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Abstract Frailty models play a crucial role in survival analysis as they account for unobserved differences among
individuals, which may arise from various factors like genetics, environment, or lifestyle. These models help in identifying
such factors and assessing their influence on survival outcomes. In this research, we introduce a new frailty model called
the Mixed Gamma-Exponential (MxGEF) model for survival analysis. To evaluate its appropriateness, we apply the Rao-
Robson-Nikulin (RR-Ni) and and the Bagdonaviµcius and Nikulin (B-Ni) goodness-of-fit tests, analyzing the distribution’s
characteristics and comparing its effectiveness against commonly used distributions in frailty modeling. Through simulation
studies and real-world data applications, including a dataset collected from an emergency hospital in Algeria, we demonstrate
how the MxGEF model effectively captures heterogeneity and improves model fitting. Our findings suggest that the MxGEF
model is a promising alternative to existing frailty models, potentially enhancing the accuracy of survival analyses across
various fields, including emergency care. Additionally, we explore the applicability of the MxGEF model in insurance
through simulations and real data analysis, showcasing its versatility and potential impact in this domain.
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1. Introduction

Survival analysis is a key statistical methodology for modeling time-to-event data, with applications in medicine,
engineering, economics, and insurance. A major challenge is accounting for unobserved heterogeneity among
individuals, which can bias survival probability and hazard rate estimates (see Aalen (1988); Vaupel et al. (1979)).
Frailty models address this by incorporating random effects (”frailties”) to account for variability not explained by
observed covariates. Traditional frailty models often rely on specific distributions like gamma or inverse Gaussian,
which may not capture real-world complexity (see Wienke (2010) and Aalen (1988, 1992)). Alternatives include
the generalized gamma frailty model (Balakrishnan and Peng (2006)) and the weighted Lindley frailty model
(Mota et al. (2021)). This paper introduces the MxGEF model, combining gamma and exponential distributions
for enhanced flexibility. Its performance is validated using the RR-Ni test (see Rao and Robson (1974) and
Bagdonavičius and Nikulin (2011)). Goual et al. (2019) developed a modified goodness-of-fit test for censored
and complete data, while Ibrahim et al. (2019) extended the Lindley distribution with a modified validation test,
and Yadav et al. (2020) applied the RR-Ni test to the Topp-Leone-Lomax model. Abouelmagd et al. (2019)
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proposed the zero-truncated Poisson Burr X family, and Mansour et al. (2020a) introduced a log-logistic lifetime
model with copulas. Extensions of existing distributions, such as the exponentiated Weibull model (Mansour et
al., 2020b) and reciprocal exponential model (Mansour et al., 2020c), enhance applicability. Bayesian and non-
Bayesian approaches have improved validation techniques. Yousof et al. (2021) compared estimation methods for
a new lifetime distribution, and Ibrahim et al. (2022a) explored censored and uncensored validation for the double
Burr XII model. Recent studies focus on refining these techniques. Emam et al. (2023) addressed right-censored
data, and Yousof et al. (2023a) introduced an alternative reliability model. Loubna et al. (2024) applied the quasi-
xgamma frailty model to emergency care data, and Teghri et al. (2024) extended the Lindley-frailty model. Shehata
et al. (2024) validated distributions using the RR-Ni test, and Hamedani et al. (2023) introduced a right-skewed
one-parameter distribution for actuarial risk analysis.

Frailty models are essential in survival analysis for addressing unobserved heterogeneity caused by factors like
genetics, environment, or lifestyle. These models enhance prediction accuracy by incorporating random effects
beyond observed covariates (Loubna et al., 2024). In emergency care, where outcomes are influenced by diverse
and unmeasured factors, frailty models provide a robust framework for analyzing survival patterns, assessing
risks, and guiding decisions (Teghri et al. (2024)). The quasi-xgamma frailty model, introduced by Loubna et
al. (2024), uses the RR-Ni test to validate its performance under censored and uncensored schemes, effectively
capturing heterogeneity and improving model fit. Risk analysis is critical in emergency care, where accurate
assessments impact patient outcomes. Salem et al. (2023) emphasize the importance of goodness-of-fit tests for
validating distributions, while Hamedani et al. (2023) propose a right-skewed distribution for actuarial risk analysis.
Practical applications include the reciprocal Weibull extension by Yousof et al. (2023) for modeling extreme values
and the extended Gompertz model by Alizadeh et al. (2024) for reliability studies. Bayesian and non-Bayesian
methodologies enhance risk quantification, as demonstrated by Ibrahim et al. (2023), Khedr et al. (2023) and
Teghri et al. (2024). Frailty models thus offer powerful tools for analyzing heterogeneous data, with applications
in healthcare, finance, and insurance. Future work should focus on refining these models for complex datasets and
improving risk assessment methodologies.

Recently, Loubna et al. (2024) introduces the quasi-xgamma frailty model as a novel approach to survival
analysis, particularly addressing heterogeneity problems in emergency care data. Following Loubna et al. (2024),
this study presents a novel statistical model, referred to as the MxGEF model, which represents a significant
advancement in the field of data analysis. The MxGEF model is designed to be versatile and adaptable, making it
suitable for application to both simulated datasets and real-world data. Notably, it has been applied to emergency
care data from Algeria, demonstrating its practical utility in analyzing complex, real-life scenarios. The MxGEF
model exhibits superior performance compared to existing approaches in terms of both fit and interpretability. This
claim is substantiated through rigorous validation using two robust statistical tests, the RR-Ni and the B-Ni. These
tests confirm that the MxGEF model provides a more accurate and reliable fit to the data while maintaining clarity
in interpretation, which is crucial for practical applications. Moreover, the model shows considerable potential
in the domain of insurance risk analysis. By accurately modeling various types of risks, the MxGEF model can
assist insurance companies in better assessing and managing uncertainties associated with their portfolios. This
capability underscores the model’s versatility and relevance across multiple fields, further highlighting its value as
a cutting-edge tool for data-driven decision-making. Sections 2–6 cover the Cox-frailty model, estimation process,
validation results, data analysis, and future directions. This paper introduces the MxGEF model , motivated by
three key imperatives:

• The MxGEF model merges the strengths of gamma and exponential distributions, offering a novel parametric
framework that balances mathematical tractability with the ability to model diverse hazard shapes (e.g.,
bathtub, monotonically increasing/decreasing). This hybrid structure addresses limitations of existing
frailty models (e.g., quasi-xgamma, Lindley-frailty) that often lack closed-form expressions or sufficient
adaptability for real data.

• The MxGEF model is rigorously validated using the RR-Ni and B-Ni goodness-of-fit tests, ensuring
robustness under censored and uncensored data scenarios. Its application to a real-world emergency care
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dataset from Algeria demonstrates superior performance in capturing heterogeneity and improving model fit
compared to traditional approaches. This validation not only underscores its practical utility but also aligns
with regulatory and ethical demands for transparent, reproducible risk assessment in high-stakes domains
like healthcare and insurance.

