+1∥F

≤ ∥Inj
⊗X T

≤j−1∥2∥(Φ(X1, ...,Xj , ...,Xd)− Φ(X1, ...,X ′
j , ...,Xd))⟨j⟩∥F ∥X≥j+1∥F

= ∥Inj
⊗X T

≤j−1∥2∥(Inj
⊗X≤j−1)L(Xj −X ′

j)X T
≥j+1∥F ∥X≥j+1∥F

≤ ∥Inj
⊗X T

≤j−1∥22∥X≥j+1∥2F ∥Xj −X ′
j∥F ,

which completes the proof.

Corollary 3.1
If X1, . . . ,Xd−1 are left-orthogonal, i.e., Xi ∈ Mi for i ∈ [d− 1], the partial gradient ∇jf(X1, ...,Xd) is ∥Xd∥2F -
Lipschitz for j ∈ [d− 1] and 1-Lipschitz for j = d.
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6 PALM ALGORITHM FOR SPARSE TENSOR TRAIN DECOMPOSITION

Proof
According to [29], the matrix X≤j satisfies X T

≤jX≤j = Inj for j ∈ [d− 1] since X1, . . . ,Xd−1 are left-orthogonal.
It follows that ∥Inj ⊗X T

≤j−1∥2 = 1 for j ∈ [d]. On the other hand, we have ∥X≥j+1∥F = ∥Xd∥F for j ∈ [d− 1]
according to [15]. Combining Lemma 3.2, the conclusion holds immediately.

Remark 3.1
The subsequent convergence analysis requires the Lipschitz modulus of ∇jf(X k,j−1) is larger than 0. In practice,
we avoid this assumption by introducing a safeguard v > 0 and choosing the Lipschitz modulus τkj as

τkj =

{
max{v, ∥X k

d ∥2F }, j ∈ [d− 1],

max{v, 1}, j = d.
(3.4)

The parameter τkj in (3.3) is given by τkj = γjτ
k
j where γj > 1 for j ∈ [d].

In each iteration, we need to solve two types of subproblems. For j ∈ [d− 1], subproblem (3.3) becomes

X k+1
j = argmin

Xj∈Rrj−1×nj×rj

⟨∇jf(X k,j−1),Xj −X k
j ⟩+

τkj
2
∥Xj −X k

j ∥2 + δMj (Xj),

which is equivalent to solving

X k+1
j = argmin

Xj∈Mj

⟨∇jf(X k,j−1),Xj −X k
j ⟩+

τkj
2
∥Xj −X k

j ∥2. (3.5)

For j = d, subproblem (3.3) becomes

X k+1
d = argmin

Xd∈Rrd−1×nd×rd

⟨∇df(X k,d−1),Xd −X k
d ⟩+

τkd
2
∥Xd −X k

d ∥2 + µ∥Xd∥1. (3.6)

For any j ∈ [d], denote by Uj the linear transformation which is given by

Uj(Xj) = (0, ...,0,Xj ,0., ...,0),

where Xj is on the jth block. The PALM algorithm for sparse TT decomposition is summarized in Algorithm 1. In
the following subsections, we will show how to solve subproblems (3.5) and (3.6), respectively.

3.1. Solving subproblem (3.5)

Subroblem (3.5) can be transformed into the following problem:

L(X k+1
j ) = argmin

L(Xj)TL(Xj)=Irj

⟨L(∇jf(X k,j−1)), L(Xj)− L(X k
j )⟩+

τkj
2
∥L(Xj)− L(X k

j )∥2F

= argmin
L(Xj)TL(Xj)=Irj

1

2
∥L(Xj)− L(X k

j − 1

τkj
∇jf(X k,j−1))∥2F .

This is a classic Procrustes rotation problem, which could be solved in closed-form through singular value
decomposition (SVD) [11, Algorithm 6.4.1]. Specifically, let p = min{rj−1nj , rj} and suppose that L(X k

j −
1
τk
j

∇jf(X k,j−1)) = UΣV T is the compact SVD of L(X k
j − 1

τk
j

∇jf(X k,j−1)), where U ∈ Rrj−1nj×p, Σ ∈ Rp×p

and V ∈ Rrj×p. It follows that

UV T = argmin
L(Xj)TL(Xj)=Irj

1

2
∥L(Xj)− L(X k

j − 1

τkj
∇jf(X k,j−1))∥2F .

