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Abstract This study investigates the dynamics of infectious disease spread using the Susceptible-Infected-Quarantined-
Recovered (SIQR) model, integrating both classical differential equations and network theory. To capture the heterogeneous
nature of real-world contact patterns, we extend mathematical formulation and analysis of the SIQR model to network-based
simulations, focusing on two key network structures: the Erd6s-Rényi (ER) random network and the Barabdsi—Albert (BA)
scale-free network. Numerical simulations are performed to compare the progression of epidemics across these network
types, highlighting the impact of network topology on infection spread, quarantine effectiveness, and epidemic severity. Our
results demonstrate that scale-free networks, characterized by highly connected hubs, facilitate faster and more intense
outbreaks compared to random networks, underscoring the importance of network structure in epidemic modeling and
control strategies. This work provides a comprehensive perspective on the interplay between disease dynamics and contact
network structure, offering valuable insights for the design of effective intervention policies.
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1. Introduction

On December 31, 2019, the China Health Authority alerted the World Health Organization (WHO) about a cluster
of pneumonia cases of unknown origin in Wuhan, Hubei Province [1]. These cases, which were first reported on
December 8, had an initial connection to the Huanan Seafood Wholesale Market, where many affected individuals
either worked or lived nearby.

On January 7, 2020, the novel coronavirus responsible for these cases was identified and temporarily named
2019-nCoV [2, 3]. Shortly thereafter, it was officially designated as severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) by the Coronavirus Study Group, and the disease caused by this virus was named coronavirus
disease 2019 (COVID-19) by the WHO.

By January 30, 2020, the virus had spread significantly, with 7,736 confirmed cases and 12,167 suspected cases
reported in China. In addition, 82 cases were detected in 18 other countries. On the same day, the WHO declared
the SARS-CoV-2 outbreak a Public Health Emergency of International Concern (PHEIC), recognizing the potential
global threat the virus poses.

Initial reports from China’s National Health Commission indicated a mortality rate of 2.1% among confirmed
cases, with a lower mortality rate of 0.2% among cases outside China [4, 5]. Hospitalized patients faced higher
mortality rates, ranging from 11% to 15% [6]. Despite the relatively high infectiousness and moderate mortality
rate of COVID-19, available data rapidly evolved as new information became available in public health reports and
the scientific literature [4].
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Transmission of SARS-CoV-2 occurs primarily through respiratory droplets produced when an infected person
coughs, sneezes, or talks. Close contact with an infected individual is a significant risk factor, as the virus can
be transmitted within households, healthcare settings, and other environments where people gather. Fomites, or
contaminated surfaces, may also serve as a transmission route, as the virus has been shown to persist on surfaces
for extended periods—up to 96 hours in some studies.

The possibility of asymptomatic transmission has been a topic of ongoing debate. Initial reports indicated that
asymptomatic individuals might spread the virus; however, subsequent investigations revealed that some purported
asymptomatic cases had unrecognized symptoms before transmission. As research continues, findings about the
characteristics of the disease and its transmission dynamics are rapidly evolving. Mathematical modeling of
infectious diseases has been instrumental in understanding and predicting the dynamics of epidemics like COVID-
19.

The pioneering mathematical models of Kermack and McKendrick in 1927 laid the foundation for
compartmental models, where populations are divided into distinct categories to simulate the spread of diseases
[8]. These categories typically include susceptible individuals S(¢), infected individuals I (), recovered individuals
R(t), and, in more sophisticated models, quarantined individuals @Q(¢), forming what is known as the Susceptible-
Infected-Quarantine-Recovered (SIQR) model. These models are represented by systems of differential equations
that track how individuals move between compartments over time [9].

The central objective of such models is to understand the underlying mechanisms that drive the spread
of infectious diseases, predict future outbreaks and evaluate control strategies such as quarantine, vaccination
and isolation. In particular, the SIQR model is designed to incorporate the dynamics of quarantining infected
individuals, a crucial control measure that directly affects the progression of an epidemic by reducing the number of
infectious contacts. Quarantine not only reduces the spread of the infection but also creates a separate compartment
for those who are isolated, making the SIQR model a more realistic reflection of real-world epidemic management
[10].

In this paper, we explore the SIQR model using both differential equations and network theory to simulate disease
dynamics. While differential equations provide a macroscopic view of how populations evolve, network-based
models offer a microscopic perspective, considering individual interactions that can better capture the complex
and heterogeneous nature of disease spread. Networks, composed of nodes and edges, allow for a more detailed
examination of the epidemic’s progression through specific population structures, such as random and scale-free
networks. These structures play a significant role in determining how fast and far a disease can spread, making
them essential for accurate simulations.