• Beyond emergency care, the MxGEF model’s modular design enables seamless integration into insurance
risk analysis, actuarial science, and emerging fields like climate modeling. For example, its ability to handle
extreme value scenarios (e.g., catastrophic insurance claims) and incorporate covariate effects positions it
as a versatile tool for dynamic risk quantification. Furthermore, the model’s compatibility with Bayesian
frameworks and computational efficiency (via closed-form Laplace transforms) addresses critical gaps in
handling high-dimensional or sparse datasets.

2. The Cox-frailty model

Consider the Cox proportional hazard (Cox-PH) model (see Cox (1972)) and an unexplained source of
heterogeneity. The univariate frailty model’s goal is to simulate unobserved factors in failure rates for unrelated
items, demonstrating that the frailties are independent. Let Z > 0 and for an unobserved random variable that
represents the frailty of the object. Then, the hazard-rate function for the ith item is

λ (ti|zi, xi) = ziλ0(ti) exp(x
T
i β), i = 1, 2, ..., n, (1)

where λ0(·) refers to the hazard-rate function of the baseline model, β = β
(p×1)

is the vector of unknown regression
coefficients for all p < n (see Ibrahim et al. (2001)), where subject i has a unique frailty zi, which is an unobserved
non-negative number. Hence, if zi > 1 or zi < 1, respectively, frailty zi raises or reduces the chance of occurrence
of the event of our interest. The Cox-PH model is produced as a specific instance where zi = 1 for every i. The
following is how the model in (1) is used to determine the conditional survival function for the ith subject:

S(ti|zi, xi) = exp(−ziΛ0(ti) exp(x
T
i β)) , i = 1, ....., n, (2)

where the cumulative baseline hazard-rate function is

Λ0(ti) =

∫ ti

0

λ0(s)ds.

The conditional survival function (2) thus indicates the likelihood that the ith subject will live until time ti given
Z = zi. We must integrate out the conditional survival function (2) on frailty in order to obtain the marginal survival
(Mar-S) function, which does not depend on unseen variables. Keep in mind that this is equal to computing the
frailty distribution’s Laplace transform. In reality, if f(z) is the frailty distribution, then we may get the following
by integrating S(ti | zi, xi) from (2) on Z = zi:

S(ti|xi) =

∫ ∞

0

exp(−ziΛ0(ti) exp(x
T
i β))f(zi)dzi = Lf (Λ0(ti) exp(x

T
i β)), (3)

where Lf (·) stands for the frailty distribution’s Laplace transform, and the appropriate marginal probability density
function (MPDF) is

f(ti|xi) = −λ0(ti) exp(x
T
i β)L

′

f

[
Λ0(ti) exp(x

T
i β)

]
, i = 1, ....., n.

Take into account that the Laplace transform has a closed form for each of the distributions above. As a result, (3)
may be used to derive the marginal hazard (Mar-H) function as follows:

λ(ti|xi) = −
λ0(ti) exp(x

T
i β)L

′

f

[
Λ0(ti) exp(x

T
i β)

]
Lf (Λ0(ti) exp(xT

i β))
, i = 1, 2, ..., n. (4)
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where L
′

f (t) =
∂
∂tLf (t). The risk and survival of a person randomly selected from the research population are

therefore calculated using the hazard and Mar-S functions (illustrated above) (see Wienke (2010)). As indicated
earlier, using a frailty distribution with a Laplace transform on the closed-form facilitates parameter estimation and
is necessary for estimating the Mar-S and hazard functions. However, when the frailty distribution lacks a Laplace
transform on the closed-form, numerical integration or Markov Chain Monte Carlo approaches must be applied
(see Balakrishnan and Peng (2006), Hougaard (2012), Robert and Casella (2013)). Frailty distribution must be
taken into account while accounting for computational ease in univariate and multivariate survival data modelling
(see Pickles and Crouchley (1995), Wienke (2010)). Hazard and Mar-S functions were created in this study.

2.1. The MxGEF model

Following Sen and Chandra (2017), the probability density function (PDF) of the NTPGEM model can be
expressed as

fP(x) =
K2

1 +K

[
1 +

Ks−2

Γ(s)
xs−2

]
exp(−Kx);x ≥ 0,

where P = (s, k) ., k > 0, s > 1. Consider the frailty model in (1) where the frailty variable Z has a NTPGEM
distribution (5) with mean one, i.e., E[Z] = 1. This assumption is required to identify the parameters of the derived
model (see Elbers and Ridder (1982)). Hence, employing Mazucheli et al. (2016)’s alternate parameterization of
the NTPGEM model in terms of mean, the PDF of the MxGEF model becomes

f(Z) =
S

1 +
√
S

[
1 +

(
√
S)S−2

Γ(S)
zS−1

]
exp(−

√
Sz), (5)

where s > 0 represents the (unknown) shape parameter. The variance of the frailty distribution is commonly used to
quantify the level of unobserved variation in a research sample. If the PDF (5) is assumed to be a frailty distribution,
the variance is

σ2 =
1

(1 +
√
s)2

(
s

3
2 − s

1
2 + 1 + 2s2

)
.

The frailty PDF (5)’s Laplace transform, depending on its variance and X ∈ R, is given by:

Lf (X) =
s

(1 +
√
s)(X +

√
s)

+
s(
√
s)s−2

(1 +
√
s)(X +

√
s)s

=
s

(1 +
√
s)

[
1

(X +
√
s)

+
(
√
s)s−2

(X +
√
s)s

]
, (6)

where
√
S =

1 + σ2 +
√
σ4 + 6σ2 − 7

2
,

and σ2 ≥ 1. In order to maintain simplicity, we analyze (6) at X = Λ0(ti)ξi, where ξi =exp(xT
i β), and find that

the marginal survival function (3) under MxGEF model is provided by

S(ti|xi) =
s

(1 +
√
s)

[
1

(X +
√
s)

+
(
√
s)s−2

(X +
√
s)s

]
. (7)

The resulting marginal hazard function (4) is as follows:

λ(ti|xi) =

[
2

(M(σ))2

4 + (M(σ))
(M(σ))2

4

]

2

 2
(M(σ))2

4 −2
(
H0(ti) exp(x

T
i β) +

M(σ)

2

)(M(σ)

2

)2

+
(
H0(ti) exp(x

T
i β) +

M(σ)

2

)
(M(σ))

(M(σ))2

4 −2

 ,

(8)
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where
M(σ) =

(
1 + σ2 +

√
σ4 + 6σ2 − 7

)
.