In other words, L(X k+1
j ) = UV T . The method for solving subproblem (3.5) is presented in Algorithm 2.
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Algorithm 1: PALM algorithm for sparse TT decomposition (STT-PALM)
Input: Initial iterate X 0 = (X 0

1 , ...,X 0
d ) ∈ dom(F ), maximum number of the iteration steps kmax, the

safeguard v > 0,γj > 1 for j ∈ [d]
for k = 0, 1, ..., kmax do

Set X k,0 = X k

for j = 1, ..., d− 1 do
1. Compute τkj by (3.4)
2. τkj = γjτ

k
j , solve the subproblem (3.5)

3. X k,j = X k,j−1 + Uj(X k+1
j −X k

j )

end
Compute τkd by (3.4)
τkd = γdτ

k
d , solve the subproblem (3.6)

X k+1 = X k,d−1 + Ud(X k+1
d −X k

d )

end
Output: The sequence {X k}

Algorithm 2: Solving subproblem (3.5)

Input: X k
j , ∇jf(X k,j−1), τkj

1. Compute the compact SVD of L(X k
j − 1

τk
j

∇jf(X k,j−1)) and save U and V

2. L(X k+1
j ) = UV T

3. X k+1
j = L−1(L(X k+1

j ))

Output: X k+1
j

3.2. Solving subproblems (3.6)

Subroblem (3.6) can be transformed into the following problem:

L(X k+1
d ) = argmin

L(Xd)

⟨L(∇df(X k,d−1)), L(Xd)− L(X k
d )⟩+

τkd
2
∥L(Xd)− L(X k

d )∥2F + µ∥L(Xd)∥1

= argmin
L(Xd)

µ

τkd
∥L(Xd)∥1 +

1

2
∥L(Xd)− L(X k

d − 1

τkd
∇df(X k,d−1))∥2F .

This problem has a closed-form solution [1, Example 6.8]

L(X k+1
d ) = [|L(X k

d − 1

τkd
∇df(X k,d−1))| − µ

τkd
e]+ ⊙ sgn(L(X k

d − 1

τkd
∇df(X k,d−1))). (3.7)

where e is the all-one vector of proper size. The method for solving subproblem (3.6) is presented in Algorithm 3.

Algorithm 3: Solving subproblem (3.6)

Input: X k
d , ∇df(X k,d−1), τkd

1. Compute L(X k+1
d ) by (3.7)

2. X k+1
d = L−1(L(X k+1

d ))

Output: X k+1
d

Stat., Optim. Inf. Comput. Vol. x, Month 2025



8 PALM ALGORITHM FOR SPARSE TENSOR TRAIN DECOMPOSITION

4. Convergence Analysis

In this section, we analyze the convergence of the PALM algorithm for the sparse TT decomposition under the
framework of [16].

Lemma 4.1
The objective function F (X1, ...,Xd) = f(X1, ...,Xd) +

∑d
j=1 gj(Xj) is a KL function, where f, g1, ..., gd are

defined in (3.2).

Proof
Since f is a real polynomial function, f is a semi-algebraic function. Since Mj is a semi-algebraic set, it follows
that gj is the indicator function of a semi-algebraic set for j ∈ [d− 1]. Since gd is the 1-norm of Xd, gd is a
semi-algebraic function. Consequently, f, g1, g2, . . . , gd are semi-algebraic functions, which implies that F is a
semi-algebraic function. According to [16], F is also a KL function.

Theorem 4.1
Let {X k}k∈N be the sequence generated by Algorithm 1. The sequence {F (X k)}k∈N is convergent.