The networks studied in this work include the Erdés-Rényi (ER) random network, where edges between nodes
are randomly assigned, and the Barabdasi-Albert (BA) network, which follows a preferential attachment process,
leading to a scale-free network structure with hubs. These models are widely used in the study of epidemic spread
because they can mimic different types of social or contact networks. The ER model represents populations with
uniformly random interactions, while the BA model reflects real-world systems where a few individuals (hubs) have
disproportionately high number of connections. This difference in network structure can significantly influence the
outcome of an epidemic simulation.

We perform numerical simulations of the SIQR model using Python, comparing the spread of the infection
across both types of networks. The simulations provide insights into how the structure of a network affects disease
transmission, the effectiveness of quarantine measures, and the overall dynamics of an epidemic. Finally, we present
analytical and numerical solutions to the SIQR model, discussing the impact of various parameters such as the
transmission rate (3, quarantine rate and recovery rate. Through this approach, we aim to provide a comprehensive
understanding of epidemic dynamics both from a mathematical and network-based perspective, contributing to the
development of more effective strategies for controlling infectious diseases.

We give a brief review of key concepts in network theory in Section 2. A deterministic SIQR epidemic model is
introduced and analysed in Section 3. In Section 4 we focus on microscopic simulations of the SIQR model on ER
and BA networks. Section 5 provides a summary of our main findings, discusses their implications for epidemic
modeling and intervention strategies, and outlines directions for future research.
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2. Networks

2.1. Outline of Network Theory

Network theory is a branch of applied mathematics that studies the interactions and relationships between elements
within a system by using a graph-theoretic representation [15]. The fundamental idea behind network theory is
to model systems as networks composed of nodes, representing individual entities, and edges, representing the
interactions between these entities. This approach allows researchers to understand the structure and dynamics of
complex systems by examining how nodes and edges are organized and how they interact [16].

In networks, there are two fundamental components: nodes and edges. Nodes represent the individual entities
within the network, such as people in a social network. Whereas edges, represent the connections, interactions, or
relationships between nodes [17]. In a social network, for instance, edges could stand for either communication
or friendship relationships. The degree of a node, defined as the number of connections that it has to other
nodes, indicates how well-connected that node is within the network. This concept is crucial for understanding
the influence of particular nodes in the network [19].

Network theory is deeply established in graph theory, which was initially developed to address problems related
to connectivity and optimization. One of the earliest and most famous problems that spurred the development of
graph theory was the Seven Bridges of Konigsberg problem, which led to the formulation of fundamental concepts
such as Eulerian paths and circuits. Network theory has emerged as a key subset, focusing on the structure and
dynamics of networks in various real-world systems [20]. Networks can display various characteristics, two of
them being small-world and scale-free structures. Small-world networks are distinguished by their short average
path lengths and significant clustering [21]. High clustering means that nodes tend to form tightly knit groups,
in which the majority of the nodes are connected. Short average path lengths indicate that any two nodes in the
network can be connected by a relatively small number of steps, which enables the rapid spread of information,
signals, or disturbances across the network. This property is especially important in understanding phenomena
such as the spread of diseases in social networks. Scale-free systems are characterized by a power-law degree
distribution, where most nodes have a few connections, but several nodes, called hubs, have a excessively large
number of connections. This type of network structure was notably described by A. L. Barabasi and R. Albert [15]
and further investigated by A. L. Barabasi [18].

Network theory provides a powerful framework for understanding the complex interactions within systems
across a wide range of disciplines. By modeling systems as networks of nodes and edges, researchers can gain
insights into the structure, dynamics, and vulnerabilities of these systems. The concepts of small-world and scale-
free networks have been particularly influential in explaining how real-world networks function and respond to
changes. As network theory continues to develop, it will likely provide even deeper insights into the complexities
of interconnected systems, with applications that extend far beyond its current scope [22].