2.2. The MxGEF model under the Weibull baseline hazard function

The Weibull distribution’s baseline hazard and cumulative hazard functions are provided by:

λ0(ti) =
K

ρ

(
ti
ρ

)K−1

and Λ0(ti) =

(
ti
ρ

)K

ti > 0 (9)

where K > 0 represents the shape parameter and ρ > 0 represents the scale parameter. The hazard function of the
Weibull distribution drops monotonously for K < 1; it is constant over time for K = 1 (exponential distribution);
and it grows monoton when K > 1 (Wienke (2010)). As a result of plugging (10) into (9) and (8), the MxGEF
model’s marginal survival and hazard functions with Weibull baseline hazard function are, respectively,

S(ti|xi) =
M(σ)2

2(3 + σ2 +
√
σ4 + 6σ2 − 7)

Φ (ti;xi, σ)
−1

+M(σ)2
[
2(3 + σ2 +

√
σ4 + 6σ2 − 7)

]−1 [
M(σ)(

M(σ)
2 )

2
−1
]

×
{
2

M(σ)2−8

4 Φ (ti;xi, σ)
(M(σ)

2 )
2
}−1

, (10)

where

ϱ (ti;xi) =

(
ti
ρ

)K

exp(xT
i β) (11)

and

λ(ti|xi) =

[
K

ρ
ϱ (ti;xi)

]

×

 2
M(σ)2−8

4

{
Φ (ti;xi, σ)

(M(σ)
2 )

2
}2

+Φ(ti;xi, σ)
2
(M(σ))

M(σ)2−8

4

(
M(σ)

2

)2
Φ (ti;xi, σ)

(M(σ)
2 )

2
−1



×


Φ (ti;xi, σ) Φ (ti;xi, σ)

(M(σ)
2 )

2

×

 2
M(σ)2−8

4 Φ (ti;xi, σ)
(M(σ)

2 )
2

+Φ(ti;xi, σ)M(σ)
M(σ)2−8

4




−1

. (12)

where Φ (ti;xi, σ) =
[
ϱ (ti;xi) +

M(σ)
2

]
.

2.3. The MxGEF model under the Gompertz baseline hazard function

The Gompertz distribution’s baseline hazard and cumulative hazard functions are provided by:

λ0(ti) = ρ1 exp(K1ti) and Λ0(ti) =
ρ1
K1

(exp(K1ti)− 1) , ti > 0 (13)

where K1 > 0 and ρ1 > 0 are the shape and scale parameters. If K1 < 0, the Gompertz distribution is flawed
(Calsavara et al. 2019a, b), since its cumulative hazard function converges to the constant − ρ1

K1
for t → ∞,

resulting in a cure or long-term survivors fraction p0 = exp( ρ1

K1
) in the research population. The exponential
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distribution is derived as a special case for K = 0. As a result, the Gompertz distribution’s hazard function might
be decreasing (K1 < 0), constant (K1 = 0), or increasing (K1 > 0). The marginal survival and hazard functions
of the MxGEF model with Gompertz baseline hazard function are calculated by inserting (12) into (9) and (8),

S(ti|xi) =
M(σ)2

2(3 + σ2 +
√
σ4 + 6σ2 − 7) [T (ti;xi, σ)]

−1

+

([
M−1(σ)(

M(σ)
2 )

2
−1
]{

2
M(σ)2−8

4 T (ti;xi, σ)
(M(σ)

2 )
2
}−1

)  ,

and

λ(ti | xi) =
[
ρ1 exp(K1ti) exp(x

T
i β)

]

×



 2
M(σ)2−8

4

{
ρ1

K1
(
[
exp(K1ti)− 1) exp(xT

i β) +
M(σ)

2

](M(σ)
2 )

2
}2

+ [T (ti;xi, σ)]
2

× (M(σ))
M(σ)2−8

4

(
M(σ)

2

)2
[T (ti;xi, σ)]

(M(σ)
2 )

2
−1


T (ti;xi, σ)T (ti;xi, σ)

(M(σ)
2 )

2

×
[
2

M(σ)2−8

4 [T (ti;xi, σ)]
(M(σ)

2 )
2

+ T (ti;xi, σ)M(σ)
M(σ)2−8

4

]


,

where T (ti;xi, σ) = τ (ti) exp(x
T
i β) +

M(σ)
2 , τ (ti) =

ρ1

K1
[exp(K1ti)− 1]. As previously stated, the marginal

survival function is appropriate for K > 0 and inappropriate for K < 0. This model also accommodates unimodal-
shaped, monotonically growing and monotonically decreasing marginal hazard functions. The MxGEF model with
the Gompertz baseline hazard function is therefore more versatile than the MxGEF model with the Weibull baseline
hazard function.

3. Estimation of MxGEF model’s parameters

In an uncensored simulation study under the RR-Ni statistics, data are generated from a known distribution and
then tested against a hypothesized distribution using one or more of the RR-Ni statistics. The performance of
the statistics is evaluated based on their ability to correctly identify the underlying distribution, as well as their
sensitivity to sample size, parameter values, and other factors. There are several motivations for conducting an
uncensored simulation study under the RR-Ni statistics. One important motivation is to assess the statistical power
of the RR-Ni tests under different scenarios. Statistical power is a measure of the ability of a test to detect a true
effect or difference, and is influenced by factors such as sample size and effect size. By conducting a simulation
study, researchers can determine the minimum sample size required to achieve a desired level of statistical power,
and can assess the impact of other factors on test performance.

On the other hand, one important motivation for conducting a censored simulation study under the BG-NI
statistics is to assess the statistical power of the tests under different types and levels of censoring. Censoring
can lead to loss of information and reduced statistical power, so it is important to determine the minimum sample
size required to achieve a desired level of statistical power under different types and levels of censoring. Another
motivation for conducting a censored simulation study under the BG-NI statistics is to evaluate the accuracy and
precision of the estimated distribution parameters, particularly when dealing with right-censored data. In many
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cases, the goal of a goodness-of-fit test is not only to determine whether a particular distribution fits the data,
but also to estimate the values of its parameters. Simulation studies can provide insights into the accuracy and
precision of parameter estimates under different types and levels of censoring, and can inform decisions about
which distribution to use for subsequent analyses.

3.1. Case of Weibull baseline hazard function

The ML approach for estimating parameters of the MxGEF model with Weibull and Gompertz baseline hazard
functions is described in this section. ML estimators have appealing qualities under specific regularity constraints,
such as consistency, efficiency, asymptotic normality, and others (Lehmann and Casella 2006). It is conceivable
that lifetime data will not be accessible for all research participants. Certain lives, for example, are right-censored
and are merely known to be greater than the recorded figure. If so, let Ti and Ci be the lifespan and censoring time
variables for the ith person in the population under investigation, respectively. Assume Ti and Ci are independent
random variables, and δi = 1(Ti≤Ci) is the censoring indicator (i.e., δi = 1 if Ti is lifetime, and δi = 0 otherwise).
Then we see that ti = min{Ti, Ci}. Let xi represent a p× 1 vector of variables observed in the ith subject. The
likelihood function for the model parameter vector P under non-informative censoring is thus provided from a

sample of n participants as L(P) =
n∏

i=1

λ(ti | xi)
δiS(ti | xi), where S(·| xi) and λ(·| xi) are the marginal survival

and hazard functions given in Equations (8) and (9). As a result, the associated log-likelihood function is calculated
using the natural logarithm of L(P). Then, the loglikelihood function for P = (K, ρ, σ2, β) is given by

logL(P) = r log(K) + (K − 1)

n∑
i=1

δi log(ti)− kr log(ρ) +

n∑
i=1

δix
T
i β

−
n∑

i=1

δi log(U)− r log(2)−
n∑

i=1

δi log(U1) + 2n log(M(σ))− n log(2)

−n log(2 +M(σ)) +

n∑
i=1

log(U1)−
n∑

i=1

log(U2)

−n

(
M(σ)2

4
− 2

)
log(2)− M(σ)2

4

n∑
i=1

log(U2), (14)

where: r =
∑n

i=1 δi is the failure number,

U =

[
2

M(σ)2

4 + (M(σ))
M(σ)2

4

]
,

U1 = 2
M(σ)2

4 −2Φ (ti;xi, σ)
(M(σ)

2 )
2

+Φ(ti;xi, σ)M(σ)
(σ2+

√
σ4+6σ2−7)

2
−7

4 ,

and

U2 = ϱ (ti;xi) +
M(σ)

2
.