Proof
According to the well-known descent lemma [16, 4, 19], since ∇jf(X1, ...,Xd) is Lipschitz continuous, we have

f(X k,j) ≤ f(X k,j−1) + ⟨X k+1
j −X k

j ,∇jf(X k,j−1)⟩+
τkj
2
∥X k+1

j −X k
j ∥2F (4.1)

for all j ∈ [d] and k ≥ 0.
For j ∈ [d], by setting Xj = X k

j in (3.3), we obtain

⟨X k+1
j −X k

j ,∇jf(X k,j−1)⟩+
τkj
2
∥X k+1

j −X k
j ∥2F + gj(X k+1

j ) ≤ gj(X k
j ). (4.2)

By adding (4.1) and (4.2) together, we obtain

F (X k,j−1)− F (X k,j) ≥
τkj − τkj

2
∥X k+1

j −X k
j ∥2F

≥ (γj − 1)v

2
∥X k+1

j −X k
j ∥2F .

(4.3)

Then we have

F (X k)− F (X k+1) ≥ (γ − 1)v

2
∥X k+1 −X k∥2F

by adding (4.3) from j = 1 to d, where γ = min{γ1, γ2, . . . , γd}. Therefore, {F (X k)}k∈N is a monotonically
decreasing sequence. Since F (X k) ≥ 0, it can be concluded that the sequence {F (X k)}k∈N is convergent.

It is noteworthy that the inclusion of orthogonal constraints and sparsity constraints in the model allows us to
avoid the assumption that the sequence {X k} is bounded, which is required in the convergence analysis of the
PALM algorithm [16].

Lemma 4.2
The sequence {X k}k∈N generated by Algorithm 1 is bounded.

Proof
Since the function F is coercive with respect to the last TT-core Xd and {F (X k)}k∈N is a monotonically decreasing
sequence, X k

d is bounded. Considering that the TT-cores X k
1 ,X k

2 , . . . ,X k
d−1 are left-orthogonal, we can derive that

the sequence {X k}k∈N is bounded.
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Lemma 4.3
For j ∈ [d], there exists λ−

j , λ
+
j > 0 such that

inf{τkj : k ∈ N} ≥ λ−
j , sup{τkj : k ∈ N} ≤ λ+

j . (4.4)

Proof
Since we introduce a safeguard v > 0, it is evident that inf{τkj : k ∈ N} ≥ v. On the other hand, sup{τkj : k ∈
N} ≤ λ+

j can be obtained since f is smooth and the generated sequence {X k} is bounded [16, Remark3(iv)].

Theorem 4.2
The sequence {X k}k∈N generated by Algorithm 1 converges to a critical point of (3.1).

Proof
Since the function gj is proper and lower semicontinuous for j ∈ [d], f is differentiable and by Lemmas 4.1-4.3, the
assumptions of [16] are satisfied. According to Theorem 1 of [16], the sequence {X k}k∈N generated by Algorithm
1 converges to a critical point of problem.

5. Experimental results

In this section, we test and verify the convergence of the proposed algorithm. We assign the same value to γj for
j ∈ [d], and represent it as γ, then we set γ > 1. In Section 5.1, we evaluate the impact of varying parameter settings
on the performance of Algorithm 1 by using the synthetic data. In Section 5.2, we present the numerical results on
face recognition using the ORL face dataset.

All experiments are performed in Matlab 2016b on a 2.7 GHz Intel Core i7 machine with 16 GB RAM. We
utilize the MATLAB Tensor Toolbox [5] to conduct our experiments. The code from this paper is available at
https://github.com/zl-hu/Sparse-Tensor-Train-Decomposition.

5.1. Synthetic Data

In this subsection, we test how various parameter selections influence the convergence performance of the algorithm
using synthetic data. We employ the relative error, denoted as err, as a criterion to assess the algorithm’s
performance, where

err =
∥X − T ∥2F

∥T ∥2F
,

and set the maximum number of iteration kmax = 300.
The random target tensor of a given TT-rank used in this subsection is generated as follows: first we randomly

generate the TT-core tensors {X1, ...,Xd} of proper size. Second, we use the MATLAB command qr(·), which
performs the QR decomposition of a given matrix and returns the corresponding orthogonal matrix, on L(Xj) for
j ∈ [d− 1] to make sure that the first d− 1 TT-cores are left-orthogonal. The initial points are randomly generated
in the same way.