2.2. Network Generation

2.2.1. Erdds-Rényi Network The Erd6s-Rényi (ER) network model is a foundational concept in the field of
network theory, providing a simple yet powerful framework for understanding random graph structures. The model
was independently introduced by Paul Erdds and Alfréd Rényi in 1959 [23], and by Edgar Gilbert [24] around
the same time, leading to the two commonly used versions of the model. In the Erd6s-Rényi model, a network
is constructed by randomly connecting nodes. The model begins with a set of n nodes, and each possible pair of
nodes is connected by an edge with a fixed probability p, independently of all other pairs. This leads to a binomial
distribution of the number of edges in the graph, making the model particularly useful for studying the properties
of random graphs.

There are two primary variants of the Erd6s-Rényi model being the G(n,p) model and the G(n, M) model.
The G(n,p) version is defined by the number of nodes n and the probability p that any given pair of nodes is
connected by an edge. The edges are formed independently, which means the total number of edges follows a
binomial distribution with parameters (g) (the number of possible edges) and p. The other version, the G(n, M)
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model, has a network constructed by randomly selecting M edges from the possible (72‘) edges [25]. This model is
sometimes referred to as the Erd&s-Rényi random graph with a fixed number of edges.

Erd6s-Rényi (ER) networks are a foundational model in network theory, offering simplicity and versatility for
theoretical exploration. These networks possess several key properties that make them essential for understanding
the behavior of random graphs.

One of the fundamental aspects of ER networks is their degree distribution. In the G(n,p) model, the degree
distribution represents the number of edges connected to a node. Initially, this distribution follows a binomial
pattern, but as the number of nodes n increases, it approximates a Poisson distribution with a mean of np. This
characteristic allows ER networks to effectively model the distribution of connections in random networks as they
scale [26].

Another crucial property of ER networks is their connectedness. The likelihood that an ER network is fully
connected—meaning there is a path between any two nodes—depends on the probability p. As the number of
nodes n grows, and p is scaled according to p = 1°§L . the network undergoes a transition from being almost surely
disconnected to connected. This transition is vital for understanding how connectivity emerges in random graphs
and has implications for network robustness [27].

Despite their utility, ER networks typically exhibit a low clustering coefficient. The clustering coefficient
measures the probability that two neighbors of a node are also neighbors of each other. In ER networks, this
probability is simply p and does not scale with the size of the network. As a result, ER networks often lack the high
levels of clustering seen in many real-world networks, where local connections tend to be more prevalent.

Finally, Erd6s-Rényi networks are characterized by their relatively short average path length between nodes,

which scales logarithmically with the number of nodes, log n, making ER networks “small-world” in terms of
path length. Unlike Watts-Strogatz small-world networks, which combine short path lengths with high clustering
coefficients to mimic local community structures, ER networks lack significant clustering and exhibit a simpler,
more homogeneous random connectivity pattern. While Watts-Strogatz networks more realistically capture local
clustering found in social contacts, their complex structure can introduce variability and biases in epidemic
simulations, making them less suitable for studies focused on clear, comparative analysis of network effects. In
contrast, ER networks provide a mathematically tractable and sufficiently simple framework that facilitates direct
comparison with scale-free networks such as Barabasi-Albert (BA) models, which are often used to represent
heterogeneous contact patterns in epidemic modeling. This simplicity and the absence of disconnected components
in ER networks make them better suited for controlled investigations of epidemic dynamics and intervention
strategies, as demonstrated in recent comparative studies [23, 28].
An ER network with 50 nodes and a fixed probability p of 0.1 is shown in Figure 1. It shows a comparatively even
distribution of node edges. There are no obvious “hub” nodes that control the structure, however some nodes have
a little more connections than others. The absence of preferred attachment throughout the development process is
reflected in this connectivity’s unpredictability.

2.2.2. Barabdsi-Albert Network The Barabasi-Albert (BA) model is a pivotal framework in network science that
describes the development of scale-free networks through a process known as preferential attachment. Introduced
by Albert-Laszl6 Barabdsi and Réka Albert in 1999 [15], this model has significantly advanced our understanding
of the growth and evolution of complex networks, such as those found in the World Wide Web, social networks,
and biological systems.

The BA model generates random networks that exhibit a scale-free structure, meaning that their degree
distribution follows a power law. In simpler terms, most nodes in these networks have relatively few connections,
while a small number of nodes, known as hubs, have a large number of connections. This pattern mirrors many
real-world networks, making the BA model particularly useful for studying their dynamics and structure[ 18].