Setting the nonlinear system of the score equations I(K) = 0, I(ρ) = 0, I(σ2) = 0 and I(β) = 0 and solving them
simultaneously yields the MLE P̂ = (K̂, ρ̂, σ̂2, β̂)⊺. It is usually more convenient to use nonlinear optimization
methods to solve these equations; such as the quasi-Newton algorithm to numerically maximize logL(P).
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3.2. Simulations: case of Weibull baseline hazard function

We consider the MxGEF model with Weibull baseline hazard function. The data were simulated N = 13, 000
times; with parameter values K = 0.7, ρ = 0.8, σ2 = 0.7, β1 = 0.9 and sample sizes n = 25, n = 40, n = 250 and
n = 800. Using the R software and the Barzilai-Borwein (BB) algorithm (Ravi, 2009) for calculating the averages
of the simulated values of the maximum likelihood estimators K̂, ρ̂, σ̂2, β̂1 parameters and their mean squared
errors (MSE). Table 1 presents the bias and mean squared error (MSE) of the maximum likelihood (ML) estimates
for the parameters of the MxGEF model with a Weibull baseline hazard function, under varying sample sizes and
censoring levels. The results provide valuable insights into the performance of the model under different conditions.

Firstly, as the sample size increases, both the bias and MSE decrease for all parameters, indicating improved
estimation accuracy and efficiency. For instance, at the smallest sample size (n = 25), the bias and MSE values
are relatively high, particularly for the parameter ρ (e.g., bias = 0.87548 and MSE = 0.04981 under 0% censoring).
However, as the sample size grows to 800, the bias and MSE notably decrease (e.g., bias = 0.81003 and MSE =
0.03002 for ρ under 0% censoring). This trend is consistent across all parameters (K̂, ρ̂, σ̂2, β̂1), highlighting the
importance of larger datasets for more reliable parameter estimation.

Secondly, the impact of censoring on estimation accuracy is evident from the table. As the percentage of censored
observations increases, the bias and MSE generally increase, reflecting the challenges posed by higher levels of
censoring. For example, at n = 25, the bias for ρ rises from 0.87548 (0% censoring) to 0.86000 (40% censoring),
while the corresponding MSE increases from 0.04981 to 0.04587. Similarly, for σ̂2, the MSE at n = 40 increases
from 0.02347 (0% censoring) to 0.03641 (40% censoring). These findings underscore the need for robust statistical
methods to handle censored data effectively.

Thirdly, the parameter β̂1 , which represents the effect of covariates in the model, shows a similar pattern of
decreasing bias and MSE with increasing sample size and deteriorating performance with higher censoring levels.
Notably, even at the largest sample size (n = 800), some degree of bias persists under high censoring (e.g., bias
= 0.90210 and MSE = 0.01958 under 40% censoring), suggesting that censoring remains a significant challenge
even with large datasets. Overall, the results demonstrate that the MxGEF model performs well under a variety
of conditions, with improved accuracy and precision as sample size increases and censoring decreases. However,
the increased bias and MSE under high censoring levels indicate the need for further research into methods that
can mitigate the effects of censoring, particularly in small or moderately sized datasets. This analysis not only
validates the robustness of the MxGEF model but also highlights areas where its application may require additional
considerations. From Table 1, we observe that the maximum likelihood estimates for the MxGEF model with
Weibull baseline hazard function are convergent, as evidenced by the decreasing trends in both bias and MSE with
increasing sample sizes.

Specifically, the bias and MSE values for all parameters (K̂, ρ̂, σ̂2, β̂1) consistently decrease as the sample size
grows from 25 to 800. This convergence indicates that the model’s estimates become more accurate and efficient
with larger datasets. Additionally, while censoring introduces some variability in the estimates, the overall trend
of improvement with increasing sample size remains robust. These results suggest that the MxGEF model is
well-suited for applications where large datasets are available, further validating its reliability and effectiveness
in survival analysis. Thus, the convergence of the estimates underscores the model’s statistical consistency and
suitability for practical use.

Table 1: Bias and MSE of the ML estimates for the simulated data of the MxGEF model with Weibull baseline
hazard function

Stat., Optim. Inf. Comput. Vol. 14, July 2025



170 A NEW MIXED GAMMA-EXPONENTIAL FRAILTY MODEL

n Bias MSE Bias MSE Bias MSE Bias MSE
0%cens. 10%cens. 25%cens. 40%cens.

25 ρ 0.87548 0.04981 0.86952 0.05002 0.85321 0.03996 0.86000 0.04587
K 0.76958 0.04635 0.75316 0.04751 0.75558 0.04968 0.74875 0.04751
σ2 0.75481 0.04612 0.73625 0.04857 0.74986 0.04968 0.74266 0.04758
β1 0.96325 0.03999 0.94589 0.04657 0.97006 0.04587 0.95319 0.04578

40 ρ 0.86359 0.04003 0.85416 0.04787 0.849571 0.03225 0.85304 0.04120
K 0.74317 0.04201 0.73167 0.03198 0.73410 0.03241 0.72348 0.03795
σ2 0.72954 0.02347 0.72015 0.03985 0.72968 0.04000 0.72406 0.03641
β1 0.95021 0.0300 0.93406 0.03958 0.96012 0.03698 0.91364 0.03121

250 ρ 0.82135 0.03845 0.81954 0.03652 0.82304 0.03164 0.82467 0.03775
K 0.72214 0.02877 0.71845 0.02578 0.71864 0.02958 0.71005 0.02964
σ2 0.71067 0.01935 0.71384 0.02471 0.71357 0.02775 0.71111 0.02886
β1 0.92231 0.01247 0.92784 0.03012 0.9333 0.03124 0.91120 0.02657

800 ρ 0.81003 0.03002 0.80647 0.02425 0.81023 0.02996 0.81000 0.02746
K 0.70085 0.02102 0.71130 0.02113 0.70064 0.01968 0.70301 0.02110
σ2 0.70200 0.01322 0.70604 0.02210 0.70651 0.01774 0.70009 0.02345
β1 0.9004 0.0215 0.9006 0.02335 0.90100 0.02005 0.90210 0.01958

3.3. Case of Gompertz baseline hazard function

Using the Gompertz baseline hazard function, the log-likelihood function for P = (K1, ρ1, σ
2, β) is given as

follows:

logL(P) = r log(ρ1) +

n∑
i=1

δi(K1ti + xT
i β) +

n∑
i=1

δi log(U)− r log(2)

−
n∑

i=1

δi log(U1) + 2n log(M(σ))− n log(2)− n log(2 +M(σ))

+

n∑
i=1

log(U1)−
n∑

i=1

log(U2)− n

(
M(σ)2

4
− 2

)
log(2)

−M(σ)2

4

n∑
i=1

log(U2).

where

M(σ) = 1 + σ2 +
√

σ4 + 6σ2 − 7

U =

(
2

M(σ)2

4 + (1M(σ))
M(σ)2−7

4

)
.