We randomly generate the tensor with size of (10 10 10 10) and TT-rank of (1 4 4 4 1) as the target tensor.
Our initial analysis investigates the impact of different regularization parameters µ on the algorithm’s convergence
performance. We set γ = 1.000001, v = 10−16 and vary the regularization parameter µ with values of 0.1, 0.01,
and 0. The relative error as a function of the iteration count for each µ is plotted in Figure 1(a). Then we examine
the effects of different γ values on convergence. With the regularization parameter µ fixed at 0.01 and v fixed
at 10−16, we assign γ values of 1.000001, 2, 5, and 10. The relative error as a function of iteration number for
varying γ is presented in Figure 1(b). Finally, we investigate the impact of parameter v on algorithmic convergence
characteristics. Under the configuration with fixed parameters µ = 0.01, γ = 1.000001, three distinct values
v ∈ {10, 3, 10−16} are systematically evaluated, revealing parameter sensitivity patterns through comparative
convergence diagnostics. The relative error as a function of iteration number for varying v is presented in Figure
1(c).
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(a) Different µ (b) Different γ

(c) Different v

Figure 1. The err for the algorithm of different parameters

Figure 1(a) illustrates that the relative error diminishes with a decrease in the regularization parameter. This
reveals a fundamental issue regarding structural discrepancy (hereafter termed ‘gap’). The specific target tensor
we select possesses a low-rank structure where the first d− 1 TT-cores have orthogonalized unfoldings, with
the last TT-core being randomly generated. When µ = 0, the algorithm naturally produces tensors exhibiting
these structural properties, thereby achieving optimal convergence performance. However, increasing µ imposes
additional constraints on the generated tensors, which induces a structural gap between the algorithmic output and
the target tensor. Therefore, we consider another category of target tensors generated using the randn function
in MATLAB with dimensions [10 10 10 10] to investigate the impact of parameter µ on the algorithm. Since the
err curves corresponding to different µ values exhibit minimal discrepancies during the initial phase, Figure 2
provides a detailed presentation of the algorithm’s err trajectories specifically during the final 100 iterations. For
this category of synthetic data and real-world facial data in Section 5.2, µ = 0 does not necessarily yield the best
modeling performance. Figure 1(b) demonstrates that the algorithm’s convergence speed increases as γ decreases,
achieving the most rapid convergence at γ = 1.000001. As demonstrated in [16, Sectrion 3.1], the parameter 1

τk
j

functions analogously to the step size in gradient descent algorithms. To accelerate the algorithm’s convergence,
it is advisable to select the largest possible step size within the algorithm’s allowable range, which corresponds
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ZHENLONG HU AND ZHONGMING CHEN 11

to making γ approach 1 as closely as possible. Figure 1(c) demonstrates that the algorithm’s convergence speed
increases as v decreases, achieving the most rapid convergence at v = 10−16. This phenomenon arises because,
according to equation (3.4), setting v to values exceeding both ∥X k

d ∥2F } and 1 will result in an enlargement of τkj ,
thereby leading to an increase in τ . Subsequent behavioral patterns can be analyzed by referring to the discussion
of Figure 1(b).

In summary, for parameter µ, we recommend first determining the maximum value that ensures stable numerical
performance of the algorithm through empirical testing, then selecting a midrange value between this upper bound
and zero as the operational µ value. Regarding parameter γ, it should ideally be configured as close to unity
as possible. The setting γ = 1.000001 implemented in our study already satisfies this proximity requirement,
as further reduction would yield only negligible improvement in convergence performance. Thus, γ = 1.000001
also constitutes a reasonable configuration. For parameter v, since minimizing its magnitude does not increase
computational overhead, we advocate setting it to the smallest practical value, such as v = 10−16.

Figure 2. The err for the algorithm of different µ for the new category of synthetic data over the final 100 iterations

5.2. Face Recognition

In this subsection, we conduct facial recognition experiments on the ORL face dataset [2]. The ORL dataset
contains facial images of 40 subjects, each represented by 10 distinct images. These images are originally 112× 92
pixels in resolution. To facilitate processing, we employ MATLAB’s imresize function to compress the images to
28× 23 pixels. Subsequently, we normalize the pixel values by dividing each by 255, resulting in a preprocessed
dataset represented as a tensor with dimensions (28 23 400).