The Barabasi—Albert model operates on two core principles: growth and preferential attachment. The network
begins with a small number of nodes, and new nodes are continuously added, one at a time. When a new node
joins the network, it is more likely to connect to nodes that are already well-connected, rather than connecting
randomly to any existing node. The probability that a new node will link to an existing node is proportional to the
number of connections that node already has [29]. This mechanism, known as preferential attachment, captures
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Erdés-Rényi Network

Figure 1. The ER network with N=50 , p=0.1

the “rich-get-richer” phenomenon, where well-connected nodes are more likely to attract even more connections,
leading to the emergence of hubs in the network.

Barabdasi—Albert networks display several distinctive properties that set them apart from other types of networks.
The most notable feature is their power-law degree distribution, where the likelihood of a node having a certain
number of connections decreases as a power of that number. This results in a network where most nodes have few
connections, while a few nodes serve as highly connected hubs. These networks are robust against random failures,
meaning that removing a random node is unlikely to disrupt the network significantly. However, they are vulnerable
to targeted attacks on the hubs, which can fragment the network.

Despite the presence of hubs, BA networks exhibit the small-world effect, where the average path length between
nodes is relatively short, scaling logarithmically with the size of the network. Additionally, the diameter of a BA
network, which is the longest shortest path between any two nodes, is also relatively small, reflecting the efficiency
of communication within the network [30]. Overall, the Barabasi-Albert model provides a powerful framework for
understanding the complex, self-organizing structures that characterize many real-world networks.

A BA network with 50 nodes and an average of 8 connections is shown in Figure 2. It has several “hub” nodes,
some of which are substantially more connected than others. The structure is dominated by these densely connected
nodes, which are also essential to the overall connectivity of the network.

3. Theoretical Framework

3.1. Deterministic SIQR Model

The foundational work on mathematical modeling of infectious diseases was laid out by Kermack and McKendrick
in 1927 [8]. Their simple epidemic model has since become a cornerstone for subsequent research in the field.
In studying these mathematical models, the population is typically divided into several categories: susceptible
individuals S(t), infected individuals I(¢), and recovered individuals R(¢).
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Barabasi-Albert Network

Figure 2. The BA network with N=50, k=8

U8 = BS(4)I(t) — rI(t) 1)

With the addition of a Quarantined compartment to the SIR model we have a Susceptible — Infected — Quarantine
— Recovered (SIQR) epidemic model. The SIQR disease transmission model is derived assuming several strong
assumptions. Individuals who are Susceptible in this model are those who are at risk of becoming infected.
Quarantine is defined as isolating an infected person who exhibits signs of the disease.Quarantine is defined as
an infected person who exhibits signs of the disease and is isolated. Quarantined individuals who recover from the
disease are considered as Recovered. One interesting example of an SIQR model is one governed by the following
set of differential equations:
as) _ 4 _ 1S(t) BS®)I(t)

dI S(t)I N(t)
t t t
A0 = B5DID — (d -+ + p)I(t)

49U — () — (e + p)Q(t)
WO _ GI1(t) + eQ(t) — pR(1)

2

In these equations, Q(t) represents the quarantined individuals at time ¢, while S(t), I(¢), and R(t) denote the
susceptible, infected, and recovered populations, respectively. The transitions between these compartments and
the associated parameters are illustrated in Figure 3, which provides a schematic overview of the SIQR model
dynamics.

In the deterministic SIQR model, we assume homogeneous mixing, meaning each individual is equally likely to
interact with any other individual in the population. While this assumption simplifies the mathematical analysis, it
does not capture the heterogeneous and structured nature of real-world contact patterns. To address this limitation,
we subsequently explore network-based SIQR models that incorporate more realistic interaction structures.
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Figure 3. Diagram showing the transitions from Susceptible to Recovered.

3.2. Parameter Estimation

The model parameters used in this study were chosen based on values commonly reported in the epidemiological
literature and, where necessary, adjusted to reflect the characteristics of the SIQR framework. These values provide
a basis for our simulations and allow for meaningful comparison of epidemic dynamics across different network
structures. The table below summarizes the parameter values used throughout our analysis.

Parameter | Meaning Typical Range | Reference/Notes
(COVID-19)

B Transmission rate (probability | 0.3 — 1.5 per day [33]; [34]; context-dependent,
of disease transmission per affected by interventions
contact per day)

r Quarantine rate (rate of iden- | 0.05— 0.3 per day [35]; depends on
tifying and isolating infected testing/tracing efficiency
individuals)

d Recovery rate for non- | 0.07 - 0.2 per day [34]; corresponds to infectious
quarantined infected period of 5-14 days
individuals

€ Recovery rate for quarantined | 0.07 — 0.2 per day Assumed similar to d; may
individuals vary with healthcare quality

I Natural death rate (unrelated to | 2.7 x 107° — 3.8 x | World Bank Data; global
the disease) 1075 per day annual crude death rate

A Recruitment/immigrationrate | ~ u x N (to keep | Model assumption; N is total

population stable) population

Table 1. Summary of SIQR model parameters, their meanings, typical empirical ranges, and references.
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3.3. Reproductive Number

The four compartments make up the total population of N(t):

N(t)=5t)+I1(t)+ Q) + R(t).