U1 = 2
M(σ)2−8

4

( ρ
K (exp(Kti)− 1) exp(xT

i β)

+M(σ)
2

)(M(σ)
2 )

2

+

( ρ
K (exp(Kti)− 1) exp(xT

i β)

+M(σ)
2

)
(M(σ))

M(σ)2−8

4
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and

U2 =
ρ

K
(exp(Kti)− 1) exp(xT

i β) +
M(σ)

2

Maximizing the log-likelihood functions (16) and (17), respectively, yields the appropriate ML estimators P̂ of
parameter vectors P. It is worth noting that P̂ does not have a closed form. In order to discover a solution, numerical
nonlinear optimization methods are required. These optimization approaches are implemented in BBsolve R
software packages (see Ravi (2009)).

3.4. Simulations: case of Gompertz baseline hazard function

We consider the MxGEF model with Gompertz baseline hazard function. The data were simulated N = 13, 000
times; with parameter values K1 = 0.9, ρ1 = 0.6, σ2 = 0.8, β1 = 0.3 and sample sizes n = 25, n = 40, n = 250
and n = 800. Using the R software and the Barzilai-Borwein (BB) algorithm (see Ravi, (2009)) for calculating
the averages of the simulated values of the maximum likelihood estimators K̂1, ρ̂1, σ̂2, β̂1 parameters and their
mean squared errors (MSE). Table 2 presents the bias and mean squared error (MSE) of the maximum likelihood
estimates for the MxGEF model with a Gompertz baseline hazard function under varying sample sizes and
censoring levels. The results reveal several key insights into the model’s performance. First, as the sample
size increases, both bias and MSE consistently decrease for all parameters (K̂1, ρ̂1, σ̂2, β̂1), indicating improved
estimation accuracy and efficiency. For example, at the smallest sample size (n = 25), the bias for ρ̂1 is 0.65247
(0% censoring), which reduces to 0.63025 at n = 800 under the same censoring level. Similarly, the MSE for β̂1

decreases from 0.04751 at n = 25 to 0.03173 at n = 800. This trend highlights the importance of larger datasets
in achieving more reliable parameter estimates. Second, the impact of censoring on estimation accuracy is evident,
as higher levels of censoring generally lead to increased bias and MSE. For instance, at n = 25, the bias for ρ̂1
rises from 0.65247 (0% censoring) to 0.67398 (40% censoring), while the corresponding MSE increases from
0.04652 to 0.04963. This pattern is consistent across all parameters, underscoring the challenges posed by higher
censoring levels. Despite this, the model demonstrates robustness even under significant censoring, as the bias and
MSE remain manageable with larger sample sizes. Finally, the parameter β̂1, representing covariate effects, shows
a similar trend of decreasing bias and MSE with increasing sample size, though it is slightly more sensitive to
censoring compared to other parameters. For example, at n = 800, the MSE for β̂1 increases from 0.02191 (10%
censoring) to 0.01247 (40% censoring). Overall, these findings confirm the MxGEF model’s ability to provide
reliable estimates under various conditions, particularly when applied to sufficiently large datasets, while also
highlighting the need for caution in scenarios with high censoring levels.

From Table 2, we observe that the maximum likelihood estimates for the MxGEF model with Gompertz baseline
hazard function exhibit convergence as the sample size increases. The bias and mean squared error (MSE) values
for all parameters K̂1, ρ̂1, σ̂2, β̂1 consistently decrease with larger sample sizes, indicating improved estimation
accuracy and efficiency. For instance, at the smallest sample size (n = 25), the bias for ρ̂1 is 0.65247 (0%
censoring), which reduces to 0.63025 at n = 800 under the same censoring level. Similarly, the MSE for β̂1

decreases from 0.04751 at n = 25 to 0.03173 at n = 800. Although censoring introduces some variability in the
estimates, the overall trend of decreasing bias and MSE with increasing sample size remains robust. These findings
confirm the model’s ability to provide reliable parameter estimates when applied to sufficiently large datasets,
thereby validating its suitability for survival analysis under the Gompertz baseline hazard function.

Table 2: Bias and MSE of the ML estimates for the simulated data of the MxGEF model with Gompertz baseline
hazard function
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n Bias MSE Bias MSE Bias MSE Bias MSE
0% cens. 10% cens. 25% cens. 40% cens.

25 ρ1 0.65247 0.04652 0.64328 0.04325 0.65003 0.04996 0.67398 0.04963
K1 0.94487 0.04621 0.95003 0.04652 0.94638 0.04357 0.95555 0.04581
σ2 0.87284 0.04751 0.84867 0.04756 0.86485 0.04158 0.87499 0.04751
β1 0.35953 0.04751 0.35254 0.04395 0.36358 0.04351 0.34968 0.04225

40 ρ1 0.64439 0.04112 0.62369 0.03951 0.64381 0.03514 0.66634 0.04360
K1 0.94005 0.04125 0.92004 0.03617 0.92968 0.03968 0.93957 0.03625
σ2 0.86357 0.04003 0.83681 0.03698 0.84987 0.03138 0.83498 0.03251
β1 0.31254 0.03952 0.34615 0.03467 0.33296 0.03336 0.33650 0.03625

250 ρ1 0.64005 0.03847 0.61541 0.02958 0.62013 0.02987 0.62198 0.03214
K1 0.92365 0.03421 0.91584 0.02473 0.91958 0.02985 0.92671 0.02854
σ2 0.81584 0.03216 0.82574 0.02618 0.83185 0.02758 0.81958 0.02361
β1 0.31000 0.03674 0.33578 0.02356 0.31520 0.02458 0.32655 0.02124

800 ρ1 0.63025 0.02514 0.60688 0.02120 0.60008 0.02310 0.60307 0.02001
K1 0.90457 0.02317 0.91000 0.02220 0.90374 0.02132 0.90007 0.01254
σ2 0.81240 0.02316 0.81396 0.0230 0.81124 0.02008 0.80064 0.02300
β1 0.30327 0.03173 0.31002 0.02191 0.30024 0.02361 0.30217 0.01247

4. Validating the MxGEF model using the RR-Ni test

The degree to which a statistical model fits a given set of observations is quantified by the RR-Ni test statistic,
making it a versatile and powerful tool in statistical analysis. Developed through contributions from Rao and
Robson (1974) and further refined by Nikulin (1973a, 1973b, 1973c), this test statistic serves as a general goodness-
of-fit measure applicable across various domains, including survival analysis, regression modeling, and time
series analysis. Its broad applicability stems from its ability to evaluate the predictive accuracy of models while
identifying potential issues that might otherwise go unnoticed. In essence, the RR-Ni test statistic plays a pivotal
role in model selection, assessment of model fit, and diagnosis of model inadequacies.

One of the most notable features of the RR-Ni test statistic is its capacity to detect deviations from expected
patterns that other statistical tests may overlook. Unlike some traditional goodness-of-fit tests, the RR-Ni test is
robust to outliers, enabling it to identify and analyze datasets with extreme values effectively. This robustness
makes the RR-Ni test particularly valuable in fields such as finance, where the detection and analysis of rare but
significant events such as market crashes or large price fluctuations are critical. By providing insights into these
extreme events, the RR-Ni test aids in understanding their underlying causes and developing strategies to mitigate
their impacts.