We divide the data into training and test sets according to a certain ratio. The training set tensor is decomposed
into the TT format using the testing algorithm. The first two TT-cores are used as the basis in image space, while the
last TT-core serves as the representation vector under the basis. We set γ = 1.000001, v = 10−16, kmax = 300 and
compute the representation vectors of the test set under the learned basis and determine the classification results by
calculating the distance between the representation vectors of the test set and those of the training set.
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Table 2. Comparison of all tested algorithms

Algorithm STT-PALM SNTT-MUR NOSTT-PALM PTF
Accuracy 0.8850 0.8550 0.8250 0.8600

The comparative algorithms in this study include: the multiplicative update rules algorithm based on sparse
nonnegative TT decomposition (SNTT-MUR) from [12], and the positive tensor factorization (PTF) algorithm
from [24]. To demonstrate the performance improvement brought by orthogonality in our method, we removed
the orthogonality constraints while keeping all other conditions unchanged, thereby designing a sparse TT
decomposition PALM algorithm without orthogonality constraints (NOSTT-PALM) as one of the baselines. Section
5.2.1 presents the recognition accuracy of these algorithms in facial recognition experiments, while Section 5.2.2-
5.2.4 provide detailed comparisons with the SNTT-MUR algorithm under varying parameter conditions.

5.2.1. Comparison of tested algorithms in terms of accuracy In this section, we present the performance of all
candidate algorithms in facial recognition experiments. For each subject, 5 facial images are randomly selected
to constitute the training set, and the other 5 images are for the test set. We set µ = 0.01, TT-rank=(1 20 40 1)
in STT-PALM, SNTT-MUR and NOSTT-PALM algorithms. The rank in PTF algorithm is set to 40. We present
the recognition accuracy as a function of iteration count for various values of µ in Figure 3 and the recognition
accuracy of each algorithm at the final iteration in Table 2.

Figure 3 and Table 2 demonstrate that among all compared algorithms, STT-PALM algorithm achieves higher
face recognition accuracy. Notably, only STT-PALM algorithm exhibits rapid accuracy improvement during the
initial few iterations, while other algorithms show gradual accuracy increases with iteration steps. The comparison
with the NOSTT-PALM algorithm confirms the performance enhancement brought by incorporating orthogonality
constraints.

Figure 3. The recognition accuracy of all tested algorithms.
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Table 3. Comparison of tested algorithms with different µ

Algorithm µ = 0.1 µ = 0.01 µ = 0.001

SNTT-MUR 0.8200 0.8800 0.8750
STT-PALM 0.8850 0.9150 0.9100

5.2.2. Different values of the regularization parameter We examine the effects of varying regularization
parameters on the tested algorithms’ recognition accuracy. For each subject, 5 facial images are randomly selected
to constitute the training set, and the other 5 images are for the test set. Following preprocessing, the dimensions of
both the training and test sets are (28 23 200). Regularization parameters are set at 0.1, 0.01, and 0.001. Iterations
are performed for both algorithms, employing a range of randomly generated initial points that conformed to the
algorithmic criteria.

We present the recognition accuracy as a function of iteration count for various values of µ in Figure 4.
Additionally, the recognition accuracy of each algorithm at the final iteration is summarized in Table 3.

(a) µ = 0.1 (b) µ = 0.01 (c) µ = 0.001

Figure 4. The recognition accuracy for tested algorithms with different µ

The data presented in Figure 4 and Table 3 indicate that the recognition accuracy of the evaluated algorithms
improves with a decrease in the regularization parameter µ from 0.1, peaking at a µ value of 0.01, beyond which it
stabilizes. This phenomenon arises because a relatively large µ value may lead the model to focus excessively
on data sparsity patterns, thereby impeding the model’s ability to capture essential facial characteristics and
compromising detection accuracy. Conversely, a relatively small µ value could result in insufficient attention
allocation to critical facial regions (notably eyes and nose) during feature encoding, whereas adversely affecting
recognition performance. We recommend running multiple tests in practice to determine a mid-range µ value
between empirically observed extremes.

5.2.3. Different vaules of TT-rank We examine the effect of varying TT-ranks on tested algorithms’ recognition
accuracy. For each subject, 5 facial images are randomly selected for the training set, and the other 5 images are
for the test set. Following preprocessing, the dimensions of both the training and test sets are (28 23 200). TT-ranks
are configured to (1 20 20 1), (1 20 40 1) and (1 20 60 1) respectively. The regularization parameter µ is established
at 0.01, and iterations for both algorithms proceed from various randomly generated initial points that satisfy the
algorithmic criteria.