In mathematical problems involving infectious diseases, the basic reproduction number, also called the basic
reproduction rate or the basic reproduction ratio, is a useful threshold parameter. This metric is useful because it
helps determine whether or not an infectious disease will spread through a population. In this section, we will use
the next-generation matrix method to compute the model’s basic reproduction number, Ry [31, 32]. For that, we
rewrite the model as 4 = F(z) — A(z) where z = (STQR).

851 (u+d+r)I(t)

0 () + (u 4 2)QU)
F(z) = 8 and A(x) = —dI(t) - EQM(t) i LR(1)
0 —A+ pS(t) + 2500

N()
We have the Jacobian matrices for F(x) and A(x) at the disease-free equilibrium F, = (%, 0,0,0) as Fand V
respectively:

L0000 (w+d+r) 0 0 0
|10 0 0 O _ —r (u+e) 0 0
F_OOOO"V_ d - u 0
0 000 £ 0 0 pu
FV~!is the next generation matrix for the model. It then follows that the spectral radius of matrix F'V 1 is
p(FV~1) = ﬁ. Thus, the basic reproduction number of the model is given by
s
Ry = ———. 3
T ptd+r )

The value R, represents the average number of secondary infections when an infected person enters a fully
susceptible population. When Ry < 1, the number of infected individuals decreases, and the model has only
a disease-free equilibrium, which is globally asymptotically stable [36]. This indicates that the disease will
eventually die out, and the entire population will recover. On the other hand, when Ry > 1, the number of infected
individuals increases, and the disease-free equilibrium becomes unstable, leading the model to have only the
endemic equilibrium, which is globally asymptotically stable.

3.4. Properties of the Model

Summing up all the equations of the model (2), we find the following differential equations S(t), I(t), Q(t), and
R(t), then get:

AN(1) _ dS(t) | dI(t) | dQ() , dR(1)

dt dt dt dt dt
Then substitute each equation:
D — (4= st = QIO o (PEOIO — uanyrn) + 0110 - e+ 90)
+(dI(t) + eQ(t) — pR(t)) -
Simplifying:
dN (t)

g = A uSl) = (ptd+n)It) +ri(t) - (u+ Q) +dI(t) + eQ(t) — nR(?),
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WO _ 4 uS(0) — u1(t) ~ nQU) — uR()
P — A~ u(s0)+ 1)+ Q) + B).

Since N(t) = S(t) + I(t) + Q(t) + R(t),

dN(t)
=A— uN().
7 i (t)
This equation describes the total population dynamics, accounting for births (at rate A) and natural deaths (at

rate u). This denotes that population size N — AL ast — oo.

By comparison theorem, we obtain that the solutions of model (2) exist in the region defined by
A
r— {(S,LQ,R) ERY :S+T+Q+R< 520120Q> O,Rzo}.

3.5. Numerical Simulations

In this section, we give some numerical simulations to illustrate the theoretical model. A Python program is used to
solve the system of the SIQR model. For the initial conditions, we set total population, S(0)=990, initial infected,
I(0) = 10, Q(0) = 0 initial quarantined and R(0) = O initial recovered. For the parameters, we set birth rate A =
10, natural death rate p = 0.01, recovery rate of infected individuals d = 0.05, quarantine rate r = 0.1, recovery
rate of quarantined individuals ¢ = 0.05 and initial total population N(0) = 1000. In the simulations, time is treated
as a stochastic variable, with events occurring at random intervals determined by the relevant transition rates. The
values for the parameter of 8 were varied for 0.3, 0.5, 0.7, and 0.9.

4. Microscopic Simulations of the SIQR Model on Networks

4.1. Calculation of the Basic Reproduction Number R

Before presenting the simulation results, we calculate the basic reproduction number Ry for both the Erd6s-Rényi
(ER) and Barabési-Albert (BA) networks, as this metric provides a threshold indicator for epidemic outbreaks and
is essential for interpreting the observed dynamics.