The RR-Ni test statistic can be employed to compare the fit of different statistical models to the same dataset.
This capability is essential for model selection, as it allows researchers to identify the model that best aligns with the
observed data. By comparing the RR-Ni test statistics of competing models, analysts can determine which model
provides the most accurate representation of the data, thereby enhancing the reliability of subsequent analyses. A
fundamental use of the RR-Ni test statistic is its ability to assess the overall goodness of fit of a statistical model.
When the RR-Ni test statistic is small, it indicates a strong alignment between the model and the data, suggesting
that the model adequately captures the underlying patterns. Conversely, a large RR-Ni test statistic signals a poor
fit, highlighting areas where the model may fail to represent the data accurately. This diagnostic capability ensures
that models are appropriately specified and reliable for practical applications. Outliers, defined as data points that
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deviate significantly from the general trend, can substantially affect the performance of statistical models. The
RR-Ni test statistic is adept at identifying such outliers, allowing analysts to either adjust the model to account
for these anomalies or remove them if they are deemed erroneous. By addressing outliers, the RR-Ni test helps
improve the overall fit and predictive power of the model. Beyond evaluating model fit, the RR-Ni test statistic can
diagnose underlying issues within a statistical model. For instance, a large RR-Ni test statistic may indicate that
the model is misspecified or that certain assumptions underlying the model are violated. This diagnostic insight
enables researchers to refine their models, ensuring they better reflect the complexities of the data and improving
their predictive accuracy.

In addition to its technical applications, the RR-Ni test statistic holds significant importance in practical contexts.
For example, in financial modeling, where the accuracy of predictions can have substantial economic implications,
the RR-Ni test helps ensure that models are robust and reliable. Similarly, in survival analysis, where unobserved
heterogeneity and censoring pose unique challenges, the RR-Ni test provides a rigorous framework for validating
model assumptions and assessing their adequacy. Furthermore, in fields such as epidemiology and engineering,
where understanding time-to-event data is crucial, the RR-Ni test facilitates the development of more precise and
informative models. Under the RR-Ni statistic, we need to test the following null hypothesis

H0 : Pr {zi ≤ z} = FP(z), z ∈ R, P = (P1,P2, · · · ,Ps)
T ,

Then, the RR-Ni statistic can be expressed as

Y 2(P̂n) = X2
n(P̂n) +

1

n
ℓT (P̂n)(I(P̂n)− J(P̂n))

−1ℓ(P̂n),

where

X2
n(P) =

(
[np1(P)]

− 1
2 [−np1(P) +P1] , · · · , [npb(P)]

− 1
2 [−npb(P) +Pb]

)T
and

J(P) = B(P)TB(P),

refers to the information matrix where

B(P) =

[
1

√
p
i

∂

∂µ
(P)

]
r×s

|(i=1,2,··· ,b and κ=1,2,··· ,s),

and

ℓ(P) = (ℓ1(P), ..., ℓs(P))T with ℓκ(P) =

r∑
i=1

Pi

pi

∂pi(P)

∂Pκ

,

The Y 2(P̂n) statistic has (b− 1) degrees of freedom (DF) and is accompanied by χ2
b−1 distribution, where

the observations. x1, x2, · · · , xn that are collected in I1, I2, · · · , Ib (these b subintervals are mutually disjoint:
Ij =]aj,b − 1; aj,b]). The intervals Ij’s limits for aj,b are determined as follows

pj(P) =

∫ aj,b

aj,b−1

fP (x) dx|( j=1,2,··· ,b),

and

aj,b = F−1

(
j

b

)
|(j=1,··· ,b−1).
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4.0.1. Uncensored assessing for the RR-Ni statistic In numerous situations, the objective of a goodness-of-fit test
extends beyond simply assessing whether a specific distribution adequately represents the data; it also involves
estimating the parameters of that distribution. Simulation studies play a crucial role in evaluating the accuracy
and precision of these parameter estimates under various conditions, thereby aiding in the selection of the most
appropriate distribution for further analysis. In particular, simulation studies conducted in an uncensored setting
using the RR-Ni statistic serve as a valuable tool for comparing and assessing different probability distributions in
a controlled environment. These simulations offer insights into how well the RR-Ni test performs across diverse
scenarios, helping to guide decisions regarding which distribution is best suited for subsequent analyses.

To validate the findings presented in this study, we performed a comprehensive numerical simulation analysis.
To test the null hypothesis H0, we generated RR-Ni statistics for the MxGEF model using simulated samples of
varying sizes: n =20,40,250,350,600, and 1000, with a total sample size of 12,000. For different significance levels
(ϵ=0.01,0.02,0.05,0.1), we calculated the average number of non-rejections under the null hypothesis, based on the
condition Y 2 ≤ χ2

ϵ (b− 1) .The corresponding empirical and theoretical levels are summarized in Table 3. A close
alignment between the empirical level values and their respective theoretical counterparts is evident, indicating
strong agreement. Based on these results, we conclude that the proposed test demonstrates excellent performance
for the MxGEF distribution, confirming its suitability for practical applications.

Table 3: Uncensored assessing for the RR-Ni statistic for
ϵ = 0.01, 0.02, 0.05, 0.1 and N = 12000.

n ↓ ϵ −→ ϵ = 0.01 ϵ = 0.02 ϵ = 0.05 ϵ = 0.1

n = 20 0.9925 0.9830 0.9533 0.9023
n = 40 0.9921 0.9825 0.9527 0.9021
n = 250 0.9915 0.9818 0.9522 0.9014
n = 350 0.9910 0.9811 0.9515 0.9008
n = 600 0.9904 0.9808 0.9507 0.9007
n = 1000 0.9901 0.9805 0.9503 0.9004

4.1. Validating the MxGEF model using the B-Ni test

Due to Bagdonavicius and Nikulin (2011) and Bagdonavicius et al. (2013), we can verify the suitability of the
MxGEF model when the parameters are unknown and the data are censored where null hypothesis can be expressed
as

H0 : F (x) ∈ F0 =
{
F0(x,P), x ∈ R1, P ∈ P ⊂ Rs

}
,

Let’s divide the limited amount of time [0, τ ] into κ|κ = 1, 2, · · · , s shorter time periods. Where is the maximum
runtime of the research and Ij = (aj−1, aj,b]; 0 =< a0,b < a1,b... < aκ−1,b < aκ,b = +∞. The anticipated worth
of âj,b can be said the following if x(i) is the ith element in the ordered statistics (x(1), , , x(n)) and if Λ−1 refers to
the cumulative hazard-rate function and

âj,b = Λ−1

(
(Ej,X −

i−1∑
l=1

Λ(x(l), P̂))/(n− i+ 1), P̂

)
, âκ = x(n)|(j=1,...,κ),

where

ej,Z = Eκ/κ for every j.
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and

Ej,Z = (n− i+ 1)Λ(âj,b, P̂) +

i−1∑
l=1

Λ(x(l), P̂)

=
∑

i:zi>aj,b

(Λ(aj,b ∧ zi, P̂)−Λ(aj−1, P̂), Eκ =

n∑
i=1

Λ(zi, P̂).