We present the recognition accuracy as a function of the number of iterations for various TT-ranks in Figure 5,
and Table 4 displays the final iteration recognition accuracy for each algorithm.

As shown in Figure 5 and Table 4, the recognition accuracy of the evaluated algorithms improves as the third
TT-rank index increases. This is because, according to the TT-rank calculation formula in [18, Section 1.1], the
TT-rank of the preprocessed training set is (1 28 200 1). Our experiments indicate that the closer the third index of
the TT-rank is to 200, the higher recognition accuracy the algorithm achieves on the training set. However, it should

Stat., Optim. Inf. Comput. Vol. x, Month 2025



14 PALM ALGORITHM FOR SPARSE TENSOR TRAIN DECOMPOSITION

(a) TT-rank=(1 20 20 1) (b) TT-rank=(1 20 40 1) (c) TT-rank=(1 20 60 1)

Figure 5. The recognition accuracy for tested algorithms with different TT-ranks

Table 4. Comparison of tested algorithms with different TT-ranks

Algorithm rank=(1 20 20 1) rank=(1 20 40 1) rank=(1 20 60 1)
SNTT-MUR 0.8450 0.8800 0.9150
STT-PALM 0.8550 0.9100 0.9200

be noted that as the third TT-rank index increases, the corresponding matrix dimensions in the algorithm expand
proportionally, which may lead to prohibitively long computational time. Therefore, in practical applications we
can adopt an intermediate value that achieves an equilibrium between computational cost and recognition accuracy.

5.2.4. Different values of train set size We examine the effects of varying training set sizes on tested algorithms’
recognition accuracy. For each subject, we randomly select 3, 5, and 7 facial images to create the training sets.
Correspondingly, the remaining 7, 5, and 3 images are allocated as the test sets. Following preprocessing, the
dimensions of the training sets are (28 23 120), (28 23 200) and (28 23 280), respectively. The TT-ranks are
configured to (1 20 40 1). We set the regularization parameter to 0.01 and performed iterations for both algorithms
using a variety of randomly generated initial points that conformed to the algorithmic criteria.

Figure 6 depicts the relationship between recognition accuracy and the number of iterations for various training
set sizes, while Table 5 presents the final iteration recognition accuracy of each algorithm.

(a) size=(28 23 120) (b) size=(28 23 200) (c) size=(28 23 280)

Figure 6. The recognition accuracy for tested algorithms with different sizes of training set

Figure 6 and Table 5 illustrate that the recognition accuracy of the tested algorithms improves as the size of
the training set expands. This phenomenon can be attributed to two principal factors. Primarily, the expansion of
training set size enhances the comprehensiveness of known facial representations, enabling the basis vectors of the
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Table 5. Comparison of tested algorithms with different sizes of training set

Algorithm size=(28 23 120) size=(28 23 200) size=(28 23 280)
SNTT-MUR 0.8000 0.8500 0.9083
STT-PALM 0.8357 0.8900 0.9667

learned image space to better approximate those of the true image space. Secondarily, the relative proportion of
test set samples diminishes correspondingly as training data increases. However, this scale enlargement inevitably
prolongs algorithm iteration time. Therefore, in practical implementation, we can select a moderate value to strike
a balance between time cost and recognition accuracy.

It is important to note that across the three facial recognition experiments, the STT-PALM algorithm consistently
surpass the SNTT-MUR algorithm in recognition accuracy. Moreover, the STT-PALM algorithm attains high
accuracy rapidly within the initial iterations, in contrast to the SNTT-MUR algorithm, which exhibits a gradual
and protracted improvement in accuracy with an increasing number of iterations. Therefore, in practice, we can set
a smaller maximum number of iterations for the STT-PALM algorithm to save time.

6. Conclusion

In this paper, we propose a novel sparse TT decomposition model, address the problem using the PALM algorithm,
and provide a convergence analysis. Numerical experimental results demonstrate that our algorithm exhibits
excellent performance. Future work will consider incorporating additional constraints into the model (such as
non-negativity constraint).
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