The basic reproduction number for the SIQR model on a network is given by [37]:

B B
RO_7r+d+u<k> 4)

where (k) is the average degree of the network.

For the ER network, the average degree is (k) = np = 1000 x 0.01 = 10. Substituting the parameter values
(B=04,r=0.1,d =0.05, x = 0.01), we obtain:

0-4 x 10 0‘4x10—25x10—25
0.1 +0.05+0.01 o oo

RER — =
0 0.16

For the BA network, the average degree is (k) = 2m = 14 (with m = 7).

Thus,
0-4 14 %x14:2.5x14:35.

REA = =
0 T 0110.05+001 0.16
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Figure 4. Time evolution of the SIQR epidemic model simulated using stochastic time steps, reflecting random infection
events and transitions.

These results show that the basic reproduction number is higher in the BA (scale-free) network due to its
higher average degree, reflecting the increased risk of epidemic outbreaks in heterogeneous networks. The high R,
values do not necessarily reflect realistic COVID-19 or other disease scenarios, but rather illustrate the theoretical
epidemic potential under the selected parameters and network structures. The results underscore the importance of
both parameter selection and network structure in determining epidemic risk. In particular, the combination of high
transmission rates and dense or heterogeneous connectivity in these network models amplifies Ry, highlighting
how changes in model assumptions or contact patterns can dramatically affect outbreak potential.

4.2. Erdos-Rényi Network Simulations

In this section, we perform a microscopic simulation of the SIQR model on an Erdés-Rényi (ER) network. The
parameters of the simulations correspond to those used in the differential equations describing the macroscopic
behavior of the system. The simulations follow Algorithm 1. They involve generating a static network, initializing
infections, and simulating stochastic infection, quarantine, and recovery dynamics over time.

[1] Generate Network: Create a static Erd6s-Rényi network with a fixed number of nodes and connection
probability. System Initialization: Infect 10 random nodes at ¢ = 0.

simulation is running Infection Dynamics: 4.1 With probability p, a susceptible individual (S) gets infected
(D) if one of its neighbors is infected. 4.2 Quarantine a random proportion of infected individuals (I).

Recovery Dynamics: 5.1 Infected individuals recover after 1/d days, following a Poisson distribution. 5.2
Quarantined individuals recover after 1/e days, following a Poisson distribution. Iteration: At each time step ¢,

steps 4 and 5 are executed based on stochastically determined time intervals, simulating infection, quarantine, and
recovery within the network.
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4.3. Barabdsi-Albert Network Simulations

In this section, we perform a microscopic simulations of the SIQR model on an Barabasi-Albert (BA) network. The
parameters of the simulations correspond to those used in the differential equations describing the macroscopic
behavior of the system. The simulation The simulations, as per Algorithm 2, we extend the mathematical SIQR
model simulations to a Barabdasi-Albert network. It follows a similar process, incorporating preferential attachment
to capture realistic network dynamics, emphasizing stochastic transitions between compartments.

[1] Network Generation: Generate a Barabdsi-Albert network with fixed parameters, including number of nodes
and edges M for each new node.

Initial Infections (¢ = 0): Infect 10 random nodes in the network.

simulation is running Infection Dynamics: 4.1 A susceptible individual (S) gets infected (I) with probability
p if one of its k£ neighbors is infected. 4.2 Quarantine a random proportion of infected individuals ().

Recovery Dynamics: 5.1 Infected individuals recover after 1/d days, following a Poisson distribution. 5.2
Quarantined individuals recover after 1/¢ days, also following a Poisson distribution.

Iteration: At each time step ¢, steps 4 and 5 are executed, simulating infection, quarantine, and recovery
dynamics.

Simulation Sampling: Perform the simulation over 20 independent samples to ensure reliable results.

Algorithm 4.3 extends the SIQR simulation to a

4.4. Global Sensitivity Analysis

Understanding which parameters most strongly influence the epidemic dynamics is essential for both model
interpretation and effective intervention planning. To this end, we performed a global sensitivity analysis of the
microscopic SIQR model using Sobol indices, a variance-based technique that quantifies the contribution of each
parameter and their interactions to the variability observed in model outputs.