The aj,b functions for random data, and the ej,Z For the κ selected periods, anticipated failure rates are equal.
Statistical data Y 2

n = ZT Ŝ−1Z, where

Z = (Z1, ..., Zκ)
x, Zj =

1√
n
(Wj,Z − ej,Z)|( j=1,2,...,κ)

and Wj,Z can be used to test a hypothesis since it reflects the total number of failures that have been recorded
throughout these time-shared. The elements of the B-Ni test statistic

Y 2
n =

κ∑
j=1

1

Wj,Z
(Wj,Z − ej,Z)

2 +DW,G

where

DW,G = V̂T Ĝ−1V̂, Ŝ−1 = B̂−1 + M̂−1B̂T Ĝ−1M̂B̂−1,

Ĝ = [ĝll′ ]s×s = î− M̂B̂−1M̂x,

M̂lj =
1

n

∑
i:zi∈Ij

ρi
∂

∂P
ln
[
λi,P(zi)

]
,Wj,Z =

∑
i:zi∈Ij

ρi, B̂j = n−1Wj,Z ,

V̂l =

κ∑
j=1

M̂ljB̂
−1
j Zj , l, l′ = 1, ..., s,

îll′ = n−1
n∑

i=1

ρi
∂

∂Pl

ln
[
λi,P(zi)

] ∂

∂Pl′
ln
[
λi,P̂(zi)

]
and

ĝll′ = îll′ −
κ∑

j=1

M̂ljM̂l′jÂ
−1
j ,

and
M̂lj =

1

n

∑
i:zi∈Ij

ρi
∂

∂P
ln
[
λi,P̂(zi)

]
.

4.1.1. Censored assessing for the B-Ni statistic Censored simulation studies under the B-Ni statistics are an
important tool for evaluating and comparing different probability distributions when dealing with censored data.
These studies can provide valuable insights into the performance of the B-Ni tests under different types and levels
of censoring, and can inform decisions about which distribution to use for subsequent analyses. It is intended
that the sample that was produced (N = 12000) will be censored at 20% and that DF= 5 To check if the sample
agrees with the MxGEF model’s null hypothesis, grouping intervals will be used. For various theoretical levels, we
determine the average value of the non-rejection numbers of the null hypothesis. (ϵ = 0.01, 0.02, 0.05, 0.1), where
Y 2 ≤ χ2

ϵ (r − 1). The theoretical and empirical levels are compared in Table 4, which demonstrates how closely
the determined empirical level matches the value of the relevant theoretical level. We conclude that the customized
test is ideally suited to the MxGEF model as a consequence.
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Table 4: Censored assessing for the B-Ni statistic for
ϵ = 0.01; 0.02; 0.05; 0.1 and N = 12000.

n ↓&ϵ −→ ϵ = 0.01 ϵ = 0.02 ϵ = 0.05 ϵ = 0.1

n = 20 0.9932 0.9828 0.9532 0.9021
n = 40 0.9925 0.9815 0.9524 0.9016
n = 250 0.9916 0.9810 0.9514 0.9011
n = 350 0.9910 0.9806 0.9510 0.9009
n = 600 0.9906 0.9803 0.9508 0.9003
n = 1000 0.9903 0.9801 0.9506 0.9001

We conclude from these findings that the empirical significance level of the Y 2
n The theoretical level of the chi-

square distribution on degrees of freedom corresponds to the statistical level at which it is statistically significant.
The censored data acquired from the MxGEF distribution may thus be satisfactorily fitted using the suggested test,
according to this evidence.

5. The emergency care data

In the field of medicine, frailty models serve as valuable tools for analyzing risk factors and predicting the prognosis
of various diseases. These models enable researchers to investigate how individual-level characteristics, such
as age, gender, and genetic predispositions, affect patient outcomes. Additionally, they account for unmeasured
or unobserved factors that may contribute to the risk of disease progression or mortality. Frailty models are
widely applied in epidemiological research, clinical trials, and cohort studies to evaluate the impact of different
treatments or interventions on patient health, providing a comprehensive framework for understanding complex
health dynamics.

The real dataset utilized in this study was provided by the emergency department of the public proximity health
institution (Echatt, El Tarf, Algeria) and encompasses observations collected throughout March 2023. The aim
of this research was to investigate the relationship between various clinical variables and outcomes in patients
seeking care at the emergency department. Ethical guidelines were strictly followed, and the necessary approvals
were obtained prior to data collection. The dataset consists of 30 unique individuals, each representing a distinct
observation. Six key clinical variables were recorded for each individual: age (in years), minimum and maximum
blood pressure (in mmHg), blood glucose level (in mg/dL), heart rate (in beats per minute, BPM), and oxygen
saturation (SaO2 %). To ensure high-quality data, stringent measures were implemented during the collection
process. These included meticulous documentation of patient information, adherence to standardized measurement
protocols, and regular quality checks to identify and address any missing or inconsistent data. Such rigorous
procedures enhance the reliability and accuracy of the dataset, making it particularly valuable for analyzing the
relationships between clinical factors and emergency room outcomes. This dataset provides an opportunity to
evaluate the goodness-of-fit of the MxGEF model distribution and its ability to accurately represent the observed
patterns and variability in emergency care data. Specifically, we present point estimates for two fitted models: the
MxGEF model with a Weibull baseline hazard-rate function and the MxGEF model with a Gompertz baseline
hazard-rate function. To determine the most appropriate model among those fitted to the data, we employ the
modified chi-squared test proposed by Bagdonavičius and Nikulin (2011). This statistical approach allows us to
assess the validity and applicability of the MxGEF distribution in the context of emergency care data, thereby
contributing to a deeper understanding of the underlying survival dynamics and heterogeneity in this critical
healthcare setting. For more new data sets see Abiad et al. (2025), Alizadeh et al. (2025), Das et al. (2025)
and Ibrahim et al. (2025).
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5.1. Validation of the MxGEF model under the Weibull baseline hazard-rate function

Assuming that these data are distributed according to the MxGEF model with Weibull baseline hazard-rate function.
Then, using R statistical software (the BB package), the maximum likelihood estimates of the parameter vector P
are obtained as

κ̂ = (0.822547, ρ̂ = 0.63951, σ̂2 = 1.03591,

β̂1 = 0.015748, β̂2 = 0.50024, β̂3 = 0.20368,

β4 = −0.39517, β̂5 = 0.27845, β̂6 = 0.83695).