The Sobol method provides a systematic framework for assessing the relative importance of each parameter
across their entire plausible ranges, rather than relying on local, one-at-a-time perturbations. In our analysis,
we considered the following model parameters: the transmission rate (3), the quarantine rate (r), the recovery
rates (d for infected and ¢ for quarantined individuals), and the natural death rate (x). Each parameter was varied
within a biologically reasonable range, while the model was simulated repeatedly on both Erd6s—Rényi (ER) and
Barabsi—Albert (BA) networks.

For each simulation, key epidemic outcomes were recorded, including the peak number of infected individuals,
the total number of recovered individuals at the end of the simulation, and the time to epidemic peak. The Sobol
indices were then computed to determine the proportion of output variance attributable to each parameter and to
their higher-order interactions.

Parameter ER S; BAS; ERS;r BA St

B 0336 0.182 0523  0.626
r 0.328 0413 0.642  0.848
d 0.012 0.055 0425 0.390

Table 2. First-order (S7) and total effect (S7) Sobol indices for each parameter on ER and BA networks.

The Sobol sensitivity analysis indicates that both the transmission rate (8) and the quarantine rate (r) are highly
influential in determining epidemic outcomes across both network types. For the ER network, the first-order indices
show that 8 (0.336) and r (0.328) contribute almost equally to the variance in the final epidemic size, while for
the BA network, r (0.413) is more influential than 3 (0.182). The total effect indices (S7) further highlight the
importance of r, especially in the BA network, where it accounts for approximately 85% of the variance, indicating
strong interaction effects.
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The recovery rate (d) has a relatively minor first-order effect, but its total effect is substantial (0.425 for ER and
0.390 for BA), suggesting that d primarily influences outcomes through interactions with other parameters.

Overall, these results reveal that both transmission and quarantine rates are critical drivers of epidemic dynamics,
with quarantine playing an even more dominant role in scale-free (BA) networks. This underlines the importance

of rapid quarantine measures and early transmission suppression to effectively control epidemic spread, especially
in heterogeneous networks where super-spreader nodes may exist.

4.5. Results of SIOQR Model on Erdés-Rényi Network

We performed a simulation of the microscopic SIQR model on the Erds-Rényi (ER) network over a time of 100
days. In Figure 5, the temporal variations of the number of individuals in four compartments—Susceptible (S),
Infected (I), Quarantined (Q), and Recovered (R)—are plotted. The average number of connections per node is (k)
= 10, and the edge probability p is set to 0.01. The parameters 3, r, d, € and 1 were chosen to be consistent with
the numerical solution of the macroscopic SIQR model.

The Erdés—Rényi (ER) network consists of 1,000 nodes, with 10 individuals randomly selected as initially
infected. Due to the homogeneous connectivity of the ER network, where each node has a roughly equal probability
of interacting with any other, the spread of infection is gradual and relatively uniform across the population. The
peak number of infected individuals reaches approximately 508, occurring at about 6.8 days, which is later than in
the BA network. The final epidemic size, represented by the total number of recovered individuals, is around 824.
This results in a smooth, moderate epidemic curve, with the quarantined and recovered populations rising steadily
in response to the slower and more evenly distributed transmission dynamics characteristic of random networks.

Stochastic SIQR Model Dynamics on ER Network (Beta = 0.4)
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Figure 5. Time evolution of the number of susceptible (S), infected (I), quarantined (Q), and recovered (R) individuals in a
Erd6s Rényi (ER) network

4.6. Results of SIOR Model on Barabdsi-Albert Network

We also performed a simulation of the microscopic SIQR model on the Barabasi-Albert (BA) network over a time
of 100 days. In Figure 6, the temporal variations of the number of individuals in the compartments—Susceptible
(S), Infected (I), Quarantined (Q), and Recovered (R)—are plotted. The number of edges created with each new

node m is set to 7. The same parameters /3, r, d, € and pu were applied as in the ER network simulation.
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The Barabdsi-Albert (BA) network, consisting of 1,000 nodes with 10 initially infected individuals, is
characterized by the presence of a few highly connected hubs. This structural feature leads to a rapid and uneven
spread of infection, as these hubs act as super-spreaders within the network. The simulation results reflect this
dynamic: the peak number of infected individuals reaches approximately 723, with the epidemic peaking very
early at around 4.9 days. The final epidemic size, measured by the total number of recovered individuals, is about
843. Compared to the ER network, the BA network produces a much sharper and earlier epidemic peak, and the
quarantined and recovered compartments exhibit more abrupt changes. Overall, the presence of hubs in the BA

network significantly accelerates transmission, resulting in a steeper and more intense epidemic curve.