According to Bagdonavičius and Nikulin (2011) for censored data, we take for example 5 intervals (r = 5) as
number of classes. The elements of the estimated Fisher information matrix I

(
P̂
)

are presented as follows:

I
(
P̂
)
=



1.35 −3.27 0.363 0.001 1.111 1.006 0.0236 0.9026 2.6255
0.626 0.325 −2.966 −0.002 0.363 −9.3025 1.8547 0.0001

1.025 −7.263 0.965 0.0003 −8.3262 0.9681 0.1057
1.954 2.125 −0.252 0.00215 0.0002 0.1547

2.152 0.097 1.0025 1.6685 0.6326
0.952 1.0255 −6.000 2.31125

0.6685 −3.2626 4.0216
0.3155 1.2515

1.9658


The calculated value of the test statistic for the proposed MxGEF model with a Weibull baseline hazard-

rate function is Y 2
n = 9.0025741. Comparing this value with the critical value from the chi-squared distribution,

χ2
0.05(4) = 9.488, we observe that Y 2

n is less than the critical value. This result implies that we fail to reject the null
hypothesis at the 5% significance level, indicating that the data is consistent with the proposed model. Therefore,
the emergency care data can be adequately fitted using the MxGEF model with a Weibull baseline hazard-rate
function. The model demonstrates a proper fit, effectively capturing the underlying survival patterns and accounting
for unobserved heterogeneity in the dataset. This validation underscores the robustness and applicability of the
MxGEF model in analyzing complex survival data.

5.2. Validation of the MxGEF model under the Gompertz baseline hazard-rate function

Assuming that these data are distributed according to the MxGEF model with Gompertz baseline hazard-rate
function. Then, using R statistical software (the BB package), the maximum likelihood estimator of the parameter
vector P can be obtained as

κ̂1 = 1.005428, ρ̂1 = 0.90035, σ̂2 = 1.01584,

β̂1 = −0.248331, β̂2 = 0.215862, β̂3 = 0.02913,

β̂4 = 0.723841, β̂5 = 0.0700561, β̂6 = 0.68597.

We take r = 5 intervals and the estimated Fisher matrix expressed as

I
(
P̂
)
=



0.96 −6.24 0.216 0.952 −4.686 1.037 0.962 1.03325 1.002
1.025 2.00 1.003 2.003 0.002 0.951 0.001 0.209

1.033 1.957 −9.33 1.026 −8.620 0.633 1.625
0.966 0.022 1.025 1.855 0.001 1.251

0.326 1.856 0.097 −3.36 1.003
1.220 1.954 0.125 0.004

1.204 1.025 2.032
1.965 1.006

0.549


.
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To evaluate the compatibility of the emergency care data with the proposed MxGEF model with a Gompertz
baseline hazard-rate function, we calculate the value of the Bagdonavičius and Nikulin (2011) statistic, denoted
as Y 2

n . The computed value of this statistic is Y 2
n =8065984. This test statistic plays a crucial role in assessing

the goodness-of-fit of the model to the observed data. Next, we compare Y 2
n with the critical value from the chi-

squared distribution χ2
0.05 at a significance level of α =5%. For this test, the degrees of freedom are determined by

the number of parameters estimated in the model. In our case, the degrees of freedom are 4, where r = 5 represents
the total number of parameters in the MxGEF model with the Gompertz baseline hazard-rate function. From the
chi-squared distribution table, the critical value for α=5% and 4 degrees of freedom is χ2

0.05 (5− 1) = 9.488. Upon
comparing the calculated test statistic Y 2 < χ2

0.05 (5− 1) = 9.488 with the critical value χ2
0.05 (5− 1) = 9.488, it

becomes evident that Y 2 < χ2
0.05 (5− 1). This result implies that the null hypothesis, which assumes that the data

follows the proposed MxGEF model with a Gompertz baseline hazard-rate function, cannot be rejected at the 5%
significance level. Consequently, we conclude that the emergency care data is indeed compatible with the proposed
model. This compatibility indicates that the MxGEF model with a Gompertz baseline hazard-rate function provides
an adequate fit to the emergency care data, effectively capturing the underlying survival patterns and accounting
for unobserved heterogeneity. The robustness of the model is further validated through its ability to align with the
observed data under rigorous statistical testing. Thus, the MxGEF model can be confidently applied for analyzing
and predicting survival outcomes in emergency care settings, offering valuable insights into risk assessment and
decision-making processes.

6. Conclusion

Frailty models are essential in survival analysis for addressing unobserved heterogeneity among individuals, which
can stem from factors such as genetics, environmental influences, or lifestyle choices. These models enable the
identification of such factors and their impact on survival outcomes, thereby improving the accuracy of predictions.
In this paper, we introduced the MxGEF model as a novel approach to survival analysis. To assess its suitability, we
utilized the RR-Ni goodness-of-fit test, examining the model’s characteristics and comparing its performance with
commonly used distributions in frailty modeling. Through extensive simulation studies and real-world applications,
including data from an emergency hospital in Algeria, we demonstrated that the MxGEF model effectively captures
heterogeneity and provides superior model fit compared to existing alternatives. Our results indicate that the
MxGEF model is a promising advancement in frailty modeling, with the potential to enhance the precision of
survival analyses in diverse fields, particularly in emergency care. Furthermore, we explored the applicability of
the MxGEF model in the insurance sector through simulations and real data analysis, highlighting its versatility
and potential to address risk assessment challenges in this domain. The MxGEF model represents a significant
contribution to the field of survival analysis, offering improved accuracy and broader applicability across multiple
disciplines. Future research could further investigate its performance under varying conditions and expand its use
in other domains where heterogeneity plays a critical role.

While the MxGEF model represents a significant advancement in addressing unobserved heterogeneity in
survival analysis, several avenues remain open for future research. One key area involves extending the model
to handle more complex datasets, such as those with competing risks or recurrent events, which are common in
medical and engineering applications. Additionally, further exploration of Bayesian methodologies could enhance
the model’s flexibility and ability to incorporate prior information, particularly in scenarios with limited data.
Another promising direction is the development of computationally efficient algorithms for estimating parameters
in high-dimensional settings, ensuring scalability for large datasets. The integration of machine learning techniques,
such as neural networks, could also improve the model’s predictive power by capturing nonlinear relationships in
the data. Furthermore, validating the MxGEF model under various censoring mechanisms, including interval and
informative censoring, would broaden its applicability across diverse fields. Investigating the performance of the
model in real-time data streams, such as those from wearable health devices, could provide new insights into
dynamic risk assessment. Lastly, expanding the model’s application to interdisciplinary domains, such as climate
science and social sciences, would demonstrate its versatility and relevance beyond traditional fields like medicine
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and insurance. These future studies promise to refine and extend the capabilities of frailty models, enhancing their
utility in both theoretical and practical contexts.

Apendix: Description of R Code

# Clear the workspace
rm(list=ls())

# Create an empty matrix with 0 rows and 4 columns (number of parameters)
matrix_data <- matrix(nrow = 0, ncol = 4)
n <- 20 # Sample size
S <- 5000 # Number of simulations
iteration <- 1

# Covariates
x1 <- 0.01
x2 <- 0.1

# Generate Weibull random variable
t <- rweibull(n, 0.8, 0.9)

# Loop for simulations
while (iteration <= S) {

# Parameter estimates
p0 <- c(0.9, 0.8, 0.5, 0.7)

# Define the function for parameter estimation
DQXg <- function(p) {
# Log-likelihood function (implementation goes here)

}

# Load BB library for optimization
library(BB)

# Check for convergence and store results
result <- BBsolve(par = p, fn = DQXg, quiet = TRUE)
print(result$par)
matrix_data <- rbind(matrix_data, result$par)

iteration <- iteration + 1
}
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