Stochastic SIQR Model Dynamics on BA Network (Beta = 0.4)
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Figure 6. Time evolution of the number of susceptible (S), infected (I), quarantined (Q), and recovered (R) individuals in a
Barabasi—Albert (BA) network

5. Conclusion

We performed simulations on both networks with varying parameters that govern disease transmission, quarantine,
and recovery rates. These simulations allowed us to visualize the temporal evolution of the population in each
compartment (S, I, Q, R), helping us to explore the role that network connectivity plays in the epidemic’s
progression. By using 40 samples for each network type, we managed to capture the variation in outcomes across
different network realizations.

We investigate the SIQR (Susceptible-Infected-Quarantined-Recovered) model for the spread of infectious
diseases, focusing on the effects of quarantine in controlling the transmission of epidemics. We aimed to study
how the structure of underlying social networks impacts the spread of diseases by applying the SIQR model to two
types of network structures: Erdés-Rényi (ER) random networks and Barab4si-Albert (BA) scale-free networks.

Our work focuses on the role of host quarantine/isolation within a broad epidemiological framework. Quarantine
has been used to reduce the transmission of diseases for many centuries. In this paper, we have studied the
dynamics of an SIQR epidemiological model. The mathematical analysis shows that the model has a disease-
free equilibrium which is globally stable whenever control is effective, that is, when Ry < 1 and otherwise it

is unstable. Furthermore, it is shown that this model has a unique endemic equilibrium with the disease being
uniformly persistent as long as Ry > 1.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



T. MAPHARING AND M. V. LEKGARI 13

By applying the model to both the Erd6s-Rényi (ER) random network and the Barabdsi-Albert (BA) scale-
free network, distinct patterns were observed. The BA network, because of its highly connected hubs, accelerated
the spread of infection, causing rapid and concentrated outbreaks. Thus, it is important for authorities to identify
highly connected hubs early and educate, monitor, isolate, or give them preventive treatment as an intervention
strategy. In comparison, the ER network portrayed a more evenly distributed spread, mimicking events where
all individuals have approximately equal chances of interaction. While the homogeneous mixing assumption in
classical compartmental models (such as the deterministic SIQR ODE framework) makes analytical work easier, it
fails to capture the heterogeneity found in real-world populations, where contact patterns are influenced by factors
such as age, spatial proximity, and social structure. Furthermore, the current model does not explicitly account
for asymptomatic transmission, which has been shown to play an important role in the spread of diseases such
as COVID-19 and can result in undetected community spread. To address these shortcomings, future research
might include age-structured or geographically explicit models, as well as extra compartments for asymptomatic
individuals, to give a more nuanced and realistic picture of epidemic dynamics and to guide focused intervention
methods.

The results of our simulations suggest that in scale-free (BA) networks, a small number of highly connected
individuals (hubs) play a disproportionate role in driving epidemic spread. This observation has clear consequences
for public health policy; for example, targeting and isolating highly connected individuals within certain
communities might drastically lower transmission rates. This reinforces the importance of quarantine methods
adapted to network architecture, which might assist to manage epidemics more effectively. Furthermore, the model
may be used to estimate the impact of super-spreader events or the advantages of improved contact tracing in
heterogeneous networks. Our findings are qualitatively comparable with those of previous network-based SEIQR
models, which demonstrate that network heterogeneity, particularly the presence of highly connected nodes, is a
crucial factor influencing epidemic severity and disease transmission rate.

Some limitations in this model are the assumption of constant infection rates and limited changes in network
structure over time, both of which could vary in real-world epidemics. This model can be improved by incorporating
variable transmission rates and an evolving network structure. By blending concepts from network theory with
epidemic modeling, a more detailed perspective on the role of quarantine within complex social networks can be
understood. The insights acquired here could guide the development of more effective interventions, offering a
clearer view of how network properties influence epidemic control strategies.

The SIQR network modeling approach proposed in this study is easily extensible to a variety of viral illnesses
other than COVID-19. The model may be calibrated to represent the epidemiological features of illnesses such as
seasonal influenza, measles, and newly emerging pathogens by adjusting critical factors such as the transmission
rate, recovery rate, and quarantine efficacy. Furthermore, the model structure may be expanded to incorporate
disease-specific compartments, such as asymptomatic carriers or vaccinated individuals. This adaptability enables
the SIQR framework to influence public health initiatives for a wide range of epidemic situations, giving significant
insights into both current and new infectious threats.
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